Menu

[r8989]: / trunk / py4science / examples / iterators_example.py  Maximize  Restore  History

Download this file

230 lines (203 with data), 8.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python
"""Blitz conversion is terrific, but sometimes you don't have fixed array sizes
in your problem. Fortunately numpy iterators still make writing inline weave
code very, very simple."""
import sys
import numpy as np
from numpy.testing.utils import jiffies
from matplotlib import pyplot as plt
from scipy.weave import inline, converters, blitz
# A little timing utility taken from the old scipy.testing
def measure(code_str,times=1):
""" Return elapsed time for executing code_str in the
namespace of the caller for given times.
"""
frame = sys._getframe(1)
locs,globs = frame.f_locals,frame.f_globals
code = compile(code_str,'<Timing code>','exec')
i = 0
elapsed = jiffies()
while i<times:
i += 1
exec code in globs,locs
elapsed = jiffies() - elapsed
return 0.01*elapsed
def multi_iter_example():
# This is a very simple example of multi dimensional iterators, and
# their power to "broadcast" arrays of compatible shapes. It shows that
# the very same code that is entirely ignorant of dimensionality can
# achieve completely different computations based on the rules of
# broadcasting.
# it is important to know that the weave array conversion of "a"
# gives you access in C++ to:
# py_a -- PyObject *
# a_array -- PyArrayObject *
# a -- py_array->data cast to the proper data type
a = np.ones((4,4), np.float64)
# for the sake of driving home the "dynamic code" approach...
dtype2ctype = {
np.dtype(np.float64): 'double',
np.dtype(np.float32): 'float',
np.dtype(np.int32): 'int',
np.dtype(np.int16): 'short',
}
dt = dtype2ctype.get(a.dtype)
# this code does a = a*b inplace, broadcasting b to fit the shape of a
code = \
"""
%s *p1, *p2;
PyObject *itr;
itr = PyArray_MultiIterNew(2, a_array, b_array);
while(PyArray_MultiIter_NOTDONE(itr)) {
p1 = (%s *) PyArray_MultiIter_DATA(itr, 0);
p2 = (%s *) PyArray_MultiIter_DATA(itr, 1);
*p1 = (*p1) * (*p2);
PyArray_MultiIter_NEXT(itr);
}
""" % (dt, dt, dt)
b = np.arange(4, dtype=a.dtype)
print '\n A B '
print a, b
# this reshaping is redundant, it would be the default broadcast
b.shape = (1,4)
inline(code, ['a', 'b'])
print "\ninline version of a*b,"
print a
a = np.ones((4,4), np.float64)
b.shape = (4,1)
inline(code, ['a', 'b'])
print "\ninline version of a*b[:,None],"
print a
def data_casting_test():
# In my MR application, raw data is stored as a file with one or more
# (block-hdr, block-data) pairs. Block data is one or more
# rows of Npt complex samples in big-endian integer pairs (real, imag).
#
# At the block level, I encounter three different raw data layouts--
# 1) one plane, or slice: Y rows by 2*Npt samples
# 2) one volume: Z slices * Y rows by 2*Npt samples
# 3) one row sliced across the z-axis: Z slices by 2*Npt samples
#
# The task is to tease out one volume at a time from any given layout,
# and cast the integer precision data into a complex64 array.
# Given that contiguity is not guaranteed, and the number of dimensions
# can vary, Numpy iterators are useful to provide a single code that can
# carry out the conversion.
#
# Other solutions include:
# 1) working entirely with the string data from file.read() with string
# manipulations (simulated below).
# 2) letting numpy handle automatic byteorder/dtype conversion
nsl, nline, npt = (20,64,64)
hdr_dt = np.dtype('>V28')
# example 1: a block is one slice of complex samples in short integer pairs
blk_dt1 = np.dtype(('>i2', nline*npt*2))
dat_dt = np.dtype({'names': ['hdr', 'data'], 'formats': [hdr_dt, blk_dt1]})
# create an empty volume-- nsl contiguous blocks
vol = np.empty((nsl,), dat_dt)
t = time_casting(vol[:]['data'])
plt.plot(100*t/t.max(), 'b--', label='vol=20 contiguous blocks')
plt.plot(100*t/t.max(), 'bo')
# example 2: a block is one entire volume
blk_dt2 = np.dtype(('>i2', nsl*nline*npt*2))
dat_dt = np.dtype({'names': ['hdr', 'data'], 'formats': [hdr_dt, blk_dt2]})
# create an empty volume-- 1 block
vol = np.empty((1,), dat_dt)
t = time_casting(vol[0]['data'])
plt.plot(100*t/t.max(), 'g--', label='vol=1 contiguous block')
plt.plot(100*t/t.max(), 'go')
# example 3: a block slices across the z dimension, long integer precision
# ALSO--a given volume is sliced discontiguously
blk_dt3 = np.dtype(('>i4', nsl*npt*2))
dat_dt = np.dtype({'names': ['hdr', 'data'], 'formats': [hdr_dt, blk_dt3]})
# a real data set has volumes interleaved, so create two volumes here
vols = np.empty((2*nline,), dat_dt)
# and work on casting the first volume
t = time_casting(vols[0::2]['data'])
plt.plot(100*t/t.max(), 'r--', label='vol=64 discontiguous blocks')
plt.plot(100*t/t.max(), 'ro')
plt.xticks([0,1,2], ('strings', 'numpy auto', 'inline'))
plt.gca().set_xlim((-0.25, 2.25))
plt.gca().set_ylim((0, 110))
plt.gca().set_ylabel(r"% of slowest time")
plt.legend(loc=8)
plt.title('Casting raw file data to an MR volume')
plt.show()
def time_casting(int_data):
nblk = 1 if len(int_data.shape) < 2 else int_data.shape[0]
bias = (np.random.rand(nblk) + \
1j*np.random.rand(nblk)).astype(np.complex64)
dstr = int_data.tostring()
dt = np.int16 if int_data.dtype.itemsize == 2 else np.int32
fshape = list(int_data.shape)
fshape[-1] = fshape[-1]/2
float_data = np.empty(fshape, np.complex64)
# method 1: string conversion
float_data.shape = (np.product(fshape),)
tstr = measure("float_data[:] = complex_fromstring(dstr, dt)", times=25)
float_data.shape = fshape
print "to-/from- string: ", tstr, "shape=",float_data.shape
# method 2: numpy dtype magic
sl = [None, slice(None)] if len(fshape)<2 else [slice(None)]*len(fshape)
# need to loop since int_data need not be contiguous
tnpy = measure("""
for fline, iline, b in zip(float_data[sl], int_data[sl], bias):
cast_to_complex_npy(fline, iline, bias=b)""", times=25)
print"numpy automagic: ", tnpy
# method 3: plain inline brute force!
twv = measure("cast_to_complex(float_data, int_data, bias=bias)",
times=25)
print"inline casting: ", twv
return np.array([tstr, tnpy, twv], np.float64)
def complex_fromstring(data, numtype):
if sys.byteorder == "little":
return np.fromstring(
np.fromstring(data,numtype).byteswap().astype(np.float32).tostring(),
np.complex64)
else:
return np.fromstring(
np.fromstring(data,numtype).astype(np.float32).tostring(),
np.complex64)
def cast_to_complex(cplx_float, cplx_integer, bias=None):
if cplx_integer.dtype.itemsize == 4:
replacements = tuple(["l", "long", "SWAPLONG", "l"]*2)
else:
replacements = tuple(["s", "short", "SWAPSHORT", "s"]*2)
if sys.byteorder == "big":
replacements[-2] = replacements[-6] = "NOP"
cast_code = """
#define SWAPSHORT(x) ((short) ((x >> 8) | (x << 8)) )
#define SWAPLONG(x) ((long) ((x >> 24) | (x << 24) | ((x & 0x00ff0000) >> 8) | ((x & 0x0000ff00) << 8)) )
#define NOP(x) x
unsigned short *s;
unsigned long *l;
float repart, impart;
PyObject *itr;
itr = PyArray_IterNew(py_cplx_integer);
while(PyArray_ITER_NOTDONE(itr)) {
// get real part
%s = (unsigned %s *) PyArray_ITER_DATA(itr);
repart = %s(*%s);
PyArray_ITER_NEXT(itr);
// get imag part
%s = (unsigned %s *) PyArray_ITER_DATA(itr);
impart = %s(*%s);
PyArray_ITER_NEXT(itr);
*(cplx_float++) = std::complex<float>(repart, impart);
}
""" % replacements
inline(cast_code, ['cplx_float', 'cplx_integer'])
if bias is not None:
if len(cplx_float.shape) > 1:
bsl = [slice(None)]*(len(cplx_float.shape)-1) + [None]
else:
bsl = slice(None)
np.subtract(cplx_float, bias[bsl], cplx_float)
def cast_to_complex_npy(cplx_float, cplx_integer, bias=None):
cplx_float.real[:] = cplx_integer[0::2]
cplx_float.imag[:] = cplx_integer[1::2]
if bias is not None:
np.subtract(cplx_float, bias, cplx_float)
if __name__=="__main__":
data_casting_test()
multi_iter_example()
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.