Menu

[r8864]: / trunk / py4science / examples / skel / trapezoid_skel.py  Maximize  Restore  History

Download this file

100 lines (73 with data), 3.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
"""Simple trapezoid-rule integrator."""
import numpy as np
def trapz(x, y):
"""Simple trapezoid integrator for sequence-based innput.
Inputs:
- x,y: arrays of the same length (and more than one element). If the two
inputs have different lengths, a ValueError exception is raised.
Output:
- The result of applying the trapezoid rule to the input, assuming that
y[i] = f(x[i]) for some function f to be integrated.
Minimally modified from matplotlib.mlab."""
# Sanity checks.
#
# Hint: if the two inputs have mismatched lengths or less than 2
# elements, we raise ValueError with an explanatory message.
raise NotImplementedError('Original solution has 4 lines')
# Efficient application of trapezoid rule via numpy
#
# Hint: think of using numpy slicing to compute the moving difference in
# the basic trapezoid formula.
raise NotImplementedError('Original solution has 1 line')
def trapzf(f,a,b,npts=100):
"""Simple trapezoid-based integrator.
Inputs:
- f: function to be integrated.
- a,b: limits of integration.
Optional inputs:
- npts(100): the number of equally spaced points to sample f at, between
a and b.
Output:
- The value of the trapezoid-rule approximation to the integral."""
# Hint: you will need to apply the function f to easch element of the
# vector x. What are several ways to do this? Can you profile them to see
# what differences in timings result for long vectors x?
# Generate an equally spaced grid to sample the function.
raise NotImplementedError('Original solution has 1 line')
# For an equispaced grid, the x spacing can just be read off from the first
# two points and factored out of the summation.
raise NotImplementedError('Original solution has 1 line')
# Sample the input function at all values of x
#
# Hint: you need to make an array out of the evaluations, and the python
# builtin 'map' function can come in handy.
raise NotImplementedError('Original solution has 1 line')
# Compute the trapezoid rule sum for the final result
raise NotImplementedError('Original solution has 1 line')
#-----------------------------------------------------------------------------
# Tests
#-----------------------------------------------------------------------------
import nose, nose.tools as nt
import numpy.testing as nptest
# A simple function for testing
def square(x): return x**2
def test_err():
"""Test that mismatched inputs raise a ValueError exception."""
nt.assert_raises(ValueError,trapz,range(2),range(3))
def test_call():
"Test a direct call with equally spaced samples. "
x = np.linspace(0,1,100)
y = np.array(map(square,x))
nptest.assert_almost_equal(trapz(x,y),1./3,4)
def test_square():
"Test integrating the square() function."
nptest.assert_almost_equal(trapzf(square,0,1),1./3,4)
def test_square2():
"Another test integrating the square() function."
nptest.assert_almost_equal(trapzf(square,0,3,350),9.0,4)
# If called from the command line, run all the tests
if __name__ == '__main__':
# This call form is ipython-friendly
nose.runmodule(argv=['-s','--with-doctest'],
exit=False)
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.