Menu

[r759]: / trunk / htdocs / .matplotlibrc  Maximize  Restore  History

Download this file

202 lines (182 with data), 9.1 kB

#### MATPLOTLIBRC FORMAT 
#
# This is a sample matplotlib configuration file.   It should be placed
# in your home dir (Linux and friends) or in the matplotlib data path,
# ie, where matplotlib installs its data files (fonts, etc).  On
# windows, this would be, for example, C:\Python23\share\matplotlib.
# On OSX, using the python framework, it will be (depending on your
# version number) in /System/Library/Frameworks/Python.framework/Versions/2.3/share/matplotlib/.matplotlibrc

#
# By default, the installer will overwrite the existing file in the
# install path, so if you want to preserve your's, please move it to
# your HOME dir and set the environment variable if necessary.
#
# This file is best viewed in a editor which supports python mode
# syntax highlighting
#
# Blank lines, or lines starting with a comment symbol, are ignored,
# as are trailing comments.  Other lines must have the format
#
#   key : val   # optional comment
#
# Colors: for the color values below, you can either use 
#  - a matplotlib color string, such as r, k, or b
#  - an rgb tuple, such as (1.0, 0.5, 0.0)
#  - a hex string, such as ff00ff  (no '#' symbol)
#  - a scalar grayscale intensity such as 0.75

#### CONFIGURATION BEGINS HERE
backend      : GTKAgg    # the default backend
numerix      : Numeric   # Numeric or numarray
interactive  : False     # see http://matplotlib.sourceforge.net/interactive.html
toolbar      : toolbar2   # None | classic | toolbar2
timezone     : UTC        # a pytz timezone string, eg US/Central or Europe/Paris

# Where your matplotlib data lives if you installed to a non-default
# location.  This is where the matplotlib fonts, bitmaps, etc reside
#datapath : /home/jdhunter/mpldata


### LINES
# See http://matplotlib.sourceforge.net/matplotlib.lines.html for more
# information on line properties.  Note antialiased rendering looks
# better, but can be slower.  If you want fast antialiased rendering,
# use the Agg backend (or TkAgg, GTKAgg, WxAgg)
lines.linewidth   : 0.5     # line width in points
lines.linestyle   : -       # solid line
lines.color       : b       # blue
lines.marker      : None    # the default marker
lines.markerfacecolor  : b       # blue
lines.markeredgecolor  : k       # black
lines.markeredgewidth  : 0.5     # the line width around the marker symbol
lines.markersize  : 6            # markersize, in points
lines.antialiased : True         # render lines in antialised (no jaggies)
lines.data_clipping : False      # Use data clipping in addition to viewport
                                 # clipping.  Useful if you plot long data
                                 # sets with only a fraction in the viewport

### Patches 
# Patches are graphical objects that fill 2D space, like polygons or
# circles.  See
# http://matplotlib.sourceforge.net/matplotlib.patches.html for more
# information on patch properties
patch.linewidth   	: 1.0     # edge width in points
patch.facecolor  	: b       
patch.edgecolor  	: k
patch.antialiased 	: True    # render patches in antialised (no jaggies)

### FONT
#
# font properties used by text.Text.  see
# http://matplotlib.sourceforge.net/matplotlib.fonts.html for more
# information on font properties.  The 6 font properties used for font
# matching are given below with their default values.
#
# The font.family property has five values: 'serif' (e.g. Times),
# 'sans-serif' (e.g. Helvetica), 'cursive' (e.g. Zapf-Chancery),
# 'fantasy' (e.g. Western), and 'monospace' (e.g. Courier).  Each of
# these font families has a default list of font names in decreasing
# order of priority associated with them.
# 
# The font.style property has three values: normal (or roman), italic
# or oblique.  The oblique style will be used for italic, if it is not
# present.
#
# The font.variant property has two values: normal or small-caps.  For
# TrueType fonts, which are scalable fonts, small-caps is equivalent
# to using a font size of 'smaller', or about 83% of the current font
# size.
#
# The font.weight property has effectively 13 values: normal, bold,
# bolder, lighter, 100, 200, 300, ..., 900.  Normal is the same as
# 400, and bold is 700.  bolder and lighter are relative values with
# respect to the current weight.
#
# The font.stretch property has 11 values: ultra-condensed,
# extra-condensed, condensed, semi-condensed, normal, semi-expanded,
# expanded, extra-expanded, ultra-expanded, wider, and narrower.  This
# property is not currently implemented.
#
# The font.size property has 11 values: xx-small, x-small, small,
# medium, large, x-large, xx-large, larger, smaller, length (such as
# 12pt), and percentage.  larger and smaller are relative values.
# percentage is not yet implemented.
#
font.family         : sans-serif
font.style          : normal
font.variant        : normal
font.weight         : medium
font.stretch        : normal
font.size           : medium
font.serif          : New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Bitstream Vera Serif, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
font.sans-serif     : Lucida Grande, Verdana, Geneva, Lucida, Bitstream Vera Sans, Arial, Helvetica, sans-serif
font.cursive        : Apple Chancery, Textile, Zapf Chancery, Sand, cursive
font.fantasy        : Comic Sans MS, Chicago, Charcoal, Impact, Western, fantasy
font.monospace      : Andale Mono, Bitstream Vera Sans Mono, Nimbus Mono L, Courier New, Courier, Fixed, Terminal, monospace


### TEXT
# text properties used by text.Text.  See
# http://matplotlib.sourceforge.net/matplotlib.Text.html for more
# information on text properties
text.color          : k       # black

### AXES
# default face and edge color, default tick sizes,
# default fontsizes for ticklabels, and so on
axes.hold           : True    # whether to clear the axes by default on
axes.facecolor      : w       # background color; white
axes.edgecolor      : k       # edge color; black
axes.linewidth      : 1.0     # edge linewidth
axes.grid           : False   # display grid or not
axes.titlesize      : 14      # fontsize of the axes title
axes.labelsize      : 12      # fontsize of the x any y labels
axes.labelcolor     : k       # black

polaraxes.grid      : True    # display grid on polar axes

### TICKS
tick.major.size     : 4      # major tick size in points
tick.minor.size     : 2      # minor tick size in points
tick.major.pad      : 4      # distance to major tick label in points
tick.minor.pad      : 4      # distance to the minor tick label in points
tick.color          : k      # color of the tick labels 
tick.labelsize      : 10     # fontsize of the tick labels

### Grids
grid.color       :   k       # grid color
grid.linestyle   :   :       # dotted
grid.linewidth   :   0.5     # in points            

### FIGURE
figure.figsize   : 8, 6    # figure size in inches
figure.dpi       : 80      # figure dots per inch
figure.facecolor : 0.75    # figure facecolor; 0.75 is scalar gray
figure.edgecolor : w       # figure edgecolor; w is white

### images
image.aspect : free              # free | preserve
image.interpolation  : bilinear  # see help(imshow) for options
image.cmap   : jet               # gray | jet
image.lut    : 256               # the size of the colormap lookup table
image.origin : upper             # lower | upper
 
### SAVING FIGURES
# the default savefig params can be different for the GUI backends.
# Eg, you may want a higher resolution, or to make the figure
# background white
savefig.dpi       : 100      # figure dots per inch
savefig.facecolor : w        # figure facecolor; 0.75 is scalar gray
savefig.edgecolor : w        # figure edgecolor; w is white

tk.window_focus   : False    # Maintain shell focus for TkAgg


# Set the verbose flags.  This controls how much information
# matplotlib gives you at runtime and where it goes.  Ther verbosity
# levels are: silent, error, helpful, debug, debug-annoying.  At the
# error level, you will only get error messages.  Any level is
# inclusive of all the levels below it.  Ie, if your setting is
# helpful, you'll also get all the error messages.  If you setting is
# debug, you'll get all the error and helpful messages.  It is not
# recommended to make your setting silent because you will not even
# get error messages.  When submitting problems to the mailing-list,
# please set verbose to helpful or debug and paste the output into
# your report.
#
# The fileo gives the destination for any calls to verbose.report.
# The erro gives the destination for any calls to
# verbose.report_error.  These objects can a filename, sys.stderr, or
# sys.stdout.  
#
# You can override the rc default verbosity from the command line by
# giving the flags --verbose-LEVEL where LEVEL is one of the legal
# levels, eg --verbose-error --verbose-helpful.
#
# You can access the verbose instance in your code
#   from matplotlib import verbose.
verbose.level  : error     # one of silent, error, helpful, debug, debug-annoying
verbose.fileo  : sys.stdout  # a log filename, sys.stdout or sys.stderr
verbose.erro   : sys.stderr  # a log filename, sys.stdout or sys.stderr
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.