Menu

[r7847]: / branches / mathtex / lib / matplotlib / cm.py  Maximize  Restore  History

Download this file

277 lines (226 with data), 8.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""
This module provides a large set of colormaps, functions for
registering new colormaps and for getting a colormap by name,
and a mixin class for adding color mapping functionality.
"""
import os
import numpy as np
from numpy import ma
import matplotlib as mpl
import matplotlib.colors as colors
import matplotlib.cbook as cbook
from matplotlib._cm import datad
cmap_d = dict()
# reverse all the colormaps.
# reversed colormaps have '_r' appended to the name.
def revcmap(data):
data_r = {}
for key, val in data.iteritems():
if callable(val):
valnew = lambda x: 1 - val(x)
else:
valnew = [(1.0 - a, b, c) for a, b, c in reversed(val)]
data_r[key] = valnew
return data_r
LUTSIZE = mpl.rcParams['image.lut']
_cmapnames = datad.keys() # need this list because datad is changed in loop
for cmapname in _cmapnames:
cmapname_r = cmapname+'_r'
cmapspec = datad[cmapname]
if 'red' in cmapspec:
datad[cmapname_r] = revcmap(cmapspec)
cmap_d[cmapname] = colors.LinearSegmentedColormap(
cmapname, cmapspec, LUTSIZE)
cmap_d[cmapname_r] = colors.LinearSegmentedColormap(
cmapname_r, datad[cmapname_r], LUTSIZE)
else:
datad[cmapname] = list(cmapspec)
datad[cmapname_r] = list(datad[cmapname])
datad[cmapname_r].reverse()
cmap_d[cmapname] = colors.LinearSegmentedColormap.from_list(
cmapname, datad[cmapname], LUTSIZE)
cmap_d[cmapname_r] = colors.LinearSegmentedColormap.from_list(
cmapname_r, datad[cmapname_r], LUTSIZE)
locals().update(cmap_d)
def register_cmap(name=None, cmap=None, data=None, lut=None):
"""
Add a colormap to the set recognized by :func:`get_cmap`.
It can be used in two ways::
register_cmap(name='swirly', cmap=swirly_cmap)
register_cmap(name='choppy', data=choppydata, lut=128)
In the first case, *cmap* must be a :class:`colors.Colormap`
instance. The *name* is optional; if absent, the name will
be the :attr:`name` attribute of the *cmap*.
In the second case, the three arguments are passed to
the :class:`colors.LinearSegmentedColormap` initializer,
and the resulting colormap is registered.
"""
if name is None:
try:
name = cmap.name
except AttributeError:
raise ValueError("Arguments must include a name or a Colormap")
if not cbook.is_string_like(name):
raise ValueError("Colormap name must be a string")
if isinstance(cmap, colors.Colormap):
cmap_d[name] = cmap
return
# For the remainder, let exceptions propagate.
if lut is None:
lut = mpl.rcParams['image.lut']
cmap = colors.LinearSegmentedColormap(name, data, lut)
cmap_d[name] = cmap
def get_cmap(name=None, lut=None):
"""
Get a colormap instance, defaulting to rc values if *name* is None.
Colormaps added with :func:`register_cmap` take precedence over
builtin colormaps.
If *name* is a :class:`colors.Colormap` instance, it will be
returned.
If *lut* is not None it must be an integer giving the number of
entries desired in the lookup table, and *name* must be a
standard mpl colormap name with a corresponding data dictionary
in *datad*.
"""
if name is None:
name = mpl.rcParams['image.cmap']
if isinstance(name, colors.Colormap):
return name
if name in cmap_d:
if lut is None:
return cmap_d[name]
elif name in datad:
return colors.LinearSegmentedColormap(name, datad[name], lut)
else:
raise ValueError("Colormap %s is not recognized" % name)
class ScalarMappable:
"""
This is a mixin class to support scalar -> RGBA mapping. Handles
normalization and colormapping
"""
def __init__(self, norm=None, cmap=None):
"""
*norm* is an instance of :class:`colors.Normalize` or one of
its subclasses, used to map luminance to 0-1. *cmap* is a
:mod:`cm` colormap instance, for example :data:`cm.jet`
"""
self.callbacksSM = cbook.CallbackRegistry((
'changed',))
if cmap is None: cmap = get_cmap()
if norm is None: norm = colors.Normalize()
self._A = None
self.norm = norm
self.cmap = get_cmap(cmap)
self.colorbar = None
self.update_dict = {'array':False}
def set_colorbar(self, im, ax):
'set the colorbar image and axes associated with mappable'
self.colorbar = im, ax
def to_rgba(self, x, alpha=1.0, bytes=False):
'''Return a normalized rgba array corresponding to *x*. If *x*
is already an rgb array, insert *alpha*; if it is already
rgba, return it unchanged. If *bytes* is True, return rgba as
4 uint8s instead of 4 floats.
'''
try:
if x.ndim == 3:
if x.shape[2] == 3:
if x.dtype == np.uint8:
alpha = np.array(alpha*255, np.uint8)
m, n = x.shape[:2]
xx = np.empty(shape=(m,n,4), dtype = x.dtype)
xx[:,:,:3] = x
xx[:,:,3] = alpha
elif x.shape[2] == 4:
xx = x
else:
raise ValueError("third dimension must be 3 or 4")
if bytes and xx.dtype != np.uint8:
xx = (xx * 255).astype(np.uint8)
return xx
except AttributeError:
pass
x = ma.asarray(x)
x = self.norm(x)
x = self.cmap(x, alpha=alpha, bytes=bytes)
return x
def set_array(self, A):
'Set the image array from numpy array *A*'
self._A = A
self.update_dict['array'] = True
def get_array(self):
'Return the array'
return self._A
def get_cmap(self):
'return the colormap'
return self.cmap
def get_clim(self):
'return the min, max of the color limits for image scaling'
return self.norm.vmin, self.norm.vmax
def set_clim(self, vmin=None, vmax=None):
"""
set the norm limits for image scaling; if *vmin* is a length2
sequence, interpret it as ``(vmin, vmax)`` which is used to
support setp
ACCEPTS: a length 2 sequence of floats
"""
if (vmin is not None and vmax is None and
cbook.iterable(vmin) and len(vmin)==2):
vmin, vmax = vmin
if vmin is not None: self.norm.vmin = vmin
if vmax is not None: self.norm.vmax = vmax
self.changed()
def set_cmap(self, cmap):
"""
set the colormap for luminance data
ACCEPTS: a colormap or registered colormap name
"""
cmap = get_cmap(cmap)
self.cmap = cmap
self.changed()
def set_norm(self, norm):
'set the normalization instance'
if norm is None: norm = colors.Normalize()
self.norm = norm
self.changed()
def autoscale(self):
"""
Autoscale the scalar limits on the norm instance using the
current array
"""
if self._A is None:
raise TypeError('You must first set_array for mappable')
self.norm.autoscale(self._A)
self.changed()
def autoscale_None(self):
"""
Autoscale the scalar limits on the norm instance using the
current array, changing only limits that are None
"""
if self._A is None:
raise TypeError('You must first set_array for mappable')
self.norm.autoscale_None(self._A)
self.changed()
def add_checker(self, checker):
"""
Add an entry to a dictionary of boolean flags
that are set to True when the mappable is changed.
"""
self.update_dict[checker] = False
def check_update(self, checker):
"""
If mappable has changed since the last check,
return True; else return False
"""
if self.update_dict[checker]:
self.update_dict[checker] = False
return True
return False
def changed(self):
"""
Call this whenever the mappable is changed to notify all the
callbackSM listeners to the 'changed' signal
"""
self.callbacksSM.process('changed', self)
for key in self.update_dict:
self.update_dict[key] = True