Menu

[r7978]: / branches / mathtex / src / _path.cpp  Maximize  Restore  History

Download this file

1367 lines (1169 with data), 42.7 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
#include "agg_py_path_iterator.h"
#include "agg_py_transforms.h"
#include "path_converters.h"
#include <limits>
#include <math.h>
#include "CXX/Extensions.hxx"
#include "agg_conv_curve.h"
#include "agg_conv_stroke.h"
#include "agg_conv_transform.h"
#include "agg_path_storage.h"
#include "agg_trans_affine.h"
// MGDTODO: Un-CXX-ify this module
struct XY
{
double x;
double y;
XY(double x_, double y_) : x(x_), y(y_) {}
};
// the extension module
class _path_module : public Py::ExtensionModule<_path_module>
{
public:
_path_module()
: Py::ExtensionModule<_path_module>( "_path" )
{
add_varargs_method("point_in_path", &_path_module::point_in_path,
"point_in_path(x, y, path, trans)");
add_varargs_method("point_on_path", &_path_module::point_on_path,
"point_on_path(x, y, r, path, trans)");
add_varargs_method("get_path_extents", &_path_module::get_path_extents,
"get_path_extents(path, trans)");
add_varargs_method("update_path_extents", &_path_module::update_path_extents,
"update_path_extents(path, trans, bbox, minpos)");
add_varargs_method("get_path_collection_extents", &_path_module::get_path_collection_extents,
"get_path_collection_extents(trans, paths, transforms, offsets, offsetTrans)");
add_varargs_method("point_in_path_collection", &_path_module::point_in_path_collection,
"point_in_path_collection(x, y, r, trans, paths, transforms, offsets, offsetTrans, filled)");
add_varargs_method("path_in_path", &_path_module::path_in_path,
"path_in_path(a, atrans, b, btrans)");
add_varargs_method("clip_path_to_rect", &_path_module::clip_path_to_rect,
"clip_path_to_rect(path, bbox, inside)");
add_varargs_method("affine_transform", &_path_module::affine_transform,
"affine_transform(vertices, transform)");
add_varargs_method("count_bboxes_overlapping_bbox", &_path_module::count_bboxes_overlapping_bbox,
"count_bboxes_overlapping_bbox(bbox, bboxes)");
add_varargs_method("path_intersects_path", &_path_module::path_intersects_path,
"path_intersects_path(p1, p2)");
add_varargs_method("convert_path_to_polygons", &_path_module::convert_path_to_polygons,
"convert_path_to_polygons(path, trans, width, height)");
add_varargs_method("cleanup_path", &_path_module::cleanup_path,
"cleanup_path(path, trans, remove_nans, clip, quantize, simplify, curves)");
initialize("Helper functions for paths");
}
virtual ~_path_module() {}
private:
Py::Object point_in_path(const Py::Tuple& args);
Py::Object point_on_path(const Py::Tuple& args);
Py::Object get_path_extents(const Py::Tuple& args);
Py::Object update_path_extents(const Py::Tuple& args);
Py::Object get_path_collection_extents(const Py::Tuple& args);
Py::Object point_in_path_collection(const Py::Tuple& args);
Py::Object path_in_path(const Py::Tuple& args);
Py::Object clip_path_to_rect(const Py::Tuple& args);
Py::Object affine_transform(const Py::Tuple& args);
Py::Object count_bboxes_overlapping_bbox(const Py::Tuple& args);
Py::Object path_intersects_path(const Py::Tuple& args);
Py::Object convert_path_to_polygons(const Py::Tuple& args);
Py::Object cleanup_path(const Py::Tuple& args);
};
//
// The following function was found in the Agg 2.3 examples (interactive_polygon.cpp).
// It has been generalized to work on (possibly curved) polylines, rather than
// just polygons. The original comments have been kept intact.
// -- Michael Droettboom 2007-10-02
//
//======= Crossings Multiply algorithm of InsideTest ========================
//
// By Eric Haines, 3D/Eye Inc, erich@eye.com
//
// This version is usually somewhat faster than the original published in
// Graphics Gems IV; by turning the division for testing the X axis crossing
// into a tricky multiplication test this part of the test became faster,
// which had the additional effect of making the test for "both to left or
// both to right" a bit slower for triangles than simply computing the
// intersection each time. The main increase is in triangle testing speed,
// which was about 15% faster; all other polygon complexities were pretty much
// the same as before. On machines where division is very expensive (not the
// case on the HP 9000 series on which I tested) this test should be much
// faster overall than the old code. Your mileage may (in fact, will) vary,
// depending on the machine and the test data, but in general I believe this
// code is both shorter and faster. This test was inspired by unpublished
// Graphics Gems submitted by Joseph Samosky and Mark Haigh-Hutchinson.
// Related work by Samosky is in:
//
// Samosky, Joseph, "SectionView: A system for interactively specifying and
// visualizing sections through three-dimensional medical image data",
// M.S. Thesis, Department of Electrical Engineering and Computer Science,
// Massachusetts Institute of Technology, 1993.
//
// Shoot a test ray along +X axis. The strategy is to compare vertex Y values
// to the testing point's Y and quickly discard edges which are entirely to one
// side of the test ray. Note that CONVEX and WINDING code can be added as
// for the CrossingsTest() code; it is left out here for clarity.
//
// Input 2D polygon _pgon_ with _numverts_ number of vertices and test point
// _point_, returns 1 if inside, 0 if outside.
template<class T>
bool point_in_path_impl(const double tx, const double ty, T& path)
{
int yflag0, yflag1, inside_flag;
double vtx0, vty0, vtx1, vty1, sx, sy;
double x, y;
path.rewind(0);
inside_flag = 0;
unsigned code = 0;
do
{
if (code != agg::path_cmd_move_to)
code = path.vertex(&x, &y);
sx = vtx0 = x;
sy = vty0 = y;
// get test bit for above/below X axis
yflag0 = (vty0 >= ty);
vtx1 = x;
vty1 = y;
inside_flag = 0;
do
{
code = path.vertex(&x, &y);
// The following cases denote the beginning on a new subpath
if (code == agg::path_cmd_stop ||
(code & agg::path_cmd_end_poly) == agg::path_cmd_end_poly)
{
x = sx;
y = sy;
}
else if (code == agg::path_cmd_move_to)
break;
yflag1 = (vty1 >= ty);
// Check if endpoints straddle (are on opposite sides) of X axis
// (i.e. the Y's differ); if so, +X ray could intersect this edge.
// The old test also checked whether the endpoints are both to the
// right or to the left of the test point. However, given the faster
// intersection point computation used below, this test was found to
// be a break-even proposition for most polygons and a loser for
// triangles (where 50% or more of the edges which survive this test
// will cross quadrants and so have to have the X intersection computed
// anyway). I credit Joseph Samosky with inspiring me to try dropping
// the "both left or both right" part of my code.
if (yflag0 != yflag1)
{
// Check intersection of pgon segment with +X ray.
// Note if >= point's X; if so, the ray hits it.
// The division operation is avoided for the ">=" test by checking
// the sign of the first vertex wrto the test point; idea inspired
// by Joseph Samosky's and Mark Haigh-Hutchinson's different
// polygon inclusion tests.
if ( ((vty1-ty) * (vtx0-vtx1) >=
(vtx1-tx) * (vty0-vty1)) == yflag1 )
{
inside_flag ^= 1;
}
}
// Move to the next pair of vertices, retaining info as possible.
yflag0 = yflag1;
vtx0 = vtx1;
vty0 = vty1;
vtx1 = x;
vty1 = y;
}
while (code != agg::path_cmd_stop &&
(code & agg::path_cmd_end_poly) != agg::path_cmd_end_poly);
yflag1 = (vty1 >= ty);
if (yflag0 != yflag1)
{
if ( ((vty1-ty) * (vtx0-vtx1) >=
(vtx1-tx) * (vty0-vty1)) == yflag1 )
{
inside_flag ^= 1;
}
}
if (inside_flag != 0)
return true;
}
while (code != agg::path_cmd_stop);
return (inside_flag != 0);
}
inline bool point_in_path(double x, double y, PathIterator& path, const agg::trans_affine& trans)
{
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef agg::conv_curve<transformed_path_t> curve_t;
if (path.total_vertices() < 3)
return false;
transformed_path_t trans_path(path, trans);
curve_t curved_path(trans_path);
return point_in_path_impl(x, y, curved_path);
}
inline bool point_on_path(double x, double y, double r, PathIterator& path, const agg::trans_affine& trans)
{
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef agg::conv_curve<transformed_path_t> curve_t;
typedef agg::conv_stroke<curve_t> stroke_t;
transformed_path_t trans_path(path, trans);
curve_t curved_path(trans_path);
stroke_t stroked_path(curved_path);
stroked_path.width(r * 2.0);
return point_in_path_impl(x, y, stroked_path);
}
Py::Object _path_module::point_in_path(const Py::Tuple& args)
{
args.verify_length(4);
double x = Py::Float(args[0]);
double y = Py::Float(args[1]);
PathIterator path(args[2]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[3].ptr(), false);
if (::point_in_path(x, y, path, trans))
return Py::Int(1);
return Py::Int(0);
}
Py::Object _path_module::point_on_path(const Py::Tuple& args)
{
args.verify_length(5);
double x = Py::Float(args[0]);
double y = Py::Float(args[1]);
double r = Py::Float(args[2]);
PathIterator path(args[3]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[4].ptr());
if (::point_on_path(x, y, r, path, trans))
return Py::Int(1);
return Py::Int(0);
}
void get_path_extents(PathIterator& path, const agg::trans_affine& trans,
double* x0, double* y0, double* x1, double* y1,
double* xm, double* ym)
{
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef agg::conv_curve<transformed_path_t> curve_t;
double x, y;
unsigned code;
transformed_path_t tpath(path, trans);
curve_t curved_path(tpath);
curved_path.rewind(0);
while ((code = curved_path.vertex(&x, &y)) != agg::path_cmd_stop)
{
if ((code & agg::path_cmd_end_poly) == agg::path_cmd_end_poly)
continue;
/* if (MPL_notisfinite64(x) || MPL_notisfinite64(y))
continue;
We should not need the above, because the path iterator
should already be filtering out invalid values.
*/
if (x < *x0) *x0 = x;
if (y < *y0) *y0 = y;
if (x > *x1) *x1 = x;
if (y > *y1) *y1 = y;
/* xm and ym are the minimum positive values in the data, used
by log scaling */
if (x > 0.0 && x < *xm) *xm = x;
if (y > 0.0 && y < *ym) *ym = y;
}
}
Py::Object _path_module::get_path_extents(const Py::Tuple& args)
{
args.verify_length(2);
PathIterator path(args[0]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[1].ptr(), false);
npy_intp extent_dims[] = { 2, 2, 0 };
double* extents_data = NULL;
double xm, ym;
PyArrayObject* extents = NULL;
try
{
extents = (PyArrayObject*)PyArray_SimpleNew
(2, extent_dims, PyArray_DOUBLE);
if (extents == NULL)
throw Py::MemoryError("Could not allocate result array");
extents_data = (double*)PyArray_DATA(extents);
extents_data[0] = std::numeric_limits<double>::infinity();
extents_data[1] = std::numeric_limits<double>::infinity();
extents_data[2] = -std::numeric_limits<double>::infinity();
extents_data[3] = -std::numeric_limits<double>::infinity();
/* xm and ym are the minimum positive values in the data, used
by log scaling */
xm = std::numeric_limits<double>::infinity();
ym = std::numeric_limits<double>::infinity();
::get_path_extents(path, trans,
&extents_data[0], &extents_data[1], &extents_data[2], &extents_data[3],
&xm, &ym);
}
catch (...)
{
Py_XDECREF(extents);
throw;
}
return Py::Object((PyObject*)extents, true);
}
Py::Object _path_module::update_path_extents(const Py::Tuple& args)
{
args.verify_length(5);
double x0, y0, x1, y1;
PathIterator path(args[0]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[1].ptr(), false);
if (!py_convert_bbox(args[2].ptr(), x0, y0, x1, y1))
{
throw Py::ValueError("Must pass Bbox object as arg 3 of update_path_extents");
}
Py::Object minpos_obj = args[3];
bool ignore = bool(Py::Int(args[4]));
double xm, ym;
PyArrayObject* input_minpos = NULL;
try
{
input_minpos = (PyArrayObject*)PyArray_FromObject(minpos_obj.ptr(), PyArray_DOUBLE, 1, 1);
if (!input_minpos || PyArray_DIM(input_minpos, 0) != 2)
{
throw Py::TypeError("Argument 4 to update_path_extents must be a length-2 numpy array.");
}
xm = *(double*)PyArray_GETPTR1(input_minpos, 0);
ym = *(double*)PyArray_GETPTR1(input_minpos, 1);
}
catch (...)
{
Py_XDECREF(input_minpos);
throw;
}
Py_XDECREF(input_minpos);
npy_intp extent_dims[] = { 2, 2, 0 };
double* extents_data = NULL;
npy_intp minpos_dims[] = { 2, 0 };
double* minpos_data = NULL;
PyArrayObject* extents = NULL;
PyArrayObject* minpos = NULL;
bool changed = false;
try
{
extents = (PyArrayObject*)PyArray_SimpleNew
(2, extent_dims, PyArray_DOUBLE);
if (extents == NULL)
throw Py::MemoryError("Could not allocate result array");
minpos = (PyArrayObject*)PyArray_SimpleNew
(1, minpos_dims, PyArray_DOUBLE);
if (minpos == NULL)
throw Py::MemoryError("Could not allocate result array");
extents_data = (double*)PyArray_DATA(extents);
minpos_data = (double*)PyArray_DATA(minpos);
if (ignore)
{
extents_data[0] = std::numeric_limits<double>::infinity();
extents_data[1] = std::numeric_limits<double>::infinity();
extents_data[2] = -std::numeric_limits<double>::infinity();
extents_data[3] = -std::numeric_limits<double>::infinity();
minpos_data[0] = std::numeric_limits<double>::infinity();
minpos_data[1] = std::numeric_limits<double>::infinity();
}
else
{
if (x0 > x1)
{
extents_data[0] = std::numeric_limits<double>::infinity();
extents_data[2] = -std::numeric_limits<double>::infinity();
}
else
{
extents_data[0] = x0;
extents_data[2] = x1;
}
if (y0 > y1) {
extents_data[1] = std::numeric_limits<double>::infinity();
extents_data[3] = -std::numeric_limits<double>::infinity();
}
else
{
extents_data[1] = y0;
extents_data[3] = y1;
}
minpos_data[0] = xm;
minpos_data[1] = ym;
}
::get_path_extents(path, trans,
&extents_data[0], &extents_data[1], &extents_data[2], &extents_data[3],
&minpos_data[0], &minpos_data[1]);
changed = (extents_data[0] != x0 ||
extents_data[1] != y0 ||
extents_data[2] != x1 ||
extents_data[3] != y1 ||
minpos_data[0] != xm ||
minpos_data[1] != ym);
}
catch (...)
{
Py_XDECREF(extents);
Py_XDECREF(minpos);
throw;
}
Py::Tuple result(3);
result[0] = Py::Object((PyObject*) extents);
result[1] = Py::Object((PyObject*) minpos);
result[2] = Py::Int(changed ? 1 : 0);
Py_XDECREF(extents);
Py_XDECREF(minpos);
return result;
}
Py::Object _path_module::get_path_collection_extents(const Py::Tuple& args)
{
args.verify_length(5);
//segments, trans, clipbox, colors, linewidths, antialiaseds
agg::trans_affine master_transform = py_to_agg_transformation_matrix(args[0].ptr());
Py::SeqBase<Py::Object> paths = args[1];
Py::SeqBase<Py::Object> transforms_obj = args[2];
Py::Object offsets_obj = args[3];
agg::trans_affine offset_trans = py_to_agg_transformation_matrix(args[4].ptr(), false);
PyArrayObject* offsets = NULL;
double x0, y0, x1, y1, xm, ym;
try
{
offsets = (PyArrayObject*)PyArray_FromObject(offsets_obj.ptr(), PyArray_DOUBLE, 0, 2);
if (!offsets ||
(PyArray_NDIM(offsets) == 2 && PyArray_DIM(offsets, 1) != 2) ||
(PyArray_NDIM(offsets) == 1 && PyArray_DIM(offsets, 0) != 0))
{
throw Py::ValueError("Offsets array must be Nx2");
}
size_t Npaths = paths.length();
size_t Noffsets = offsets->dimensions[0];
size_t N = std::max(Npaths, Noffsets);
size_t Ntransforms = std::min(transforms_obj.length(), N);
size_t i;
// Convert all of the transforms up front
typedef std::vector<agg::trans_affine> transforms_t;
transforms_t transforms;
transforms.reserve(Ntransforms);
for (i = 0; i < Ntransforms; ++i)
{
agg::trans_affine trans = py_to_agg_transformation_matrix
(transforms_obj[i].ptr(), false);
trans *= master_transform;
transforms.push_back(trans);
}
// The offset each of those and collect the mins/maxs
x0 = std::numeric_limits<double>::infinity();
y0 = std::numeric_limits<double>::infinity();
x1 = -std::numeric_limits<double>::infinity();
y1 = -std::numeric_limits<double>::infinity();
xm = std::numeric_limits<double>::infinity();
ym = std::numeric_limits<double>::infinity();
agg::trans_affine trans;
for (i = 0; i < N; ++i)
{
PathIterator path(paths[i % Npaths]);
if (Ntransforms)
{
trans = transforms[i % Ntransforms];
}
else
{
trans = master_transform;
}
if (Noffsets)
{
double xo = *(double*)PyArray_GETPTR2(offsets, i % Noffsets, 0);
double yo = *(double*)PyArray_GETPTR2(offsets, i % Noffsets, 1);
offset_trans.transform(&xo, &yo);
trans *= agg::trans_affine_translation(xo, yo);
}
::get_path_extents(path, trans, &x0, &y0, &x1, &y1, &xm, &ym);
}
}
catch (...)
{
Py_XDECREF(offsets);
throw;
}
Py_XDECREF(offsets);
Py::Tuple result(4);
result[0] = Py::Float(x0);
result[1] = Py::Float(y0);
result[2] = Py::Float(x1);
result[3] = Py::Float(y1);
return result;
}
Py::Object _path_module::point_in_path_collection(const Py::Tuple& args)
{
args.verify_length(9);
//segments, trans, clipbox, colors, linewidths, antialiaseds
double x = Py::Float(args[0]);
double y = Py::Float(args[1]);
double radius = Py::Float(args[2]);
agg::trans_affine master_transform = py_to_agg_transformation_matrix(args[3].ptr());
Py::SeqBase<Py::Object> paths = args[4];
Py::SeqBase<Py::Object> transforms_obj = args[5];
Py::SeqBase<Py::Object> offsets_obj = args[6];
agg::trans_affine offset_trans = py_to_agg_transformation_matrix(args[7].ptr());
bool filled = Py::Int(args[8]);
PyArrayObject* offsets = (PyArrayObject*)PyArray_FromObject(offsets_obj.ptr(), PyArray_DOUBLE, 0, 2);
if (!offsets ||
(PyArray_NDIM(offsets) == 2 && PyArray_DIM(offsets, 1) != 2) ||
(PyArray_NDIM(offsets) == 1 && PyArray_DIM(offsets, 0) != 0))
{
Py_XDECREF(offsets);
throw Py::ValueError("Offsets array must be Nx2");
}
size_t Npaths = paths.length();
size_t Noffsets = offsets->dimensions[0];
size_t N = std::max(Npaths, Noffsets);
size_t Ntransforms = std::min(transforms_obj.length(), N);
size_t i;
// Convert all of the transforms up front
typedef std::vector<agg::trans_affine> transforms_t;
transforms_t transforms;
transforms.reserve(Ntransforms);
for (i = 0; i < Ntransforms; ++i)
{
agg::trans_affine trans = py_to_agg_transformation_matrix
(transforms_obj[i].ptr(), false);
trans *= master_transform;
transforms.push_back(trans);
}
Py::List result;
agg::trans_affine trans;
for (i = 0; i < N; ++i)
{
PathIterator path(paths[i % Npaths]);
if (Ntransforms)
{
trans = transforms[i % Ntransforms];
}
else
{
trans = master_transform;
}
if (Noffsets)
{
double xo = *(double*)PyArray_GETPTR2(offsets, i % Noffsets, 0);
double yo = *(double*)PyArray_GETPTR2(offsets, i % Noffsets, 1);
offset_trans.transform(&xo, &yo);
trans *= agg::trans_affine_translation(xo, yo);
}
if (filled)
{
if (::point_in_path(x, y, path, trans))
result.append(Py::Int((int)i));
}
else
{
if (::point_on_path(x, y, radius, path, trans))
result.append(Py::Int((int)i));
}
}
return result;
}
bool path_in_path(PathIterator& a, const agg::trans_affine& atrans,
PathIterator& b, const agg::trans_affine& btrans)
{
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef agg::conv_curve<transformed_path_t> curve_t;
if (a.total_vertices() < 3)
return false;
transformed_path_t b_path_trans(b, btrans);
curve_t b_curved(b_path_trans);
double x, y;
b_curved.rewind(0);
while (b_curved.vertex(&x, &y) != agg::path_cmd_stop)
{
if (!::point_in_path(x, y, a, atrans))
return false;
}
return true;
}
Py::Object _path_module::path_in_path(const Py::Tuple& args)
{
args.verify_length(4);
PathIterator a(args[0]);
agg::trans_affine atrans = py_to_agg_transformation_matrix(args[1].ptr(), false);
PathIterator b(args[2]);
agg::trans_affine btrans = py_to_agg_transformation_matrix(args[3].ptr(), false);
return Py::Int(::path_in_path(a, atrans, b, btrans));
}
/** The clip_path_to_rect code here is a clean-room implementation of the
Sutherland-Hodgman clipping algorithm described here:
http://en.wikipedia.org/wiki/Sutherland-Hodgman_clipping_algorithm
*/
typedef std::vector<XY> Polygon;
namespace clip_to_rect_filters
{
/* There are four different passes needed to create/remove vertices
(one for each side of the rectangle). The differences between those
passes are encapsulated in these functor classes.
*/
struct bisectx
{
double m_x;
bisectx(double x) : m_x(x) {}
inline void bisect(double sx, double sy, double px, double py,
double* bx, double* by) const
{
*bx = m_x;
double dx = px - sx;
double dy = py - sy;
*by = sy + dy * ((m_x - sx) / dx);
}
};
struct xlt : public bisectx
{
xlt(double x) : bisectx(x) {}
inline bool is_inside(double x, double y) const
{
return x <= m_x;
}
};
struct xgt : public bisectx
{
xgt(double x) : bisectx(x) {}
inline bool is_inside(double x, double y) const
{
return x >= m_x;
}
};
struct bisecty
{
double m_y;
bisecty(double y) : m_y(y) {}
inline void bisect(double sx, double sy, double px, double py, double* bx, double* by) const
{
*by = m_y;
double dx = px - sx;
double dy = py - sy;
*bx = sx + dx * ((m_y - sy) / dy);
}
};
struct ylt : public bisecty
{
ylt(double y) : bisecty(y) {}
inline bool is_inside(double x, double y) const
{
return y <= m_y;
}
};
struct ygt : public bisecty
{
ygt(double y) : bisecty(y) {}
inline bool is_inside(double x, double y) const
{
return y >= m_y;
}
};
}
template<class Filter>
inline void clip_to_rect_one_step(const Polygon& polygon, Polygon& result, const Filter& filter)
{
double sx, sy, px, py, bx, by;
bool sinside, pinside;
result.clear();
if (polygon.size() == 0)
return;
sx = polygon.back().x;
sy = polygon.back().y;
for (Polygon::const_iterator i = polygon.begin(); i != polygon.end(); ++i)
{
px = i->x;
py = i->y;
sinside = filter.is_inside(sx, sy);
pinside = filter.is_inside(px, py);
if (sinside ^ pinside)
{
filter.bisect(sx, sy, px, py, &bx, &by);
result.push_back(XY(bx, by));
}
if (pinside)
{
result.push_back(XY(px, py));
}
sx = px;
sy = py;
}
}
void clip_to_rect(PathIterator& path,
double x0, double y0, double x1, double y1,
bool inside, std::vector<Polygon>& results)
{
double xmin, ymin, xmax, ymax;
if (x0 < x1)
{
xmin = x0;
xmax = x1;
}
else
{
xmin = x1;
xmax = x0;
}
if (y0 < y1)
{
ymin = y0;
ymax = y1;
}
else
{
ymin = y1;
ymax = y0;
}
if (!inside)
{
std::swap(xmin, xmax);
std::swap(ymin, ymax);
}
Polygon polygon1, polygon2;
double x, y;
unsigned code = 0;
path.rewind(0);
do
{
// Grab the next subpath and store it in polygon1
polygon1.clear();
do
{
if (code == agg::path_cmd_move_to)
polygon1.push_back(XY(x, y));
code = path.vertex(&x, &y);
if (code == agg::path_cmd_stop)
break;
if (code != agg::path_cmd_move_to)
polygon1.push_back(XY(x, y));
}
while ((code & agg::path_cmd_end_poly) != agg::path_cmd_end_poly);
// The result of each step is fed into the next (note the
// swapping of polygon1 and polygon2 at each step).
clip_to_rect_one_step(polygon1, polygon2, clip_to_rect_filters::xlt(xmax));
clip_to_rect_one_step(polygon2, polygon1, clip_to_rect_filters::xgt(xmin));
clip_to_rect_one_step(polygon1, polygon2, clip_to_rect_filters::ylt(ymax));
clip_to_rect_one_step(polygon2, polygon1, clip_to_rect_filters::ygt(ymin));
// Empty polygons aren't very useful, so skip them
if (polygon1.size())
results.push_back(polygon1);
}
while (code != agg::path_cmd_stop);
}
Py::Object _path_module::clip_path_to_rect(const Py::Tuple &args)
{
args.verify_length(3);
PathIterator path(args[0]);
Py::Object bbox_obj = args[1];
bool inside = Py::Int(args[2]);
double x0, y0, x1, y1;
if (!py_convert_bbox(bbox_obj.ptr(), x0, y0, x1, y1))
throw Py::TypeError("Argument 2 to clip_to_rect must be a Bbox object.");
std::vector<Polygon> results;
::clip_to_rect(path, x0, y0, x1, y1, inside, results);
npy_intp dims[2];
dims[1] = 2;
PyObject* py_results = PyList_New(results.size());
if (!py_results)
throw Py::RuntimeError("Error creating results list");
try
{
for (std::vector<Polygon>::const_iterator p = results.begin(); p != results.end(); ++p)
{
size_t size = p->size();
dims[0] = p->size();
PyArrayObject* pyarray = (PyArrayObject*)PyArray_SimpleNew(2, dims, PyArray_DOUBLE);
if (pyarray == NULL) {
throw Py::MemoryError("Could not allocate result array");
}
for (size_t i = 0; i < size; ++i)
{
((double *)pyarray->data)[2*i] = (*p)[i].x;
((double *)pyarray->data)[2*i+1] = (*p)[i].y;
}
if (PyList_SetItem(py_results, p - results.begin(), (PyObject *)pyarray) != -1)
{
throw Py::RuntimeError("Error creating results list");
}
}
}
catch (...)
{
Py_XDECREF(py_results);
throw;
}
return Py::Object(py_results, true);
}
Py::Object _path_module::affine_transform(const Py::Tuple& args)
{
args.verify_length(2);
Py::Object vertices_obj = args[0];
Py::Object transform_obj = args[1];
PyArrayObject* vertices = NULL;
PyArrayObject* transform = NULL;
PyArrayObject* result = NULL;
try
{
vertices = (PyArrayObject*)PyArray_FromObject
(vertices_obj.ptr(), PyArray_DOUBLE, 1, 2);
if (!vertices ||
(PyArray_NDIM(vertices) == 2 && PyArray_DIM(vertices, 1) != 2) ||
(PyArray_NDIM(vertices) == 1 && PyArray_DIM(vertices, 0) != 2))
throw Py::ValueError("Invalid vertices array.");
transform = (PyArrayObject*) PyArray_FromObject
(transform_obj.ptr(), PyArray_DOUBLE, 2, 2);
if (!transform ||
PyArray_DIM(transform, 0) != 3 ||
PyArray_DIM(transform, 1) != 3)
throw Py::ValueError("Invalid transform.");
double a, b, c, d, e, f;
{
size_t stride0 = PyArray_STRIDE(transform, 0);
size_t stride1 = PyArray_STRIDE(transform, 1);
char* row0 = PyArray_BYTES(transform);
char* row1 = row0 + stride0;
a = *(double*)(row0);
row0 += stride1;
c = *(double*)(row0);
row0 += stride1;
e = *(double*)(row0);
b = *(double*)(row1);
row1 += stride1;
d = *(double*)(row1);
row1 += stride1;
f = *(double*)(row1);
}
result = (PyArrayObject*)PyArray_SimpleNew
(PyArray_NDIM(vertices), PyArray_DIMS(vertices), PyArray_DOUBLE);
if (result == NULL) {
throw Py::MemoryError("Could not allocate memory for path");
}
if (PyArray_NDIM(vertices) == 2)
{
size_t n = PyArray_DIM(vertices, 0);
char* vertex_in = PyArray_BYTES(vertices);
double* vertex_out = (double*)PyArray_DATA(result);
size_t stride0 = PyArray_STRIDE(vertices, 0);
size_t stride1 = PyArray_STRIDE(vertices, 1);
double x;
double y;
for (size_t i = 0; i < n; ++i)
{
x = *(double*)(vertex_in);
y = *(double*)(vertex_in + stride1);
*vertex_out++ = a*x + c*y + e;
*vertex_out++ = b*x + d*y + f;
vertex_in += stride0;
}
}
else
{
char* vertex_in = PyArray_BYTES(vertices);
double* vertex_out = (double*)PyArray_DATA(result);
size_t stride0 = PyArray_STRIDE(vertices, 0);
double x;
double y;
x = *(double*)(vertex_in);
y = *(double*)(vertex_in + stride0);
*vertex_out++ = a*x + c*y + e;
*vertex_out++ = b*x + d*y + f;
}
}
catch (...)
{
Py_XDECREF(vertices);
Py_XDECREF(transform);
Py_XDECREF(result);
throw;
}
Py_XDECREF(vertices);
Py_XDECREF(transform);
return Py::Object((PyObject*)result, true);
}
Py::Object _path_module::count_bboxes_overlapping_bbox(const Py::Tuple& args)
{
args.verify_length(2);
Py::Object bbox = args[0];
Py::SeqBase<Py::Object> bboxes = args[1];
double ax0, ay0, ax1, ay1;
double bx0, by0, bx1, by1;
long count = 0;
if (py_convert_bbox(bbox.ptr(), ax0, ay0, ax1, ay1))
{
if (ax1 < ax0)
std::swap(ax0, ax1);
if (ay1 < ay0)
std::swap(ay0, ay1);
size_t num_bboxes = bboxes.size();
for (size_t i = 0; i < num_bboxes; ++i)
{
Py::Object bbox_b = bboxes[i];
if (py_convert_bbox(bbox_b.ptr(), bx0, by0, bx1, by1))
{
if (bx1 < bx0)
std::swap(bx0, bx1);
if (by1 < by0)
std::swap(by0, by1);
if (!((bx1 <= ax0) ||
(by1 <= ay0) ||
(bx0 >= ax1) ||
(by0 >= ay1)))
++count;
}
else
{
throw Py::ValueError("Non-bbox object in bboxes list");
}
}
}
else
{
throw Py::ValueError("First argument to count_bboxes_overlapping_bbox must be a Bbox object.");
}
return Py::Int(count);
}
inline bool segments_intersect(const double& x1, const double& y1,
const double& x2, const double& y2,
const double& x3, const double& y3,
const double& x4, const double& y4)
{
double den = ((y4-y3)*(x2-x1)) - ((x4-x3)*(y2-y1));
if (den == 0.0)
return false;
double n1 = ((x4-x3)*(y1-y3)) - ((y4-y3)*(x1-x3));
double n2 = ((x2-x1)*(y1-y3)) - ((y2-y1)*(x1-x3));
double u1 = n1/den;
double u2 = n2/den;
return (u1 >= 0.0 && u1 <= 1.0 &&
u2 >= 0.0 && u2 <= 1.0);
}
bool path_intersects_path(PathIterator& p1, PathIterator& p2)
{
typedef agg::conv_curve<PathIterator> curve_t;
if (p1.total_vertices() < 2 || p2.total_vertices() < 2)
return false;
curve_t c1(p1);
curve_t c2(p2);
double x11, y11, x12, y12;
double x21, y21, x22, y22;
c1.vertex(&x11, &y11);
while (c1.vertex(&x12, &y12) != agg::path_cmd_stop)
{
c2.rewind(0);
c2.vertex(&x21, &y21);
while (c2.vertex(&x22, &y22) != agg::path_cmd_stop)
{
if (segments_intersect(x11, y11, x12, y12, x21, y21, x22, y22))
return true;
x21 = x22;
y21 = y22;
}
x11 = x12;
y11 = y12;
}
return false;
}
Py::Object _path_module::path_intersects_path(const Py::Tuple& args)
{
args.verify_length(2, 3);
PathIterator p1(args[0]);
PathIterator p2(args[1]);
bool filled = false;
if (args.size() == 3)
{
filled = args[2].isTrue();
}
if (!filled)
{
return Py::Int(::path_intersects_path(p1, p2));
}
else
{
return Py::Int(::path_intersects_path(p1, p2)
|| ::path_in_path(p1, agg::trans_affine(), p2, agg::trans_affine())
|| ::path_in_path(p2, agg::trans_affine(), p1, agg::trans_affine()));
}
}
void _add_polygon(Py::List& polygons, const std::vector<double>& polygon) {
if (polygon.size() == 0)
return;
npy_intp polygon_dims[] = { polygon.size() / 2, 2, 0 };
PyArrayObject* polygon_array = NULL;
polygon_array = (PyArrayObject*)PyArray_SimpleNew
(2, polygon_dims, PyArray_DOUBLE);
if (!polygon_array)
throw Py::MemoryError("Error creating polygon array");
double* polygon_data = (double*)PyArray_DATA(polygon_array);
memcpy(polygon_data, &polygon[0], polygon.size() * sizeof(double));
polygons.append(Py::Object((PyObject*)polygon_array, true));
}
Py::Object _path_module::convert_path_to_polygons(const Py::Tuple& args)
{
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef PathNanRemover<transformed_path_t> nan_removal_t;
typedef PathClipper<nan_removal_t> clipped_t;
typedef PathSimplifier<clipped_t> simplify_t;
typedef agg::conv_curve<simplify_t> curve_t;
typedef std::vector<double> vertices_t;
args.verify_length(4);
PathIterator path(args[0]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[1].ptr(), false);
double width = Py::Float(args[2]);
double height = Py::Float(args[3]);
bool do_clip = width != 0.0 && height != 0.0;
bool simplify = path.should_simplify();
transformed_path_t tpath(path, trans);
nan_removal_t nan_removed(tpath, true, path.has_curves());
clipped_t clipped(nan_removed, do_clip, width, height);
simplify_t simplified(clipped, simplify, path.simplify_threshold());
curve_t curve(simplified);
Py::List polygons;
vertices_t polygon;
double x, y;
unsigned code;
polygon.reserve(path.total_vertices() * 2);
while ((code = curve.vertex(&x, &y)) != agg::path_cmd_stop)
{
if ((code & agg::path_cmd_end_poly) == agg::path_cmd_end_poly)
{
if (polygon.size() >= 2)
{
polygon.push_back(polygon[0]);
polygon.push_back(polygon[1]);
_add_polygon(polygons, polygon);
}
polygon.clear();
}
else
{
if (code == agg::path_cmd_move_to)
{
_add_polygon(polygons, polygon);
polygon.clear();
}
polygon.push_back(x);
polygon.push_back(y);
}
}
_add_polygon(polygons, polygon);
return polygons;
}
template<class VertexSource>
void __cleanup_path(VertexSource& source,
std::vector<double>& vertices,
std::vector<npy_uint8>& codes) {
unsigned code;
double x, y;
do
{
code = source.vertex(&x, &y);
vertices.push_back(x);
vertices.push_back(y);
codes.push_back((npy_uint8)code);
} while (code != agg::path_cmd_stop);
}
void _cleanup_path(PathIterator& path, const agg::trans_affine& trans,
bool remove_nans, bool do_clip,
const agg::rect_base<double>& rect,
e_quantize_mode quantize_mode, bool do_simplify,
bool return_curves, std::vector<double>& vertices,
std::vector<npy_uint8>& codes) {
typedef agg::conv_transform<PathIterator> transformed_path_t;
typedef PathNanRemover<transformed_path_t> nan_removal_t;
typedef PathClipper<nan_removal_t> clipped_t;
typedef PathQuantizer<clipped_t> quantized_t;
typedef PathSimplifier<quantized_t> simplify_t;
typedef agg::conv_curve<simplify_t> curve_t;
transformed_path_t tpath(path, trans);
nan_removal_t nan_removed(tpath, remove_nans, path.has_curves());
clipped_t clipped(nan_removed, do_clip, rect);
quantized_t quantized(clipped, quantize_mode, path.total_vertices());
simplify_t simplified(quantized, do_simplify, path.simplify_threshold());
vertices.reserve(path.total_vertices() * 2);
codes.reserve(path.total_vertices());
if (return_curves)
{
__cleanup_path(simplified, vertices, codes);
}
else
{
curve_t curve(simplified);
__cleanup_path(curve, vertices, codes);
}
}
Py::Object _path_module::cleanup_path(const Py::Tuple& args)
{
args.verify_length(7);
PathIterator path(args[0]);
agg::trans_affine trans = py_to_agg_transformation_matrix(args[1].ptr(), false);
bool remove_nans = args[2].isTrue();
Py::Object clip_obj = args[3];
bool do_clip;
agg::rect_base<double> clip_rect;
if (clip_obj.isNone())
{
do_clip = false;
}
else
{
double x1, y1, x2, y2;
Py::Tuple clip_tuple(clip_obj);
x1 = Py::Float(clip_tuple[0]);
y1 = Py::Float(clip_tuple[1]);
x2 = Py::Float(clip_tuple[2]);
y2 = Py::Float(clip_tuple[3]);
clip_rect.init(x1, y1, x2, y2);
do_clip = true;
}
Py::Object quantize_obj = args[4];
e_quantize_mode quantize_mode;
if (quantize_obj.isNone())
{
quantize_mode = QUANTIZE_AUTO;
}
else if (quantize_obj.isTrue())
{
quantize_mode = QUANTIZE_TRUE;
}
else
{
quantize_mode = QUANTIZE_FALSE;
}
bool simplify;
Py::Object simplify_obj = args[5];
if (simplify_obj.isNone())
{
simplify = path.should_simplify();
}
else
{
simplify = simplify_obj.isTrue();
}
bool return_curves = args[6].isTrue();
std::vector<double> vertices;
std::vector<npy_uint8> codes;
_cleanup_path(path, trans, remove_nans, do_clip, clip_rect, quantize_mode,
simplify, return_curves, vertices, codes);
npy_intp length = codes.size();
npy_intp dims[] = { length, 2, 0 };
PyArrayObject* vertices_obj = NULL;
PyArrayObject* codes_obj = NULL;
Py::Tuple result(2);
try {
vertices_obj = (PyArrayObject*)PyArray_SimpleNew
(2, dims, PyArray_DOUBLE);
if (vertices_obj == NULL)
{
throw Py::MemoryError("Could not allocate result array");
}
codes_obj = (PyArrayObject*)PyArray_SimpleNew
(1, dims, PyArray_UINT8);
if (codes_obj == NULL)
{
throw Py::MemoryError("Could not allocate result array");
}
memcpy(PyArray_DATA(vertices_obj), &vertices[0], sizeof(double) * 2 * length);
memcpy(PyArray_DATA(codes_obj), &codes[0], sizeof(npy_uint8) * length);
result[0] = Py::Object((PyObject*)vertices_obj, true);
result[1] = Py::Object((PyObject*)codes_obj, true);
}
catch (...)
{
Py_XDECREF(vertices_obj);
Py_XDECREF(codes_obj);
throw;
}
return result;
}
extern "C"
DL_EXPORT(void)
init_path(void)
{
import_array();
static _path_module* _path = NULL;
_path = new _path_module;
}
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.