Menu

[r8864]: / trunk / py4science / examples / izhikevich_neurons.py  Maximize  Restore  History

Download this file

166 lines (127 with data), 4.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.cbook import iterable
def rk4step(derivs, y0, t, dt):
dt2 = dt/2.0
k1 = np.asarray(derivs(y0, t))
k2 = np.asarray(derivs(y0 + dt2*k1, t+dt2))
k3 = np.asarray(derivs(y0 + dt2*k2, t+dt2))
k4 = np.asarray(derivs(y0 + dt*k3, t+dt))
return y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4)
class Izhikevich:
def __init__(self, a, b, c, d):
self.a = a
self.b = b
self.c = c
self.d = d
self.I = 0
self.indI = 0
def __call__(self, state, t):
v, u = state
if hasattr(self.I, 'shape'):
if len(self.I.shape)==2:
I = self.I[:,self.indI]
else:
I = self.I[self.indI]
else:
I = self.I
dv = 0.04*v**2 + 5*v + 140 -u + I
du = self.a*(self.b*v-u)
return dv, du
def reset_if_action_potential(self, state):
v, u = state
spiked = v>=30.0
if iterable(spiked):
ind = np.nonzero(spiked)
v = np.where(spiked, self.c, v)
u = np.where(spiked, u + self.d, u)
else:
ind = None
if spiked:
v = self.c
u += self.d
self.indI += 1
return ind, v, u
def integrate_single(times, abcd, V0, I):
model = Izhikevich(*abcd)
state = np.array( [V0,0], float)
if not iterable(I):
I = I*np.ones(times.shape, float)
model.I = I
volts = np.zeros(times.shape, float)
volts[0] = state[0]
for i in range(1, len(times)):
dt = times[i] - times[i-1]
state = rk4step(model, state, times[i], dt)
ind, v, u = model.reset_if_action_potential(state)
state[0] = v
state[1] = u
volts[i] = state[0]
return volts
regular_spiking = 0.02, 0.2, -65, 8
chattering = 0.02, 0.2, -50, 2
fast_spiking = 0.1, 0.2, -65, 2
intrinsically_bursting = 0.02, 0.2, -55, 4
thalamocortical = 0.02, 0.25, -65, 0.05
lines = []
texts = []
labels = []
times = np.arange(0.0, 500.0, 0.1)
V0 = -65
I = np.where(times>=100, 10, 0)
offset = 150
#ax = plt.subplot(111)
ax = plt.axes([0.125, .11, 0.725, 0.79], axisbg='w')
num = 0
v = integrate_single(times, regular_spiking, V0, I)
l = ax.plot(times/1000.0, v+num*offset, 'k')
ax.text(0.51, v[0]+num*offset+20, 'RS', fontsize=15)
lines.extend(l)
num += 1
v = integrate_single(times, chattering, V0, I)
l = ax.plot(times/1000.0, v+num*offset, 'k')
ax.text(0.51, v[0]+num*offset+20, 'CH', fontsize=15)
lines.extend(l)
num += 1
v = integrate_single(times, fast_spiking, V0, I)
l = ax.plot(times/1000.0, v+num*offset, 'k')
ax.text(0.51, v[0]+num*offset+20, 'FS', fontsize=15)
lines.extend(l)
num += 1
v = integrate_single(times, intrinsically_bursting, V0, I)
l = ax.plot(times/1000.0, v+num*offset, 'k')
ax.text(0.51, v[0]+num*offset+20, 'IB', fontsize=15)
lines.extend(l)
num += 1
ax.axis([0, 0.5, -100, 900])
ax.set_yticklabels([])
ax.set_xlabel('time (s)')
ax.grid(False)
ax = plt.axes([0.25, 0.7, 0.175, 0.175], axisbg='w')
ax.set_xticks([0.02, 0.1])
ax.set_yticks([0.2, 0.25])
ax.plot([0.02, 0.1], [0.2, 0.2], 'o',
markerfacecolor='k', markeredgecolor='k', markersize=4)
texts.append( ax.text(0.01, 0.18, 'RS, IB, CH') )
texts.append( ax.text(0.1, 0.18, 'FS') )
ax.grid(False)
ax.axis([0, 0.15, 0.15, 0.3])
labels.append(ax.set_xlabel('parameter a'))
labels.append(ax.set_ylabel('parameter b'))
ax = plt.axes([0.6, 0.7, 0.175, 0.175], axisbg='w')
ax.set_xticks([-65, -55, -50])
ax.set_yticks([2, 4, 8])
ax.plot([-65, -50, -55, -65], [2, 2, 4, 8], 'o',
markerfacecolor='k', markeredgecolor='k', markersize=4)
texts.append( ax.text(-64, 2.5, 'FS') )
texts.append( ax.text(-49, 2.5, 'CH') )
texts.append( ax.text(-54, 4.5, 'IB') )
texts.append( ax.text(-64, 8.5, 'RS') )
for text in texts:
text.set_fontsize(10)
labels.append(ax.set_xlabel('parameter c'))
labels.append(ax.set_ylabel('parameter d'))
ax.axis([-70, -40, 0.05, 10])
ax.grid(False)
#plt.savefig('figures/four_neurons.eps')
plt.show()
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.