You can subscribe to this list here.
| 2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
(1) |
Nov
(33) |
Dec
(20) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2004 |
Jan
(7) |
Feb
(44) |
Mar
(51) |
Apr
(43) |
May
(43) |
Jun
(36) |
Jul
(61) |
Aug
(44) |
Sep
(25) |
Oct
(82) |
Nov
(97) |
Dec
(47) |
| 2005 |
Jan
(77) |
Feb
(143) |
Mar
(42) |
Apr
(31) |
May
(93) |
Jun
(93) |
Jul
(35) |
Aug
(78) |
Sep
(56) |
Oct
(44) |
Nov
(72) |
Dec
(75) |
| 2006 |
Jan
(116) |
Feb
(99) |
Mar
(181) |
Apr
(171) |
May
(112) |
Jun
(86) |
Jul
(91) |
Aug
(111) |
Sep
(77) |
Oct
(72) |
Nov
(57) |
Dec
(51) |
| 2007 |
Jan
(64) |
Feb
(116) |
Mar
(70) |
Apr
(74) |
May
(53) |
Jun
(40) |
Jul
(519) |
Aug
(151) |
Sep
(132) |
Oct
(74) |
Nov
(282) |
Dec
(190) |
| 2008 |
Jan
(141) |
Feb
(67) |
Mar
(69) |
Apr
(96) |
May
(227) |
Jun
(404) |
Jul
(399) |
Aug
(96) |
Sep
(120) |
Oct
(205) |
Nov
(126) |
Dec
(261) |
| 2009 |
Jan
(136) |
Feb
(136) |
Mar
(119) |
Apr
(124) |
May
(155) |
Jun
(98) |
Jul
(136) |
Aug
(292) |
Sep
(174) |
Oct
(126) |
Nov
(126) |
Dec
(79) |
| 2010 |
Jan
(109) |
Feb
(83) |
Mar
(139) |
Apr
(91) |
May
(79) |
Jun
(164) |
Jul
(184) |
Aug
(146) |
Sep
(163) |
Oct
(128) |
Nov
(70) |
Dec
(73) |
| 2011 |
Jan
(235) |
Feb
(165) |
Mar
(147) |
Apr
(86) |
May
(74) |
Jun
(118) |
Jul
(65) |
Aug
(75) |
Sep
(162) |
Oct
(94) |
Nov
(48) |
Dec
(44) |
| 2012 |
Jan
(49) |
Feb
(40) |
Mar
(88) |
Apr
(35) |
May
(52) |
Jun
(69) |
Jul
(90) |
Aug
(123) |
Sep
(112) |
Oct
(120) |
Nov
(105) |
Dec
(116) |
| 2013 |
Jan
(76) |
Feb
(26) |
Mar
(78) |
Apr
(43) |
May
(61) |
Jun
(53) |
Jul
(147) |
Aug
(85) |
Sep
(83) |
Oct
(122) |
Nov
(18) |
Dec
(27) |
| 2014 |
Jan
(58) |
Feb
(25) |
Mar
(49) |
Apr
(17) |
May
(29) |
Jun
(39) |
Jul
(53) |
Aug
(52) |
Sep
(35) |
Oct
(47) |
Nov
(110) |
Dec
(27) |
| 2015 |
Jan
(50) |
Feb
(93) |
Mar
(96) |
Apr
(30) |
May
(55) |
Jun
(83) |
Jul
(44) |
Aug
(8) |
Sep
(5) |
Oct
|
Nov
(1) |
Dec
(1) |
| 2016 |
Jan
|
Feb
|
Mar
(1) |
Apr
|
May
|
Jun
(2) |
Jul
|
Aug
(3) |
Sep
(1) |
Oct
(3) |
Nov
|
Dec
|
| 2017 |
Jan
|
Feb
(5) |
Mar
|
Apr
|
May
|
Jun
|
Jul
(3) |
Aug
|
Sep
(7) |
Oct
|
Nov
|
Dec
|
| 2018 |
Jan
|
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
(2) |
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
| S | M | T | W | T | F | S |
|---|---|---|---|---|---|---|
|
|
|
|
|
1
(11) |
2
(8) |
3
|
|
4
|
5
|
6
(11) |
7
(1) |
8
|
9
(8) |
10
|
|
11
(1) |
12
(4) |
13
(5) |
14
(1) |
15
(4) |
16
(1) |
17
(4) |
|
18
(26) |
19
(7) |
20
(4) |
21
(1) |
22
(2) |
23
(23) |
24
(19) |
|
25
(1) |
26
(2) |
27
(12) |
28
|
29
(6) |
30
|
|
|
From: Marko L. <mar...@gm...> - 2011-09-29 19:53:35
|
Hi,
just received
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/backend_qt4.py", line 449, in edit_parameters
fmt = "%(axes_repr)s (%(ylabel)s)" % ylabel
TypeError: format requires a mapping
should this postfix "% label" in line 449 be removed?
Cheers and thanks for the great work,
M.
PS: Why is there no subplots.svg (only icon in NavigationToolbar with only a .png version)
PPS: Another one caused by clicking the green flag icon ("Edit curves and ..") in NavigationToolbar
NotImplementedError: TransformNode instances can not be copied. Consider using frozen() instead.
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/backend_qt4.py", line 463, in edit_parameters
figureoptions.figure_edit(axes, self)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/qt4_editor/figureoptions.py", line 132, in figure_edit
icon=get_icon('qt4_editor_options.svg'), apply=apply_callback)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/qt4_editor/formlayout.py", line 511, in fedit
dialog = FormDialog(data, title, comment, icon, parent, apply)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/qt4_editor/formlayout.py", line 416, in __init__
parent=self)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/qt4_editor/formlayout.py", line 390, in __init__
widget = FormComboWidget(data, comment=comment, parent=self)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/qt4_editor/formlayout.py", line 368, in __init__
widget = FormWidget(data, comment=comment, parent=self)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/qt4_editor/formlayout.py", line 233, in __init__
self.data = deepcopy(data)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 230, in _deepcopy_list
y.append(deepcopy(a, memo))
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 237, in _deepcopy_tuple
y.append(deepcopy(a, memo))
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 230, in _deepcopy_list
y.append(deepcopy(a, memo))
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 298, in _deepcopy_inst
state = deepcopy(state, memo)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/copy.py", line 174, in deepcopy
y = copier(memo)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/transforms.py", line 96, in __copy__
"Consider using frozen() instead.")
NotImplementedError: TransformNode instances can not be copied. Consider using frozen() instead.
|
|
From: Chao Y. <cha...@gm...> - 2011-09-29 16:46:06
|
Thanks a lot Pauli! Best, Chao 2011/9/29 Pauli Virtanen <pa...@ik...> > 29.09.2011 17:38, Benjamin Root kirjoitti: > [clip] > > but I cannot use "d=np.concatenate(d,np.array(np.nan))" to finish this > job. > [clip] > > Do > > d = np.concatenate([d, np.array([np.nan])]) > > or > > d = np.hstack([d, np.nan]) > > or > > d = np.r_[d, np.nan] > > > > ------------------------------------------------------------------------------ > All the data continuously generated in your IT infrastructure contains a > definitive record of customers, application performance, security > threats, fraudulent activity and more. Splunk takes this data and makes > sense of it. Business sense. IT sense. Common sense. > http://p.sf.net/sfu/splunk-d2dcopy1 > _______________________________________________ > Matplotlib-devel mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-devel > -- *********************************************************************************** Chao YUE Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL) UMR 1572 CEA-CNRS-UVSQ Batiment 712 - Pe 119 91191 GIF Sur YVETTE Cedex Tel: (33) 01 69 08 29 02; Fax:01.69.08.77.16 ************************************************************************************ |
|
From: Chao Y. <cha...@gm...> - 2011-09-29 16:45:42
|
Thanks Ben! it works fine! help me a lot. Chao 2011/9/29 Pauli Virtanen <pa...@ik...> > 29.09.2011 17:38, Benjamin Root kirjoitti: > [clip] > > but I cannot use "d=np.concatenate(d,np.array(np.nan))" to finish this > job. > [clip] > > Do > > d = np.concatenate([d, np.array([np.nan])]) > > or > > d = np.hstack([d, np.nan]) > > or > > d = np.r_[d, np.nan] > > > > ------------------------------------------------------------------------------ > All the data continuously generated in your IT infrastructure contains a > definitive record of customers, application performance, security > threats, fraudulent activity and more. Splunk takes this data and makes > sense of it. Business sense. IT sense. Common sense. > http://p.sf.net/sfu/splunk-d2dcopy1 > _______________________________________________ > Matplotlib-devel mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-devel > -- *********************************************************************************** Chao YUE Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL) UMR 1572 CEA-CNRS-UVSQ Batiment 712 - Pe 119 91191 GIF Sur YVETTE Cedex Tel: (33) 01 69 08 29 02; Fax:01.69.08.77.16 ************************************************************************************ |
|
From: Pauli V. <pa...@ik...> - 2011-09-29 15:47:20
|
29.09.2011 17:38, Benjamin Root kirjoitti:
[clip]
> but I cannot use "d=np.concatenate(d,np.array(np.nan))" to finish this job.
[clip]
Do
d = np.concatenate([d, np.array([np.nan])])
or
d = np.hstack([d, np.nan])
or
d = np.r_[d, np.nan]
|
|
From: Benjamin R. <ben...@ou...> - 2011-09-29 15:38:49
|
On Thu, Sep 29, 2011 at 9:33 AM, Chao YUE <cha...@gm...> wrote: > Dear all, I have a variable d which has several years plus 11 month data > (len(d)%12=11). so I want to append a NaN to the data so that it constitutes > complete > several years of data. > > but I cannot use "d=np.concatenate(d,np.array(np.nan))" to finish this job. > > > another question, is there a simple function like is.Nan(ndarray) in numpy > to check the missing value? and how can I get the index of the missing > value? > > Thanks a lot, > > Chao > > In [246]: d > Out[246]: > array([-24. , -12.9, -14. , 4.2, 7.3, 12.9, 18.5, 16.9, 10.7, > 7.6, -1.9, -9.8, -12. , -16.6, -13.3, 5. , 12.2, 14. , > 16.5, 15.6, 11.8, 6.4, -6.6, -14.8, -17.6, -15.4, -3.7, > -2.1, 6.9, 12.8, 17. , 16.7, 9. , 4.5, -11.9, -18.1, > -18.4, -19.5, -3.4, 6.4, 8.5, 13.5, 18.3, 16.5, 10.4, > 1.7, -9.6, -19.5, -17.8, -20.9, -10.9, 0.8, 7.7, 14.7, > 20.4, 16.2, 9.1, 6.9, -8.6, -17.1, -16.6, -20.8, -14.1, > -4.7, 10.7, 15.8, 18.5, 17.1, 12.9, 5.2, -6. , -18.4, > -20.5, -22.6, -8.3, 7. , 10.9, 14. , 17.1, 18.6, 10.1, > 2.1, -1.1, -20.8, -32.9, -17.7, -12.2, -0.4, 9.5, 14.6, > 17.3, 15.1, 11.1, 2.6, -9.9, -16.9, -22.9, -18.1, -15.4, > 0.5, 11. , 12.4, 16.9, 14.7, 9.7, -0.3, -10.7, -20.7, > -23.1, -13.5, -10.7, 7.6, 11. , 14.4, 16.8, 15.6, 11.2, > 4.2, -3.5, -12.2, -19.9, -13.2, -10.1, -0.1, 8.5, 13.6, > 17.2, 17.6, 10.1, 6.3, -2.3, -12.4, -27.2, -9.1, -13. , > -6.2, 7.4, 12.9, 17.3, 14.8, 9.5, 4.3, -1.1, -8.6, > -17.5, -18.5, -15.9, 3.5, 9.6, 15.7, 18.4, 17.1, 9.4, > 4.5, -15.1, -21.9, -21.2, -18.5, -12.2, -2.1, 10.4, 16.7, > 17. , 16.1, 8.6, 3.9, -4.8, -16. , -20.9, -16.8, -9.3, > 0.9, 10.3, 13.8, 19. , 15.3, 11.1, 3.1, -5.5, -14.9, > -12.8, -17.5, -6.9, 3.7, 11.1, 12.5, 16.5, 16.5, 10.2, > 4.2, -8.8, -16.3, -24.4, -17.2, -4.7, 3.5, 8. , 14. , > 18.3, 14.6, 8.9, -0.4, -9.1, -8.4, -20.8, -15.5, -12. , > 2.3, 9.8, 13.6, 18.4, 16.8, 11.9, 3.9, -8. , -13.6, > -17.4, -13.1, -6.9, 0.2, 10.6, 17.6, 17.2, 18.8, 6.3, > 3.4, -7.6, -22.7, -19.5, -20.9, -11.7, 1.7, 9.8, 16.6, > 16.4, 16.2, 10.6, 6.1, -3.6, -14.4, -22.2, -17.8, -7.5, > 3.2, 8.9, 14.8, 18.6, 17.7, 12.9, 8.4, -6.9, -16.8, > -16.4, -10.1, -15.6, 3.5, 11.2, 14.7, 19.5, 14.6, 8.3, > 4.4, -8.2, -22.3, -23. , -21.8, -14.1, 2.5, 9.1, 15. , > 17.9, 16.4, 5.3, 5.2, -11.6, -14.1, -29. , -20.5, -8.1, > -0.7, 10.1, 13.9, 17.3, 15.5, 12.4, 3.4, -13.3, -15.1, > -21. , -19.5, -12.5, -2.4, 8.9, 13.5, 17.6, 17.3, 14.4, > 2.7, -5.1, -15.5, -20.7, -14.5, -3.2, 2.7, 9.6, 14.3, > 16. , 13.7, 10.9, 3.2, -4.1, -18.6, -29.2, -16.7, -11. , > 5.1, 9.2, 12.5, 16.2, 17.5, 10.2, -0.8, -5.3, -11.4, > -20.9, -15. , -12.8, 2.1, 8.8, 16.9, 18.2, 16.1, 9.9, > 3.4, -9. , -23.5, -25.2, -15.4, -10.3, 2.5, 11.7, 14.5, > 15.4, 17.8, 9.9, 3.5, -7.4, -20.7, -25.1, -22.6, -9.7, > 1.2, 11.6, 16.3, 14.8, 17.4, 5.9, 0.9, -6.8, -21.4, > -16.6, -15.8, -4.1, 1.7, 10.9, 14.5, 16.8, 16.8, 9.8, > 4.2, -12.8, -18.5, -25.2, -16.8, -14.6, 2.4, 6.2, 14.9, > 17.9, 13.6, 7.6, 5.3, -4.2, -8.5, -17.5, -17.7, -13.4, > 0.1, 8.8, 14.3, 19.3, 14. , 10. , 3.5, -6.1, -16.8, > -16.5, -12.5, -10. , 5.8, 11.6, 14.4, 17.7, 16.7, 11.6, > 1.4, -7.3, -16. , -22.2, -7.8, -5.1, 6. , 13.6, 15.5, > 16.3, 12.3, 9.8, 5.2, -7.9, -21.1, -24.2, -17.4, -7.6, > 2.5, 11.7, 15.4, 16.7, 14.4, 10.6, 5.9, -10.4, -18. , > -21.5, -25.6, -10.2, -2.9, 7.8, 15. , 19.2, 15.3, 11.3, > 4.4, -6. , -14.4, -21. , -15.4, -11.5, 7.4, 13.3, 15.2, > 17.6, 15.1, 9.3, 5. , -4.4, -19.4, -12.6, -11.4, -2.6, > 3.2, 10.9, 14.4, 17.9, 19.1, 11.8, 1.9, -0.9, -14.2, > -29.7, -17.6, -9.6, 0.5, 9.2, 14.3, 17.7, 14.6, 10.1, > 4.2, -10.7, -14.4, -14.5, -13.1, -8.5, 0.5, 8. , 15.1, > 18.8, 19.4, 9.3, 4.4, -3.2, -23.6, -14.2, -6.7, -8. , > 6.8, 9. , 15.8, 18.6, 18.8, 7.6, 2.2, -11.3, -21.2, > -17.2, -19.5, -4.9, 4.3, 11.8, 12.3, 17.1, 14.3, 7.7, > 3. , -16.7, -14.2, -11.7, -16.4, -3.8, 2.1, 12.1, 15.3, > 16.9, 16.2, 8.5, 4.7, -10.7, -10.7, -11.6, -10.2, -6.2, > 6.4, 12.7, 17.9, 17.3, 13.7, 12.6, 3.6, -2.7, -10.8, > -20.3, -15.3, -6.8, 4. , 13.9, 19.3, 18.5, 15.8, 10.9, > 3. , -5.3, -12.3, -15.7, -16.7, -12.3, 3.5, 10.7, 16. , > 19.8, 17.1, 10.8, 4.1, -9.1, -18.6, -15.9, -17.7, -4.2, > 2.6, 10.3, 16.4, 17.3, 16.9, 12.2, 1.7, -9.7, -21.7, > -19.3, -10.7, -9.5, 4.7, 11.3, 16.5, 18.5, 19.8, 10.6, > -0.3, -10.2, -14.2, -13.2, -11.1, -1.8, 3.4, 9.3, 14. , > 16.1, 14.2, 8.4, 3.2, -3.1, -20.8, -18.3, -14.1, -1.5, > 3.9, 11. , 12.8, 15.6, 15.8, 8.7, 2.9, -7.4, -11.3, > -23.2, -21.6, -2. , 3.8, 10.3, 15. , 17.1, 15.6, 12.9, > 4.6, -8. , -15.6, -16.1, -14.1, -8.4, -1.1, 9.3, 16.9, > 16.9, 15.7, 11.4, 4.3, -11.3, -17.1, -25. , -14. , -11.6, > 1.4, 7.9, 16.2, 17.6, 17.9, 10. , 2.6, -12.5, -20.1, > -22.3, -11.9, -10.2, 0.4, 9.2, 16.6, 18.4, 17.8, 12.6, > 3. , -4.7, -6. , -19.3, -6.1, -7.8, 6.6, 12.3, 14.4, > 18.5, 18.9, 12.1, 4.1, -5.6, -14.7, -18.2, -11.7, -4.8, > 5.6, 9.9, 13.8, 16.5, 17. , 10.1, 3.2, -3.3, -9. , > -19.7, -11.9, -3.4, 3.1, 8.9, 13.4, 17.6, 15.9, 10.8, > 4.4, -6.9, -21. , -9.8, -18. , -4.1, 3.6, 11.6, 14.8, > 18.7, 18.7, 12.8, 1.7, -2.2, -13.9, -16.8, -9.9, -14.6, > -1.7, 7.6, 17.4, 20.3, 16.2, 10.2, -1.9, -6.3, -10.5, > -18.5, -18.6, -10.1, 3.8, 11.7, 15.7, 18.5, 19.6, 10.1, > 5.6, -9.5, -11.4, -21.5, -11.2, NaN, 3.5, NaN, 13. , > 16.8, 13.9, 10.1, 2.7, -2.9, -15.8, -18.8, -12.6, -6.3, > 5.7, 9.5, 14.2, 17.5, 14.9, 10.8, 4. , -3.4, -9.3, > -8.7, -13. , -8.1, 6.8, 11. , 16.6, 19.5, 17.3, 11.5, > 1.5, -10.4, -11.9, -14.2, -18.3, -6.1, 2.9, 10.6, 14.3, > 20.6, 14.9, 10. , 4.8, -7.5]) > > Here is a quick-and-dirty way to do what you want: d_full = np.empty(len(d) + 1) d_full[:len(d)] = d d_full[-1] = np.nan As for testing for NaNs, use "np.isnan()". That returns a boolean array the same shape as the input array (which can be used for boolean indexing). However, if you really need the indices, then you can use "np.nonzero(np.isnan(d_full))[0]". Note the use of "[0]" because np.nonzero returns a tuple of information, but you usually only need the first one. I hope that helps! Ben Root |
|
From: Chao Y. <cha...@gm...> - 2011-09-29 14:33:13
|
Dear all, I have a variable d which has several years plus 11 month data
(len(d)%12=11). so I want to append a NaN to the data so that it constitutes
complete
several years of data.
but I cannot use "d=np.concatenate(d,np.array(np.nan))" to finish this job.
another question, is there a simple function like is.Nan(ndarray) in numpy
to check the missing value? and how can I get the index of the missing
value?
Thanks a lot,
Chao
In [246]: d
Out[246]:
array([-24. , -12.9, -14. , 4.2, 7.3, 12.9, 18.5, 16.9, 10.7,
7.6, -1.9, -9.8, -12. , -16.6, -13.3, 5. , 12.2, 14. ,
16.5, 15.6, 11.8, 6.4, -6.6, -14.8, -17.6, -15.4, -3.7,
-2.1, 6.9, 12.8, 17. , 16.7, 9. , 4.5, -11.9, -18.1,
-18.4, -19.5, -3.4, 6.4, 8.5, 13.5, 18.3, 16.5, 10.4,
1.7, -9.6, -19.5, -17.8, -20.9, -10.9, 0.8, 7.7, 14.7,
20.4, 16.2, 9.1, 6.9, -8.6, -17.1, -16.6, -20.8, -14.1,
-4.7, 10.7, 15.8, 18.5, 17.1, 12.9, 5.2, -6. , -18.4,
-20.5, -22.6, -8.3, 7. , 10.9, 14. , 17.1, 18.6, 10.1,
2.1, -1.1, -20.8, -32.9, -17.7, -12.2, -0.4, 9.5, 14.6,
17.3, 15.1, 11.1, 2.6, -9.9, -16.9, -22.9, -18.1, -15.4,
0.5, 11. , 12.4, 16.9, 14.7, 9.7, -0.3, -10.7, -20.7,
-23.1, -13.5, -10.7, 7.6, 11. , 14.4, 16.8, 15.6, 11.2,
4.2, -3.5, -12.2, -19.9, -13.2, -10.1, -0.1, 8.5, 13.6,
17.2, 17.6, 10.1, 6.3, -2.3, -12.4, -27.2, -9.1, -13. ,
-6.2, 7.4, 12.9, 17.3, 14.8, 9.5, 4.3, -1.1, -8.6,
-17.5, -18.5, -15.9, 3.5, 9.6, 15.7, 18.4, 17.1, 9.4,
4.5, -15.1, -21.9, -21.2, -18.5, -12.2, -2.1, 10.4, 16.7,
17. , 16.1, 8.6, 3.9, -4.8, -16. , -20.9, -16.8, -9.3,
0.9, 10.3, 13.8, 19. , 15.3, 11.1, 3.1, -5.5, -14.9,
-12.8, -17.5, -6.9, 3.7, 11.1, 12.5, 16.5, 16.5, 10.2,
4.2, -8.8, -16.3, -24.4, -17.2, -4.7, 3.5, 8. , 14. ,
18.3, 14.6, 8.9, -0.4, -9.1, -8.4, -20.8, -15.5, -12. ,
2.3, 9.8, 13.6, 18.4, 16.8, 11.9, 3.9, -8. , -13.6,
-17.4, -13.1, -6.9, 0.2, 10.6, 17.6, 17.2, 18.8, 6.3,
3.4, -7.6, -22.7, -19.5, -20.9, -11.7, 1.7, 9.8, 16.6,
16.4, 16.2, 10.6, 6.1, -3.6, -14.4, -22.2, -17.8, -7.5,
3.2, 8.9, 14.8, 18.6, 17.7, 12.9, 8.4, -6.9, -16.8,
-16.4, -10.1, -15.6, 3.5, 11.2, 14.7, 19.5, 14.6, 8.3,
4.4, -8.2, -22.3, -23. , -21.8, -14.1, 2.5, 9.1, 15. ,
17.9, 16.4, 5.3, 5.2, -11.6, -14.1, -29. , -20.5, -8.1,
-0.7, 10.1, 13.9, 17.3, 15.5, 12.4, 3.4, -13.3, -15.1,
-21. , -19.5, -12.5, -2.4, 8.9, 13.5, 17.6, 17.3, 14.4,
2.7, -5.1, -15.5, -20.7, -14.5, -3.2, 2.7, 9.6, 14.3,
16. , 13.7, 10.9, 3.2, -4.1, -18.6, -29.2, -16.7, -11. ,
5.1, 9.2, 12.5, 16.2, 17.5, 10.2, -0.8, -5.3, -11.4,
-20.9, -15. , -12.8, 2.1, 8.8, 16.9, 18.2, 16.1, 9.9,
3.4, -9. , -23.5, -25.2, -15.4, -10.3, 2.5, 11.7, 14.5,
15.4, 17.8, 9.9, 3.5, -7.4, -20.7, -25.1, -22.6, -9.7,
1.2, 11.6, 16.3, 14.8, 17.4, 5.9, 0.9, -6.8, -21.4,
-16.6, -15.8, -4.1, 1.7, 10.9, 14.5, 16.8, 16.8, 9.8,
4.2, -12.8, -18.5, -25.2, -16.8, -14.6, 2.4, 6.2, 14.9,
17.9, 13.6, 7.6, 5.3, -4.2, -8.5, -17.5, -17.7, -13.4,
0.1, 8.8, 14.3, 19.3, 14. , 10. , 3.5, -6.1, -16.8,
-16.5, -12.5, -10. , 5.8, 11.6, 14.4, 17.7, 16.7, 11.6,
1.4, -7.3, -16. , -22.2, -7.8, -5.1, 6. , 13.6, 15.5,
16.3, 12.3, 9.8, 5.2, -7.9, -21.1, -24.2, -17.4, -7.6,
2.5, 11.7, 15.4, 16.7, 14.4, 10.6, 5.9, -10.4, -18. ,
-21.5, -25.6, -10.2, -2.9, 7.8, 15. , 19.2, 15.3, 11.3,
4.4, -6. , -14.4, -21. , -15.4, -11.5, 7.4, 13.3, 15.2,
17.6, 15.1, 9.3, 5. , -4.4, -19.4, -12.6, -11.4, -2.6,
3.2, 10.9, 14.4, 17.9, 19.1, 11.8, 1.9, -0.9, -14.2,
-29.7, -17.6, -9.6, 0.5, 9.2, 14.3, 17.7, 14.6, 10.1,
4.2, -10.7, -14.4, -14.5, -13.1, -8.5, 0.5, 8. , 15.1,
18.8, 19.4, 9.3, 4.4, -3.2, -23.6, -14.2, -6.7, -8. ,
6.8, 9. , 15.8, 18.6, 18.8, 7.6, 2.2, -11.3, -21.2,
-17.2, -19.5, -4.9, 4.3, 11.8, 12.3, 17.1, 14.3, 7.7,
3. , -16.7, -14.2, -11.7, -16.4, -3.8, 2.1, 12.1, 15.3,
16.9, 16.2, 8.5, 4.7, -10.7, -10.7, -11.6, -10.2, -6.2,
6.4, 12.7, 17.9, 17.3, 13.7, 12.6, 3.6, -2.7, -10.8,
-20.3, -15.3, -6.8, 4. , 13.9, 19.3, 18.5, 15.8, 10.9,
3. , -5.3, -12.3, -15.7, -16.7, -12.3, 3.5, 10.7, 16. ,
19.8, 17.1, 10.8, 4.1, -9.1, -18.6, -15.9, -17.7, -4.2,
2.6, 10.3, 16.4, 17.3, 16.9, 12.2, 1.7, -9.7, -21.7,
-19.3, -10.7, -9.5, 4.7, 11.3, 16.5, 18.5, 19.8, 10.6,
-0.3, -10.2, -14.2, -13.2, -11.1, -1.8, 3.4, 9.3, 14. ,
16.1, 14.2, 8.4, 3.2, -3.1, -20.8, -18.3, -14.1, -1.5,
3.9, 11. , 12.8, 15.6, 15.8, 8.7, 2.9, -7.4, -11.3,
-23.2, -21.6, -2. , 3.8, 10.3, 15. , 17.1, 15.6, 12.9,
4.6, -8. , -15.6, -16.1, -14.1, -8.4, -1.1, 9.3, 16.9,
16.9, 15.7, 11.4, 4.3, -11.3, -17.1, -25. , -14. , -11.6,
1.4, 7.9, 16.2, 17.6, 17.9, 10. , 2.6, -12.5, -20.1,
-22.3, -11.9, -10.2, 0.4, 9.2, 16.6, 18.4, 17.8, 12.6,
3. , -4.7, -6. , -19.3, -6.1, -7.8, 6.6, 12.3, 14.4,
18.5, 18.9, 12.1, 4.1, -5.6, -14.7, -18.2, -11.7, -4.8,
5.6, 9.9, 13.8, 16.5, 17. , 10.1, 3.2, -3.3, -9. ,
-19.7, -11.9, -3.4, 3.1, 8.9, 13.4, 17.6, 15.9, 10.8,
4.4, -6.9, -21. , -9.8, -18. , -4.1, 3.6, 11.6, 14.8,
18.7, 18.7, 12.8, 1.7, -2.2, -13.9, -16.8, -9.9, -14.6,
-1.7, 7.6, 17.4, 20.3, 16.2, 10.2, -1.9, -6.3, -10.5,
-18.5, -18.6, -10.1, 3.8, 11.7, 15.7, 18.5, 19.6, 10.1,
5.6, -9.5, -11.4, -21.5, -11.2, NaN, 3.5, NaN, 13. ,
16.8, 13.9, 10.1, 2.7, -2.9, -15.8, -18.8, -12.6, -6.3,
5.7, 9.5, 14.2, 17.5, 14.9, 10.8, 4. , -3.4, -9.3,
-8.7, -13. , -8.1, 6.8, 11. , 16.6, 19.5, 17.3, 11.5,
1.5, -10.4, -11.9, -14.2, -18.3, -6.1, 2.9, 10.6, 14.3,
20.6, 14.9, 10. , 4.8, -7.5])
--
***********************************************************************************
Chao YUE
Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL)
UMR 1572 CEA-CNRS-UVSQ
Batiment 712 - Pe 119
91191 GIF Sur YVETTE Cedex
Tel: (33) 01 69 08 29 02; Fax:01.69.08.77.16
************************************************************************************
|