| |
- matplotlib.artist.Artist(__builtin__.object)
-
- Axes
- SubplotBase
-
- AxesSubplot(SubplotBase, Axes)
class Axes(matplotlib.artist.Artist) |
|
The :class:`Axes` contains most of the figure elements:
:class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`,
:class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`,
:class:`~matplotlib.patches.Polygon`, etc., and sets the
coordinate system.
The :class:`Axes` instance supports callbacks through a callbacks attribute
which is a :class:`~matplotlib.cbook.CallbackRegistry` instance.
The events you can connect to are :meth:`xlim_changed` and
:meth:`ylim_changed` and the callback will be called with
func(*ax() where *ax* is the :class:`Axes` instance. |
|
- Method resolution order:
- Axes
- matplotlib.artist.Artist
- __builtin__.object
Methods defined here:
- __init__(self, fig, rect, axisbg=None, frameon=True, sharex=None, sharey=None, label='', **kwargs)
- __str__(self)
- acorr(self, x, **kwargs)
- call signature::
acorr(x, normed=False, detrend=mlab.detrend_none, usevlines=False,
maxlags=None, **kwargs)
Plot the autocorrelation of *x*. If *normed* = *True*,
normalize the data but the autocorrelation at 0-th lag. *x* is
detrended by the *detrend* callable (default no normalization).
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length 2*maxlags+1 lag vector
- *c* is the 2*maxlags+1 auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :meth:`plot`
The default *linestyle* is None and the default *marker* is
``'o'``, though these can be overridden with keyword args.
The cross correlation is performed with :func:`numpy.correlate` with
*mode* = 2.
If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines`
rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw
vertical lines from the origin to the acorr. Otherwise, the
plot style is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties. The return
value is a tuple (*lags*, *c*, *linecol*, *b*) where
- *linecol* is the
:class:`~matplotlib.collections.LineCollection`
- *b* is the *x*-axis.
*maxlags* is a positive integer detailing the number of lags
to show. The default value of *None* will return all
``(2*len(x)-1)`` lags.
See the respective :meth:`~matplotlib.axes.Axes.plot` or
:meth:`~matplotlib.axes.Axes.vlines` functions for
documentation on valid kwargs.
**Example:**
:func:`~matplotlib.pyplot.xcorr` above, and
:func:`~matplotlib.pyplot.acorr` below.
**Example:**
.. plot:: ../mpl_examples/pylab_examples/xcorr_demo.py
- add_artist(self, a)
- Add any :class:`~matplotlib.artist.Artist` to the axes
- add_collection(self, collection, autolim=True)
- add a :class:`~matplotlib.collections.Collection` instance
to the axes
- add_line(self, line)
- Add a :class:`~matplotlib.lines.Line2D` to the list of plot
lines
- add_patch(self, p)
- Add a :class:`~matplotlib.patches.Patch` *p* to the list of
axes patches; the clipbox will be set to the Axes clipping
box. If the transform is not set, it will be set to
:attr:`transData`.
- add_table(self, tab)
- Add a :class:`~matplotlib.tables.Table` instance to the
list of axes tables
- annotate(self, *args, **kwargs)
- call signature::
annotate(s, xy, xytext=None, xycoords='data',
textcoords='data', arrowprops=None, **kwargs)
Keyword arguments:
Annotate the *x*, *y* point *xy* with text *s* at *x*, *y*
location *xytext*. (If *xytext* = *None*, defaults to *xy*,
and if *textcoords* = *None*, defaults to *xycoords*).
*arrowprops*, if not *None*, is a dictionary of line properties
(see :class:`matplotlib.lines.Line2D`) for the arrow that connects
annotation to the point. Valid keys are
========= ===========================================================
Key Description
========= ===========================================================
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
headwidth the width of the base of the arrow head in points
shrink oftentimes it is convenient to have the arrowtip
and base a bit away from the text and point being
annotated. If *d* is the distance between the text and
annotated point, shrink will shorten the arrow so the tip
and base are shink percent of the distance *d* away from the
endpoints. ie, ``shrink=0.05 is 5%``
? any key for :class:`matplotlib.patches.polygon`
========= ===========================================================
*xycoords* and *textcoords* are strings that indicate the
coordinates of *xy* and *xytext*.
================= ===================================================
Property Description
================= ===================================================
'figure points' points from the lower left corner of the figure
'figure pixels' pixels from the lower left corner of the figure
'figure fraction' 0,0 is lower left of figure and 1,1 is upper, right
'axes points' points from lower left corner of axes
'axes pixels' pixels from lower left corner of axes
'axes fraction' 0,1 is lower left of axes and 1,1 is upper right
'data' use the coordinate system of the object being
annotated (default)
'offset points' Specify an offset (in points) from the *xy* value
'polar' you can specify *theta*, *r* for the annotation,
even in cartesian plots. Note that if you
are using a polar axes, you do not need
to specify polar for the coordinate
system since that is the native "data" coordinate
system.
================= ===================================================
If a 'points' or 'pixels' option is specified, values will be
added to the bottom-left and if negative, values will be
subtracted from the top-right. Eg::
# 10 points to the right of the left border of the axes and
# 5 points below the top border
xy=(10,-5), xycoords='axes points'
Additional kwargs are Text properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
- apply_aspect(self, position=None)
- Use :meth:`_aspect` and :meth:`_adjustable` to modify the
axes box or the view limits.
- arrow(self, x, y, dx, dy, **kwargs)
- call signature::
arrow(x, y, dx, dy, **kwargs)
Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*,
*y* + *dy*).
Optional kwargs control the arrow properties:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/arrow_demo.py
- autoscale_view(self, tight=False, scalex=True, scaley=True)
- autoscale the view limits using the data limits. You can
selectively autoscale only a single axis, eg, the xaxis by
setting *scaley* to *False*. The autoscaling preserves any
axis direction reversal that has already been done.
- axhline(self, y=0, xmin=0, xmax=1, **kwargs)
- call signature::
axhline(y=0, xmin=0, xmax=1, **kwargs)
Axis Horizontal Line
Draw a horizontal line at *y* from *xmin* to *xmax*. With the
default values of *xmin* = 0 and *xmax* = 1, this line will
always span the horizontal extent of the axes, regardless of
the xlim settings, even if you change them, eg. with the
:meth:`set_xlim` command. That is, the horizontal extent is
in axes coords: 0=left, 0.5=middle, 1.0=right but the *y*
location is in data coordinates.
Return value is the :class:`~matplotlib.lines.Line2D`
instance. kwargs are the same as kwargs to plot, and can be
used to control the line properties. Eg.,
* draw a thick red hline at *y* = 0 that spans the xrange
>>> axhline(linewidth=4, color='r')
* draw a default hline at *y* = 1 that spans the xrange
>>> axhline(y=1)
* draw a default hline at *y* = .5 that spans the the middle half of
the xrange
>>> axhline(y=.5, xmin=0.25, xmax=0.75)
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
See :meth:`axhspan` for example plot and source code
- axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs)
- call signature::
axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
Axis Horizontal Span.
*y* coords are in data units and *x* coords are in axes (relative
0-1) units.
Draw a horizontal span (rectangle) from *ymin* to *ymax*.
With the default values of *xmin* = 0 and *xmax* = 1, this
always span the xrange, regardless of the xlim settings, even
if you change them, eg. with the :meth:`set_xlim` command.
That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the *y* location is in data
coordinates.
Return value is a :class:`matplotlib.patches.Polygon`
instance.
Examples:
* draw a gray rectangle from *y* = 0.25-0.75 that spans the
horizontal extent of the axes
>>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
Valid kwargs are :class:`~matplotlib.patches.Polygon` properties:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/axhspan_demo.py
- axis(self, *v, **kwargs)
- Convenience method for manipulating the x and y view limits
and the aspect ratio of the plot.
*kwargs* are passed on to :meth:`set_xlim` and
:meth:`set_ylim`
- axvline(self, x=0, ymin=0, ymax=1, **kwargs)
- call signature::
axvline(x=0, ymin=0, ymax=1, **kwargs)
Axis Vertical Line
Draw a vertical line at *x* from *ymin* to *ymax*. With the
default values of *ymin* = 0 and *ymax* = 1, this line will
always span the vertical extent of the axes, regardless of the
xlim settings, even if you change them, eg. with the
:meth:`set_xlim` command. That is, the vertical extent is in
axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location
is in data coordinates.
Return value is the :class:`~matplotlib.lines.Line2D`
instance. kwargs are the same as kwargs to plot, and can be
used to control the line properties. Eg.,
* draw a thick red vline at *x* = 0 that spans the yrange
>>> axvline(linewidth=4, color='r')
* draw a default vline at *x* = 1 that spans the yrange
>>> axvline(x=1)
* draw a default vline at *x* = .5 that spans the the middle half of
the yrange
>>> axvline(x=.5, ymin=0.25, ymax=0.75)
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
See :meth:`axhspan` for example plot and source code
- axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs)
- call signature::
axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
Axis Vertical Span.
*x* coords are in data units and *y* coords are in axes (relative
0-1) units.
Draw a vertical span (rectangle) from *xmin* to *xmax*. With
the default values of *ymin* = 0 and *ymax* = 1, this always
span the yrange, regardless of the ylim settings, even if you
change them, eg. with the :meth:`set_ylim` command. That is,
the vertical extent is in axes coords: 0=bottom, 0.5=middle,
1.0=top but the *y* location is in data coordinates.
Return value is the :class:`matplotlib.patches.Polygon`
instance.
Examples:
* draw a vertical green translucent rectangle from x=1.25 to 1.55 that
spans the yrange of the axes
>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
Valid kwargs are :class:`~matplotlib.patches.Polygon`
properties:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
See :meth:`axhspan` for example plot and source code
- bar(self, left, height, width=0.80000000000000004, bottom=None, color=None, edgecolor=None, linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align='edge', orientation='vertical', log=False, **kwargs)
- call signature::
bar(left, height, width=0.8, bottom=0,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align='edge', orientation='vertical', log=False)
Make a bar plot with rectangles bounded by:
*left*, *left* + *width*, *bottom*, *bottom* + *height*
(left, right, bottom and top edges)
*left*, *height*, *width*, and *bottom* can be either scalars
or sequences
Return value is a list of
:class:`matplotlib.patches.Rectangle` instances.
Required arguments:
======== ===============================================
Argument Description
======== ===============================================
*left* the x coordinates of the left sides of the bars
*height* the heights of the bars
======== ===============================================
Optional keyword arguments:
=============== ==========================================
Keyword Description
=============== ==========================================
*width* the widths of the bars
*bottom* the y coordinates of the bottom edges of
the bars
*color* the colors of the bars
*edgecolor* the colors of the bar edges
*linewidth* width of bar edges; None means use default
linewidth; 0 means don't draw edges.
*xerr* if not None, will be used to generate
errorbars on the bar chart
*yerr* if not None, will be used to generate
errorbars on the bar chart
*ecolor* specifies the color of any errorbar
*capsize* (default 3) determines the length in
points of the error bar caps
*align* 'edge' (default) | 'center'
*orientation* 'vertical' | 'horizontal'
*log* [False|True] False (default) leaves the
orientation axis as-is; True sets it to
log scale
=============== ==========================================
For vertical bars, *align* = 'edge' aligns bars by their left
edges in left, while *align* = 'center' interprets these
values as the *x* coordinates of the bar centers. For
horizontal bars, *align* = 'edge' aligns bars by their bottom
edges in bottom, while *align* = 'center' interprets these
values as the *y* coordinates of the bar centers.
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
bar as the basis for stacked bar charts, or candlestick plots.
Other optional kwargs:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
**Example:** A stacked bar chart.
.. plot:: ../mpl_examples/pylab_examples/bar_stacked.py
- barbs(self, *args, **kw)
- Plot a 2-D field of barbs.
call signatures::
barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)
Arguments:
*X*, *Y*:
The x and y coordinates of the barb locations
(default is head of barb; see *pivot* kwarg)
*U*, *V*:
give the *x* and *y* components of the barb shaft
*C*:
an optional array used to map colors to the barbs
All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y*
are absent, they will be generated as a uniform grid. If *U* and *V*
are 2-D arrays but *X* and *Y* are 1-D, and if len(*X*) and len(*Y*)
match the column and row dimensions of *U*, then *X* and *Y* will be
expanded with :func:`numpy.meshgrid`.
*U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not
supported at present.
Keyword arguments:
*length*:
Length of the barb in points; the other parts of the barb
are scaled against this.
Default is 9
*pivot*: [ 'tip' | 'middle' ]
The part of the arrow that is at the grid point; the arrow
rotates about this point, hence the name *pivot*.
Default is 'tip'
*barbcolor*: [ color | color sequence ]
Specifies the color all parts of the barb except any flags.
This parameter is analagous to the *edgecolor* parameter
for polygons, which can be used instead. However this parameter
will override facecolor.
*flagcolor*: [ color | color sequence ]
Specifies the color of any flags on the barb.
This parameter is analagous to the *facecolor* parameter
for polygons, which can be used instead. However this parameter
will override facecolor. If this is not set (and *C* has not either)
then *flagcolor* will be set to match *barbcolor* so that the barb
has a uniform color. If *C* has been set, *flagcolor* has no effect.
*sizes*:
A dictionary of coefficients specifying the ratio of a given feature
to the length of the barb. Only those values one wishes to override
need to be included. These features include:
'spacing' - space between features (flags, full/half barbs)
'height' - height (distance from shaft to top) of a flag or full barb
'width' - width of a flag, twice the width of a full barb
'emptybarb' - radius of the circle used for low magnitudes
*fill_empty*:
A flag on whether the empty barbs (circles) that are drawn should be filled
with the flag color. If they are not filled, they will be drawn such that
no color is applied to the center.
Default is False
*rounding*:
A flag to indicate whether the vector magnitude should be rounded when
allocating barb components. If True, the magnitude is rounded to the
nearest multiple of the half-barb increment. If False, the magnitude
is simply truncated to the next lowest multiple.
Default is True
*barb_increments*:
A dictionary of increments specifying values to associate with different
parts of the barb. Only those values one wishes to override need to be
included.
'half' - half barbs (Default is 5)
'full' - full barbs (Default is 10)
'flag' - flags (default is 50)
*flip_barb*:
Either a single boolean flag or an array of booleans. Single boolean
indicates whether the lines and flags should point opposite to normal
for all barbs. An array (which should be the same size as the other
data arrays) indicates whether to flip for each individual barb.
Normal behavior is for the barbs and lines to point right (comes from
wind barbs having these features point towards low pressure in the
Northern Hemisphere.)
Default is False
Barbs are traditionally used in meteorology as a way to plot the speed
and direction of wind observations, but can technically be used to plot
any two dimensional vector quantity. As opposed to arrows, which give
vector magnitude by the length of the arrow, the barbs give more quantitative
information about the vector magnitude by putting slanted lines or a triangle
for various increments in magnitude, as show schematically below:
/\ / \ / \ \ / \ \ ------------------------------
The largest increment is given by a triangle (or "flag"). After those come full
lines (barbs). The smallest increment is a half line. There is only, of
course, ever at most 1 half line. If the magnitude is small and only needs a
single half-line and no full lines or triangles, the half-line is offset from
the end of the barb so that it can be easily distinguished from barbs with a
single full line. The magnitude for the barb shown above would nominally be
65, using the standard increments of 50, 10, and 5.
linewidths and edgecolors can be used to customize the barb.
Additional :class:`~matplotlib.collections.PolyCollection`
keyword arguments:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
- barh(self, bottom, width, height=0.80000000000000004, left=None, **kwargs)
- call signature::
barh(bottom, width, height=0.8, left=0, **kwargs)
Make a horizontal bar plot with rectangles bounded by:
*left*, *left* + *width*, *bottom*, *bottom* + *height*
(left, right, bottom and top edges)
*bottom*, *width*, *height*, and *left* can be either scalars
or sequences
Return value is a list of
:class:`matplotlib.patches.Rectangle` instances.
Required arguments:
======== ======================================================
Argument Description
======== ======================================================
*bottom* the vertical positions of the bottom edges of the bars
*width* the lengths of the bars
======== ======================================================
Optional keyword arguments:
=============== ==========================================
Keyword Description
=============== ==========================================
*height* the heights (thicknesses) of the bars
*left* the x coordinates of the left edges of the
bars
*color* the colors of the bars
*edgecolor* the colors of the bar edges
*linewidth* width of bar edges; None means use default
linewidth; 0 means don't draw edges.
*xerr* if not None, will be used to generate
errorbars on the bar chart
*yerr* if not None, will be used to generate
errorbars on the bar chart
*ecolor* specifies the color of any errorbar
*capsize* (default 3) determines the length in
points of the error bar caps
*align* 'edge' (default) | 'center'
*log* [False|True] False (default) leaves the
horizontal axis as-is; True sets it to log
scale
=============== ==========================================
Setting *align* = 'edge' aligns bars by their bottom edges in
bottom, while *align* = 'center' interprets these values as
the *y* coordinates of the bar centers.
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
barh as the basis for stacked bar charts, or candlestick
plots.
other optional kwargs:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
- boxplot(self, x, notch=0, sym='b+', vert=1, whis=1.5, positions=None, widths=None)
- call signature::
boxplot(x, notch=0, sym='+', vert=1, whis=1.5,
positions=None, widths=None)
Make a box and whisker plot for each column of *x* or each
vector in sequence *x*. The box extends from the lower to
upper quartile values of the data, with a line at the median.
The whiskers extend from the box to show the range of the
data. Flier points are those past the end of the whiskers.
- *notch* = 0 (default) produces a rectangular box plot.
- *notch* = 1 will produce a notched box plot
*sym* (default 'b+') is the default symbol for flier points.
Enter an empty string ('') if you don't want to show fliers.
- *vert* = 1 (default) makes the boxes vertical.
- *vert* = 0 makes horizontal boxes. This seems goofy, but
that's how Matlab did it.
*whis* (default 1.5) defines the length of the whiskers as
a function of the inner quartile range. They extend to the
most extreme data point within ( ``whis*(75%-25%)`` ) data range.
*positions* (default 1,2,...,n) sets the horizontal positions of
the boxes. The ticks and limits are automatically set to match
the positions.
*widths* is either a scalar or a vector and sets the width of
each box. The default is 0.5, or ``0.15*(distance between extreme
positions)`` if that is smaller.
*x* is an array or a sequence of vectors.
Returns a list of the :class:`matplotlib.lines.Line2D`
instances added.
**Example:**
.. plot:: boxplot_demo.py
- broken_barh(self, xranges, yrange, **kwargs)
- call signature::
broken_barh(self, xranges, yrange, **kwargs)
A collection of horizontal bars spanning *yrange* with a sequence of
*xranges*.
Required arguments:
========= ==============================
Argument Description
========= ==============================
*xranges* sequence of (*xmin*, *xwidth*)
*yrange* sequence of (*ymin*, *ywidth*)
========= ==============================
kwargs are
:class:`matplotlib.collections.BrokenBarHCollection`
properties:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
these can either be a single argument, ie::
facecolors = 'black'
or a sequence of arguments for the various bars, ie::
facecolors = ('black', 'red', 'green')
**Example:**
.. plot:: ../mpl_examples/pylab_examples/broken_barh.py
- can_zoom(self)
- Return *True* if this axes support the zoom box
- cla(self)
- Clear the current axes
- clabel(self, CS, *args, **kwargs)
- call signature::
clabel(cs, **kwargs)
adds labels to line contours in *cs*, where *cs* is a
:class:`~matplotlib.contour.ContourSet` object returned by
contour.
::
clabel(cs, v, **kwargs)
only labels contours listed in *v*.
Optional keyword arguments:
*fontsize*:
See http://matplotlib.sf.net/fonts.html
.. TODO: Update this link to new fonts document
*colors*:
- if *None*, the color of each label matches the color of
the corresponding contour
- if one string color, e.g. *colors* = 'r' or *colors* =
'red', all labels will be plotted in this color
- if a tuple of matplotlib color args (string, float, rgb, etc),
different labels will be plotted in different colors in the order
specified
*inline*:
controls whether the underlying contour is removed or
not. Default is *True*.
*inline_spacing*:
space in pixels to leave on each side of label when
placing inline. Defaults to 5. This spacing will be
exact for labels at locations where the contour is
straight, less so for labels on curved contours.
*fmt*:
a format string for the label. Default is '%1.3f'
Alternatively, this can be a dictionary matching contour
levels with arbitrary strings to use for each contour level
(i.e., fmt[level]=string)
*manual*:
if *True*, contour labels will be placed manually using
mouse clicks. Click the first button near a contour to
add a label, click the second button (or potentially both
mouse buttons at once) to finish adding labels. The third
button can be used to remove the last label added, but
only if labels are not inline.
- clear(self)
- clear the axes
- cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x26b5ed8>, window=<function window_hanning at 0x26b5578>, noverlap=0, **kwargs)
- call signature::
cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, **kwargs)
cohere the coherence between *x* and *y*. Coherence is the normalized
cross spectral density:
.. math::
C_{xy} = \frac{|P_{xy}|^2}{P_{xx}*P_{yy}}
The return value is a tuple (*Cxy*, *f*), where *f* are the
frequencies of the coherence vector.
See the :meth:`psd` for a description of the optional parameters.
kwargs are applied to the lines.
References:
* Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the :class:`~matplotlib.lines.Line2D`
properties of the coherence plot:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/cohere_demo.py
- connect(self, s, func)
- Register observers to be notified when certain events occur. Register
with callback functions with the following signatures. The function
has the following signature::
func(ax) # where ax is the instance making the callback.
The following events can be connected to:
'xlim_changed','ylim_changed'
The connection id is is returned - you can use this with
disconnect to disconnect from the axes event
- contains(self, mouseevent)
- Test whether the mouse event occured in the axes.
Returns T/F, {}
- contour(self, *args, **kwargs)
- :func:`~matplotlib.pyplot.contour` and
:func:`~matplotlib.pyplot.contourf` draw contour lines and
filled contours, respectively. Except as noted, function
signatures and return values are the same for both versions.
:func:`~matplotlib.pyplot.contourf` differs from the Matlab
(TM) version in that it does not draw the polygon edges,
because the contouring engine yields simply connected regions
with branch cuts. To draw the edges, add line contours with
calls to :func:`~matplotlib.pyplot.contour`.
call signatures::
contour(Z)
make a contour plot of an array *Z*. The level values are chosen
automatically.
::
contour(X,Y,Z)
*X*, *Y* specify the (*x*, *y*) coordinates of the surface
::
contour(Z,N)
contour(X,Y,Z,N)
contour *N* automatically-chosen levels.
::
contour(Z,V)
contour(X,Y,Z,V)
draw contour lines at the values specified in sequence *V*
::
contourf(..., V)
fill the (len(*V*)-1) regions between the values in *V*
::
contour(Z, **kwargs)
Use keyword args to control colors, linewidth, origin, cmap ... see
below for more details.
*X*, *Y*, and *Z* must be arrays with the same dimensions.
*Z* may be a masked array, but filled contouring may not
handle internal masked regions correctly.
``C = contour(...)`` returns a
:class:`~matplotlib.contour.ContourSet` object.
Optional keyword arguments:
*colors*: [ None | string | (mpl_colors) ]
If *None*, the colormap specified by cmap will be used.
If a string, like 'r' or 'red', all levels will be plotted in this
color.
If a tuple of matplotlib color args (string, float, rgb, etc),
different levels will be plotted in different colors in the order
specified.
*alpha*: float
The alpha blending value
*cmap*: [ None | Colormap ]
A cm :class:`~matplotlib.cm.Colormap` instance or
*None*. If *cmap* is *None* and *colors* is *None*, a
default Colormap is used.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance for
scaling data values to colors. If *norm* is *None* and
*colors* is *None*, the default linear scaling is used.
*origin*: [ None | 'upper' | 'lower' | 'image' ]
If *None*, the first value of *Z* will correspond to the
lower left corner, location (0,0). If 'image', the rc
value for ``image.origin`` will be used.
This keyword is not active if *X* and *Y* are specified in
the call to contour.
*extent*: [ None | (x0,x1,y0,y1) ]
If *origin* is not *None*, then *extent* is interpreted as
in :func:`matplotlib.pyplot.imshow`: it gives the outer
pixel boundaries. In this case, the position of Z[0,0]
is the center of the pixel, not a corner. If *origin* is
*None*, then (*x0*, *y0*) is the position of Z[0,0], and
(*x1*, *y1*) is the position of Z[-1,-1].
This keyword is not active if *X* and *Y* are specified in
the call to contour.
*locator*: [ None | ticker.Locator subclass ]
If *locator* is None, the default
:class:`~matplotlib.ticker.MaxNLocator` is used. The
locator is used to determine the contour levels if they
are not given explicitly via the *V* argument.
*extend*: [ 'neither' | 'both' | 'min' | 'max' ]
Unless this is 'neither', contour levels are automatically
added to one or both ends of the range so that all data
are included. These added ranges are then mapped to the
special colormap values which default to the ends of the
colormap range, but can be set via
:meth:`matplotlib.cm.Colormap.set_under` and
:meth:`matplotlib.cm.Colormap.set_over` methods.
contour-only keyword arguments:
*linewidths*: [ None | number | tuple of numbers ]
If *linewidths* is *None*, the default width in
``lines.linewidth`` in ``matplotlibrc`` is used
If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with different
linewidths in the order specified
contourf-only keyword arguments:
*antialiased*: [ True | False ]
enable antialiasing
*nchunk*: [ 0 | integer ]
If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly *nchunk* by *nchunk*
points. This may never actually be advantageous, so this option may
be removed. Chunking introduces artifacts at the chunk boundaries
unless *antialiased* is *False*.
**Example:**
.. plot:: contour_demo.py
- contourf(self, *args, **kwargs)
- :func:`~matplotlib.pyplot.contour` and
:func:`~matplotlib.pyplot.contourf` draw contour lines and
filled contours, respectively. Except as noted, function
signatures and return values are the same for both versions.
:func:`~matplotlib.pyplot.contourf` differs from the Matlab
(TM) version in that it does not draw the polygon edges,
because the contouring engine yields simply connected regions
with branch cuts. To draw the edges, add line contours with
calls to :func:`~matplotlib.pyplot.contour`.
call signatures::
contour(Z)
make a contour plot of an array *Z*. The level values are chosen
automatically.
::
contour(X,Y,Z)
*X*, *Y* specify the (*x*, *y*) coordinates of the surface
::
contour(Z,N)
contour(X,Y,Z,N)
contour *N* automatically-chosen levels.
::
contour(Z,V)
contour(X,Y,Z,V)
draw contour lines at the values specified in sequence *V*
::
contourf(..., V)
fill the (len(*V*)-1) regions between the values in *V*
::
contour(Z, **kwargs)
Use keyword args to control colors, linewidth, origin, cmap ... see
below for more details.
*X*, *Y*, and *Z* must be arrays with the same dimensions.
*Z* may be a masked array, but filled contouring may not
handle internal masked regions correctly.
``C = contour(...)`` returns a
:class:`~matplotlib.contour.ContourSet` object.
Optional keyword arguments:
*colors*: [ None | string | (mpl_colors) ]
If *None*, the colormap specified by cmap will be used.
If a string, like 'r' or 'red', all levels will be plotted in this
color.
If a tuple of matplotlib color args (string, float, rgb, etc),
different levels will be plotted in different colors in the order
specified.
*alpha*: float
The alpha blending value
*cmap*: [ None | Colormap ]
A cm :class:`~matplotlib.cm.Colormap` instance or
*None*. If *cmap* is *None* and *colors* is *None*, a
default Colormap is used.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance for
scaling data values to colors. If *norm* is *None* and
*colors* is *None*, the default linear scaling is used.
*origin*: [ None | 'upper' | 'lower' | 'image' ]
If *None*, the first value of *Z* will correspond to the
lower left corner, location (0,0). If 'image', the rc
value for ``image.origin`` will be used.
This keyword is not active if *X* and *Y* are specified in
the call to contour.
*extent*: [ None | (x0,x1,y0,y1) ]
If *origin* is not *None*, then *extent* is interpreted as
in :func:`matplotlib.pyplot.imshow`: it gives the outer
pixel boundaries. In this case, the position of Z[0,0]
is the center of the pixel, not a corner. If *origin* is
*None*, then (*x0*, *y0*) is the position of Z[0,0], and
(*x1*, *y1*) is the position of Z[-1,-1].
This keyword is not active if *X* and *Y* are specified in
the call to contour.
*locator*: [ None | ticker.Locator subclass ]
If *locator* is None, the default
:class:`~matplotlib.ticker.MaxNLocator` is used. The
locator is used to determine the contour levels if they
are not given explicitly via the *V* argument.
*extend*: [ 'neither' | 'both' | 'min' | 'max' ]
Unless this is 'neither', contour levels are automatically
added to one or both ends of the range so that all data
are included. These added ranges are then mapped to the
special colormap values which default to the ends of the
colormap range, but can be set via
:meth:`matplotlib.cm.Colormap.set_under` and
:meth:`matplotlib.cm.Colormap.set_over` methods.
contour-only keyword arguments:
*linewidths*: [ None | number | tuple of numbers ]
If *linewidths* is *None*, the default width in
``lines.linewidth`` in ``matplotlibrc`` is used
If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with different
linewidths in the order specified
contourf-only keyword arguments:
*antialiased*: [ True | False ]
enable antialiasing
*nchunk*: [ 0 | integer ]
If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly *nchunk* by *nchunk*
points. This may never actually be advantageous, so this option may
be removed. Chunking introduces artifacts at the chunk boundaries
unless *antialiased* is *False*.
**Example:**
.. plot:: contour_demo.py
- csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x26b5ed8>, window=<function window_hanning at 0x26b5578>, noverlap=0, **kwargs)
- call signature::
csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=window_hanning, noverlap=0, **kwargs)
The cross spectral density :math:`P_{xy}` by Welches average
periodogram method. The vectors *x* and *y* are divided into
*NFFT* length segments. Each segment is detrended by function
*detrend* and windowed by function *window*. The product of
the direct FFTs of *x* and *y* are averaged over each segment
to compute :math:`P_{xy}`, with a scaling to correct for power
loss due to windowing.
See :meth:`psd` for a description of the optional parameters.
Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum
(complex valued), and :math:`10\log_{10}|P_{xy}|` is
plotted.
References:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the Line2D properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/csd_demo.py
- disconnect(self, cid)
- disconnect from the Axes event.
- drag_pan(self, button, key, x, y)
- Called when the mouse moves during a pan operation.
*button* is the mouse button number:
* 1: LEFT
* 2: MIDDLE
* 3: RIGHT
*key* is a "shift" key
*x*, *y* are the mouse coordinates in display coords.
.. note::
Intended to be overridden by new projection types.
- draw(self, renderer=None, inframe=False)
- Draw everything (plot lines, axes, labels)
- draw_artist(self, a)
- This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
- end_pan(self)
- Called when a pan operation completes (when the mouse button
is up.)
.. note::
Intended to be overridden by new projection types.
- errorbar(self, x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, **kwargs)
- call signature::
errorbar(x, y, yerr=None, xerr=None,
fmt='-', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)
Plot *x* versus *y* with error deltas in *yerr* and *xerr*.
Vertical errorbars are plotted if *yerr* is not *None*.
Horizontal errorbars are plotted if *xerr* is not *None*.
*x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a
single error bar at *x*, *y*.
Optional keyword arguments:
*xerr*/*yerr*: [ scalar | N, Nx1, Nx2 array-like ]
If a scalar number, len(N) array-like object, or an Nx1 array-like
object, errorbars are drawn +/- value.
If a rank-1, Nx2 Numpy array, errorbars are drawn at -column1 and
+column2
*fmt*: '-'
The plot format symbol for *y*. If *fmt* is *None*, just plot the
errorbars with no line symbols. This can be useful for creating a
bar plot with errorbars.
*ecolor*: [ None | mpl color ]
a matplotlib color arg which gives the color the errorbar lines; if
*None*, use the marker color.
*elinewidth*: scalar
the linewidth of the errorbar lines. If *None*, use the linewidth.
*capsize*: scalar
the size of the error bar caps in points
*barsabove*: [ True | False ]
if *True*, will plot the errorbars above the plot
symbols. Default is below.
*lolims*/*uplims*/*xlolims*/*xuplims*: [ False | True ]
These arguments can be used to indicate that a value gives
only upper/lower limits. In that case a caret symbol is
used to indicate this. lims-arguments may be of the same
type as *xerr* and *yerr*.
All other keyword arguments are passed on to the plot command for the
markers, so you can add additional key=value pairs to control the
errorbar markers. For example, this code makes big red squares with
thick green edges::
x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker='s',
mfc='red', mec='green', ms=20, mew=4)
where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
and *markeredgewith*.
valid kwargs for the marker properties are
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
Return value is a length 3 tuple. The first element is the
:class:`~matplotlib.lines.Line2D` instance for the *y* symbol
lines. The second element is a list of error bar cap lines,
the third element is a list of
:class:`~matplotlib.collections.LineCollection` instances for
the horizontal and vertical error ranges.
**Example:**
.. plot:: errorbar_demo.py
- fill(self, *args, **kwargs)
- call signature::
fill(*args, **kwargs)
Plot filled polygons. *args* is a variable length argument,
allowing for multiple *x*, *y* pairs with an optional color
format string; see :func:`~matplotlib.pyplot.plot` for details
on the argument parsing. For example, to plot a polygon with
vertices at *x*, *y* in blue.::
ax.fill(x,y, 'b' )
An arbitrary number of *x*, *y*, *color* groups can be specified::
ax.fill(x1, y1, 'g', x2, y2, 'r')
Return value is a list of :class:`~matplotlib.patches.Patch`
instances that were added.
The same color strings that :func:`~matplotlib.pyplot.plot`
supports are supported by the fill format string.
If you would like to fill below a curve, eg. shade a region
between 0 and *y* along *x*, use
:func:`~matplotlib.pylab.poly_between`, eg.::
xs, ys = poly_between(x, 0, y)
axes.fill(xs, ys, facecolor='red', alpha=0.5)
See :file:`examples/pylab_examples/fill_between.py` for more examples.
The *closed* kwarg will close the polygon when *True* (default).
kwargs control the Polygon properties:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/fill_demo.py
- format_coord(self, x, y)
- return a format string formatting the *x*, *y* coord
- format_xdata(self, x)
- Return *x* string formatted. This function will use the attribute
self.fmt_xdata if it is callable, else will fall back on the xaxis
major formatter
- format_ydata(self, y)
- Return y string formatted. This function will use the
:attr:`fmt_ydata` attribute if it is callable, else will fall
back on the yaxis major formatter
- get_adjustable(self)
- get_anchor(self)
- get_aspect(self)
- get_autoscale_on(self)
- Get whether autoscaling is applied on plot commands
- get_axis_bgcolor(self)
- Return the axis background color
- get_axisbelow(self)
- Get whether axis below is true or not
- get_child_artists(self)
- Return a list of artists the axes contains.
.. deprecated:: 0.98
- get_children(self)
- return a list of child artists
- get_cursor_props(self)
- return the cursor propertiess as a (*linewidth*, *color*)
tuple, where *linewidth* is a float and *color* is an RGBA
tuple
- get_data_ratio(self)
- Returns the aspect ratio of the raw data.
This method is intended to be overridden by new projection
types.
- get_frame(self)
- Return the axes Rectangle frame
- get_frame_on(self)
- Get whether the axes rectangle patch is drawn
- get_images(self)
- return a list of Axes images contained by the Axes
- get_legend(self)
- Return the legend.Legend instance, or None if no legend is defined
- get_lines(self)
- Return a list of lines contained by the Axes
- get_navigate(self)
- Get whether the axes responds to navigation commands
- get_navigate_mode(self)
- Get the navigation toolbar button status: 'PAN', 'ZOOM', or None
- get_position(self, original=False)
- Return the a copy of the axes rectangle as a Bbox
- get_renderer_cache(self)
- get_shared_x_axes(self)
- Return a copy of the shared axes Grouper object for x axes
- get_shared_y_axes(self)
- Return a copy of the shared axes Grouper object for y axes
- get_title(self)
- Get the title text string.
- get_window_extent(self, *args, **kwargs)
- get the axes bounding box in display space; *args* and
*kwargs* are empty
- get_xaxis(self)
- Return the XAxis instance
- get_xaxis_text1_transform(self, pad_points)
- Get the transformation used for drawing x-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in data coordinates
and the y-direction is in axis coordinates. Returns a
3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_xaxis_text2_transform(self, pad_points)
- Get the transformation used for drawing the secondary x-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in data
coordinates and the y-direction is in axis coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_xaxis_transform(self)
- Get the transformation used for drawing x-axis labels, ticks
and gridlines. The x-direction is in data coordinates and the
y-direction is in axis coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_xbound(self)
- Returns the x-axis numerical bounds where::
lowerBound < upperBound
- get_xgridlines(self)
- Get the x grid lines as a list of Line2D instances
- get_xlabel(self)
- Get the xlabel text string.
- get_xlim(self)
- Get the x-axis range [*xmin*, *xmax*]
- get_xmajorticklabels(self)
- Get the xtick labels as a list of Text instances
- get_xminorticklabels(self)
- Get the xtick labels as a list of Text instances
- get_xscale(self)
- get_xticklabels(self, minor=False)
- Get the xtick labels as a list of Text instances
- get_xticklines(self)
- Get the xtick lines as a list of Line2D instances
- get_xticks(self, minor=False)
- Return the x ticks as a list of locations
- get_yaxis(self)
- Return the YAxis instance
- get_yaxis_text1_transform(self, pad_points)
- Get the transformation used for drawing y-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in axis coordinates
and the y-direction is in data coordinates. Returns a 3-tuple
of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_yaxis_text2_transform(self, pad_points)
- Get the transformation used for drawing the secondary y-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in axis
coordinates and the y-direction is in data coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_yaxis_transform(self)
- Get the transformation used for drawing y-axis labels, ticks
and gridlines. The x-direction is in axis coordinates and the
y-direction is in data coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_ybound(self)
- Returns the y-axis numerical bounds in the form of lowerBound < upperBound
- get_ygridlines(self)
- Get the y grid lines as a list of Line2D instances
- get_ylabel(self)
- Get the ylabel text string.
- get_ylim(self)
- Get the y-axis range [*ymin*, *ymax*]
- get_ymajorticklabels(self)
- Get the xtick labels as a list of Text instances
- get_yminorticklabels(self)
- Get the xtick labels as a list of Text instances
- get_yscale(self)
- get_yticklabels(self, minor=False)
- Get the xtick labels as a list of Text instances
- get_yticklines(self)
- Get the ytick lines as a list of Line2D instances
- get_yticks(self, minor=False)
- Return the y ticks as a list of locations
- grid(self, b=None, **kwargs)
- call signature::
grid(self, b=None, **kwargs)
Set the axes grids on or off; *b* is a boolean
If *b* is *None* and ``len(kwargs)==0``, toggle the grid state. If
*kwargs* are supplied, it is assumed that you want a grid and *b*
is thus set to *True*
*kawrgs* are used to set the grid line properties, eg::
ax.grid(color='r', linestyle='-', linewidth=2)
Valid :class:`~matplotlib.lines.Line2D` kwargs are
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
- has_data(self)
- Return *True* if any artists have been added to axes.
This should not be used to determine whether the *dataLim*
need to be updated, and may not actually be useful for
anything.
- hexbin(self, x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors='none', reduce_C_function=<function mean at 0x1eebaa0>, **kwargs)
- call signature::
hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = 'linear', yscale = 'linear',
cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, edgecolors='none'
reduce_C_function = np.mean,
**kwargs)
Make a hexagonal binning plot of *x* versus *y*, where *x*,
*y* are 1-D sequences of the same length, *N*. If *C* is None
(the default), this is a histogram of the number of occurences
of the observations at (x[i],y[i]).
If *C* is specified, it specifies values at the coordinate
(x[i],y[i]). These values are accumulated for each hexagonal
bin and then reduced according to *reduce_C_function*, which
defaults to numpy's mean function (np.mean). (If *C* is
specified, it must also be a 1-D sequence of the same length
as *x* and *y*.)
*x*, *y* and/or *C* may be masked arrays, in which case only
unmasked points will be plotted.
Optional keyword arguments:
*gridsize*: [ 100 | integer ]
The number of hexagons in the *x*-direction, default is
100. The corresponding number of hexagons in the
*y*-direction is chosen such that the hexagons are
approximately regular. Alternatively, gridsize can be a
tuple with two elements specifying the number of hexagons
in the *x*-direction and the *y*-direction.
*bins*: [ None | 'log' | integer | sequence ]
If *None*, no binning is applied; the color of each hexagon
directly corresponds to its count value.
If 'log', use a logarithmic scale for the color
map. Internally, :math:`log_{10}(i+1)` is used to
determine the hexagon color.
If an integer, divide the counts in the specified number
of bins, and color the hexagons accordingly.
If a sequence of values, the values of the lower bound of
the bins to be used.
*xscale*: [ 'linear' | 'log' ]
Use a linear or log10 scale on the horizontal axis.
*scale*: [ 'linear' | 'log' ]
Use a linear or log10 scale on the vertical axis.
Other keyword arguments controlling color mapping and normalization
arguments:
*cmap*: [ None | Colormap ]
a :class:`matplotlib.cm.Colormap` instance. If *None*,
defaults to rc ``image.cmap``.
*norm*: [ None | Normalize ]
:class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1.
*vmin*/*vmax*: scalar
*vmin* and *vmax* are used in conjunction with *norm* to normalize
luminance data. If either are *None*, the min and max of the color
array *C* is used. Note if you pass a norm instance, your settings
for *vmin* and *vmax* will be ignored.
*alpha*: scalar
the alpha value for the patches
*linewidths*: [ None | scalar ]
If *None*, defaults to rc lines.linewidth. Note that this
is a tuple, and if you set the linewidths argument you
must set it as a sequence of floats, as required by
:class:`~matplotlib.collections.RegularPolyCollection`.
Other keyword arguments controlling the Collection properties:
*edgecolors*: [ None | mpl color | color sequence ]
If 'none', draws the edges in the same color as the fill color.
This is the default, as it avoids unsightly unpainted pixels
between the hexagons.
If *None*, draws the outlines in the default color.
If a matplotlib color arg or sequence of rgba tuples, draws the
outlines in the specified color.
Here are the standard descriptions of all the
:class:`~matplotlib.collections.Collection` kwargs:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
The return value is a
:class:`~matplotlib.collections.PolyCollection` instance; use
:meth:`~matplotlib.collection.PolyCollection.get_array` on
this :class:`~matplotlib.collections.PolyCollection` to get
the counts in each hexagon.
**Example:**
.. plot:: ../mpl_examples/pylab_examples/hexbin_demo.py
- hist(self, x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, **kwargs)
- call signature::
hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype='bar', align='mid',
orientation='vertical', rwidth=None, log=False, **kwargs)
Compute the histogram of *x*. The return value is a tuple
(*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*,
[*patches0*, *patches1*,...]) if the input contains multiple
data.
Keyword arguments:
*bins*:
either an integer number of bins or a sequence giving the
bins. *x* are the data to be binned. *x* can be an array or a
2D array with multiple data in its columns. Note, if *bins*
is an integer input argument=numbins, *bins* + 1 bin edges
will be returned, compatible with the semantics of
:func:`numpy.histogram` with the *new* = True argument.
Unequally spaced bins are supported if *bins* is a sequence.
*range*:
The lower and upper range of the bins. Lower and upper outliers
are ignored. If not provided, *range* is (x.min(), x.max()).
Range has no effect if *bins* is a sequence.
*normed*:
If *True*, the first element of the return tuple will
be the counts normalized to form a probability density, i.e.,
``n/(len(x)*dbin)``. In a probability density, the integral of
the histogram should be 1; you can verify that with a
trapezoidal integration of the probability density function::
pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))
*cumulative*:
If *True*, then a histogram is computed where each bin
gives the counts in that bin plus all bins for smaller values.
The last bin gives the total number of datapoints. If *normed*
is also *True* then the histogram is normalized such that the
last bin equals one. If *cumulative* evaluates to less than 0
(e.g. -1), the direction of accumulation is reversed. In this
case, if *normed* is also *True*, then the histogram is normalized
such that the first bin equals 1.
*histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ]
The type of histogram to draw.
- 'bar' is a traditional bar-type histogram
- 'barstacked' is a bar-type histogram where multiple
data are stacked on top of each other.
- 'step' generates a lineplot that is by default
unfilled
- 'stepfilled' generates a lineplot that this by default
filled.
*align*: ['left' | 'mid' | 'right' ]
Controls how the histogram is plotted.
- 'left': bars are centered on the left bin edges
- 'mid': bars are centered between the bin edges
- 'right': bars are centered on the right bin edges.
*orientation*: [ 'horizontal' | 'vertical' ]
If 'horizontal', :func:`~matplotlib.pyplot.barh` will be
used for bar-type histograms and the *bottom* kwarg will be
the left edges.
*rwidth*:
the relative width of the bars as a fraction of the bin
width. If *None*, automatically compute the width. Ignored
if *histtype* = 'step'.
*log*:
If *True*, the histogram axis will be set to a log scale.
If *log* is *True* and *x* is a 1D array, empty bins will
be filtered out and only the non-empty (*n*, *bins*,
*patches*) will be returned.
kwargs are used to update the properties of the hist
:class:`~matplotlib.patches.Rectangle` instances:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
You can use labels for your histogram, and only the first
:class:`~matplotlib.patches.Rectangle` gets the label (the
others get the magic string '_nolegend_'. This will make the
histograms work in the intuitive way for bar charts::
ax.hist(10+2*np.random.randn(1000), label='men')
ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5)
ax.legend()
**Example:**
.. plot:: ../mpl_examples/pylab_examples/histogram_demo.py
- hlines(self, y, xmin, xmax, colors='k', linestyles='solid', label='', **kwargs)
- call signature::
hlines(y, xmin, xmax, colors='k', linestyle='solid', **kwargs)
Plot horizontal lines at each *y* from *xmin* to *xmax*.
Returns the :class:`~matplotlib.collections.LineCollection`
that was added.
Required arguments:
*y*:
a 1-D numpy array or iterable.
*xmin* and *xmax*:
can be scalars or ``len(x)`` numpy arrays. If they are
scalars, then the respective values are constant, else the
widths of the lines are determined by *xmin* and *xmax*.
Optional keyword arguments:
*colors*:
a line collections color argument, either a single color
or a ``len(y)`` list of colors
*linestyle*:
[ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
**Example:**
.. plot:: ../mpl_examples/pylab_examples/hline_demo.py
- hold(self, b=None)
- call signature::
hold(b=None)
Set the hold state. If *hold* is *None* (default), toggle the
*hold* state. Else set the *hold* state to boolean value *b*.
Examples:
* toggle hold:
>>> hold()
* turn hold on:
>>> hold(True)
* turn hold off
>>> hold(False)
When hold is True, subsequent plot commands will be added to
the current axes. When hold is False, the current axes and
figure will be cleared on the next plot command
- imshow(self, X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, **kwargs)
- call signature::
imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)
Display the image in *X* to current axes. *X* may be a float
array, a uint8 array or a PIL image. If *X* is an array, *X*
can have the following shapes:
* MxN -- luminance (grayscale, float array only)
* MxNx3 -- RGB (float or uint8 array)
* MxNx4 -- RGBA (float or uint8 array)
The value for each component of MxNx3 and MxNx4 float arrays should be
in the range 0.0 to 1.0; MxN float arrays may be normalised.
An :class:`matplotlib.image.AxesImage` instance is returned.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance, eg. cm.jet.
If *None*, default to rc ``image.cmap`` value.
*cmap* is ignored when *X* has RGB(A) information
*aspect*: [ None | 'auto' | 'equal' | scalar ]
If 'auto', changes the image aspect ratio to match that of the axes
If 'equal', and *extent* is *None*, changes the axes
aspect ratio to match that of the image. If *extent* is
not *None*, the axes aspect ratio is changed to match that
of the extent.
If *None*, default to rc ``image.aspect`` value.
*interpolation*:
Acceptable values are *None*, 'nearest', 'bilinear', 'bicubic',
'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser',
'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc',
'lanczos', 'blackman'
If *interpolation* is *None*, default to rc
``image.interpolation``. See also the *filternorm* and
*filterrad* parameters
*norm*: [ None | Normalize ]
An :class:`matplotlib.colors.Normalize` instance; if
*None*, default is ``normalization()``. This scales
luminance -> 0-1
*norm* is only used for an MxN float array.
*vmin*/*vmax*: [ None | scalar ]
Used to scale a luminance image to 0-1. If either is
*None*, the min and max of the luminance values will be
used. Note if *norm* is not *None*, the settings for
*vmin* and *vmax* will be ignored.
*alpha*: scalar
The alpha blending value, between 0 (transparent) and 1 (opaque)
*origin*: [ None | 'upper' | 'lower' ]
Place the [0,0] index of the array in the upper left or lower left
corner of the axes. If *None*, default to rc ``image.origin``.
*extent*: [ None | scalars (left, right, bottom, top) ]
Eata values of the axes. The default assigns zero-based row,
column indices to the *x*, *y* centers of the pixels.
*shape*: [ None | scalars (columns, rows) ]
For raw buffer images
*filternorm*:
A parameter for the antigrain image resize filter. From the
antigrain documentation, if *filternorm* = 1, the filter normalizes
integer values and corrects the rounding errors. It doesn't do
anything with the source floating point values, it corrects only
integers according to the rule of 1.0 which means that any sum of
pixel weights must be equal to 1.0. So, the filter function must
produce a graph of the proper shape.
*filterrad*:
The filter radius for filters that have a radius
parameter, i.e. when interpolation is one of: 'sinc',
'lanczos' or 'blackman'
Additional kwargs are :class:`~matplotlib.artist.Artist` properties:
========= ===============================================
Property Description
========= ===============================================
alpha float
animated [True | False]
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
figure a :class:`matplotlib.figure.Figure` instance
label any string
lod [True | False]
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
========= ===============================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/image_demo.py
- in_axes(self, mouseevent)
- return *True* if the given *mouseevent* (in display coords)
is in the Axes
- invert_xaxis(self)
- Invert the x-axis.
- invert_yaxis(self)
- Invert the y-axis.
- ishold(self)
- return the HOLD status of the axes
- legend(self, *args, **kwargs)
- call signature::
legend(*args, **kwargs)
Place a legend on the current axes at location *loc*. Labels are a
sequence of strings and *loc* can be a string or an integer specifying
the legend location.
To make a legend with existing lines::
legend()
:meth:`legend` by itself will try and build a legend using the label
property of the lines/patches/collections. You can set the label of
a line by doing::
plot(x, y, label='my data')
or::
line.set_label('my data').
If label is set to '_nolegend_', the item will not be shown in
legend.
To automatically generate the legend from labels::
legend( ('label1', 'label2', 'label3') )
To make a legend for a list of lines and labels::
legend( (line1, line2, line3), ('label1', 'label2', 'label3') )
To make a legend at a given location, using a location argument::
legend( ('label1', 'label2', 'label3'), loc='upper left')
or::
legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc=2)
The location codes are
=============== =============
Location String Location Code
=============== =============
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10
=============== =============
If none of these are locations are suitable, loc can be a 2-tuple
giving x,y in axes coords, ie::
loc = 0, 1 # left top
loc = 0.5, 0.5 # center
Keyword arguments:
*isaxes*: [ True | False ]
Indicates that this is an axes legend
*numpoints*: integer
The number of points in the legend line, default is 4
*prop*: [ None | FontProperties ]
A :class:`matplotlib.font_manager.FontProperties`
instance, or *None* to use rc settings.
*pad*: [ None | scalar ]
The fractional whitespace inside the legend border, between 0 and 1.
If *None*, use rc settings.
*markerscale*: [ None | scalar ]
The relative size of legend markers vs. original. If *None*, use rc
settings.
*shadow*: [ None | False | True ]
If *True*, draw a shadow behind legend. If *None*, use rc settings.
*labelsep*: [ None | scalar ]
The vertical space between the legend entries. If *None*, use rc
settings.
*handlelen*: [ None | scalar ]
The length of the legend lines. If *None*, use rc settings.
*handletextsep*: [ None | scalar ]
The space between the legend line and legend text. If *None*, use rc
settings.
*axespad*: [ None | scalar ]
The border between the axes and legend edge. If *None*, use rc
settings.
**Example:**
.. plot:: ../mpl_examples/api/legend_demo.py
- loglog(self, *args, **kwargs)
- call signature::
loglog(*args, **kwargs)
Make a plot with log scaling on the *x* and *y* axis.
:func:`~matplotlib.pyplot.loglog` supports all the keyword
arguments of :func:`~matplotlib.pyplot.plot` and
:meth:`matplotlib.axes.Axes.set_xscale`/:meth:`matplotlib.axes.Axes.set_yscale`.
Notable keyword arguments:
*basex*/*basey*: scalar > 1
base of the *x*/*y* logarithm
*subsx*/*subsy*: [ None | sequence ]
the location of the minor *x*/*y* ticks; *None* defaults
to autosubs, which depend on the number of decades in the
plot; see
:meth:`matplotlib.axes.Axes.set_xscale`/:meth:`matplotlib.axes.Axes.set_yscale`
for details
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/log_demo.py
- matshow(self, Z, **kwargs)
- Plot a matrix or array as an image.
The matrix will be shown the way it would be printed,
with the first row at the top. Row and column numbering
is zero-based.
Argument:
*Z* anything that can be interpreted as a 2-D array
kwargs all are passed to :meth:`~matplotlib.axes.Axes.imshow`.
:meth:`matshow` sets defaults for *extent*, *origin*,
*interpolation*, and *aspect*; use care in overriding the
*extent* and *origin* kwargs, because they interact. (Also,
if you want to change them, you probably should be using
imshow directly in your own version of matshow.)
Returns: an :class:`matplotlib.image.AxesImage` instance.
- pcolor(self, *args, **kwargs)
- call signatures::
pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)
Create a pseudocolor plot of a 2-D array.
*C* is the array of color values.
*X* and *Y*, if given, specify the (*x*, *y*) coordinates of
the colored quadrilaterals; the quadrilateral for C[i,j] has
corners at::
(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).
Ideally the dimensions of *X* and *Y* should be one greater
than those of *C*; if the dimensions are the same, then the
last row and column of *C* will be ignored.
Note that the the column index corresponds to the
*x*-coordinate, and the row index corresponds to *y*; for
details, see the :ref:`Grid Orientation
<axes-pcolor-grid-orientation>` section below.
If either or both of *X* and *Y* are 1-D arrays or column vectors,
they will be expanded as needed into the appropriate 2-D arrays,
making a rectangular grid.
*X*, *Y* and *C* may be masked arrays. If either C[i, j], or one
of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j],
[i, j+1],[i+1, j+1]) is masked, nothing is plotted.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance. If *None*, use
rc settings.
norm: [ None | Normalize ]
An :class:`matplotlib.colors.Normalize` instance is used
to scale luminance data to 0,1. If *None*, defaults to
:func:`normalize`.
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If either are *None*, the min
and max of the color array *C* is used. If you pass a
*norm* instance, *vmin* and *vmax* will be ignored.
*shading*: [ 'flat' | 'faceted' ]
If 'faceted', a black grid is drawn around each rectangle; if
'flat', edges are not drawn. Default is 'flat', contrary to
Matlab(TM).
This kwarg is deprecated; please use 'edgecolors' instead:
* shading='flat' -- edgecolors='None'
* shading='faceted -- edgecolors='k'
*edgecolors*: [ None | 'None' | color | color sequence]
If *None*, the rc setting is used by default.
If 'None', edges will not be visible.
An mpl color or sequence of colors will set the edge color
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is a :class:`matplotlib.collection.Collection`
instance.
.. _axes-pcolor-grid-orientation:
The grid orientation follows the Matlab(TM) convention: an
array *C* with shape (*nrows*, *ncolumns*) is plotted with
the column number as *X* and the row number as *Y*, increasing
up; hence it is plotted the way the array would be printed,
except that the *Y* axis is reversed. That is, *C* is taken
as *C*(*y*, *x*).
Similarly for :func:`~matplotlib.pyplot.meshgrid`::
x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)
is equivalent to:
X = array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])
Y = array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2]])
so if you have::
C = rand( len(x), len(y))
then you need::
pcolor(X, Y, C.T)
or::
pcolor(C.T)
Matlab :func:`pcolor` always discards the last row and column
of *C*, but matplotlib displays the last row and column if *X* and
*Y* are not specified, or if *X* and *Y* have one more row and
column than *C*.
kwargs can be used to control the
:class:`~matplotlib.collection.PolyCollection` properties:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
- pcolorfast(self, *args, **kwargs)
- pseudocolor plot of a 2-D array
Experimental; this is a version of pcolor that
does not draw lines, that provides the fastest
possible rendering with the Agg backend, and that
can handle any quadrilateral grid.
Call signatures::
pcolor(C, **kwargs)
pcolor(xr, yr, C, **kwargs)
pcolor(x, y, C, **kwargs)
pcolor(X, Y, C, **kwargs)
C is the 2D array of color values corresponding to quadrilateral
cells. Let (nr, nc) be its shape. C may be a masked array.
``pcolor(C, **kwargs)`` is equivalent to
``pcolor([0,nc], [0,nr], C, **kwargs)``
*xr*, *yr* specify the ranges of *x* and *y* corresponding to the
rectangular region bounding *C*. If::
xr = [x0, x1]
and::
yr = [y0,y1]
then *x* goes from *x0* to *x1* as the second index of *C* goes
from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of
cell (0,0), and (*x1*, *y1*) is the outermost corner of cell
(*nr*-1, *nc*-1). All cells are rectangles of the same size.
This is the fastest version.
*x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively,
giving the x and y boundaries of the cells. Hence the cells are
rectangular but the grid may be nonuniform. The speed is
intermediate. (The grid is checked, and if found to be
uniform the fast version is used.)
*X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify
the (x,y) coordinates of the corners of the colored
quadrilaterals; the quadrilateral for C[i,j] has corners at
(X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]),
(X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular.
This is the most general, but the slowest to render. It may
produce faster and more compact output using ps, pdf, and
svg backends, however.
Note that the the column index corresponds to the x-coordinate,
and the row index corresponds to y; for details, see
the "Grid Orientation" section below.
Optional keyword arguments:
*cmap*: [ None | Colormap ]
A cm Colormap instance from cm. If None, use rc settings.
*norm*: [ None | Normalize ]
An mcolors.Normalize instance is used to scale luminance data to
0,1. If None, defaults to normalize()
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with norm to normalize
luminance data. If either are *None*, the min and max of the color
array *C* is used. If you pass a norm instance, *vmin* and *vmax*
will be *None*.
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is an image if a regular or rectangular grid
is specified, and a QuadMesh collection in the general
quadrilateral case.
- pcolormesh(self, *args, **kwargs)
- call signatures::
pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)
*C* may be a masked array, but *X* and *Y* may not. Masked
array support is implemented via *cmap* and *norm*; in
contrast, :func:`~matplotlib.pyplot.pcolor` simply does not
draw quadrilaterals with masked colors or vertices.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance. If None, use
rc settings.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1. If None, defaults to
:func:`normalize`.
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If either are *None*, the min
and max of the color array *C* is used. If you pass a
*norm* instance, *vmin* and *vmax* will be ignored.
*shading*: [ 'flat' | 'faceted' ]
If 'faceted', a black grid is drawn around each rectangle; if
'flat', edges are not drawn. Default is 'flat', contrary to
Matlab(TM).
This kwarg is deprecated; please use 'edgecolors' instead:
* shading='flat' -- edgecolors='None'
* shading='faceted -- edgecolors='k'
*edgecolors*: [ None | 'None' | color | color sequence]
If None, the rc setting is used by default.
If 'None', edges will not be visible.
An mpl color or sequence of colors will set the edge color
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is a :class:`matplotlib.collection.QuadMesh`
object.
See :func:`~matplotlib.pyplot.pcolor` for an explanation of
the grid orientation and the expansion of 1-D *X* and/or *Y*
to 2-D arrays.
kwargs can be used to control the
:class:`matplotlib.collections.QuadMesh`
properties:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
- pick(self, *args)
- call signature::
pick(mouseevent)
each child artist will fire a pick event if mouseevent is over
the artist and the artist has picker set
- pie(self, x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.59999999999999998, shadow=False, labeldistance=1.1000000000000001)
- call signature::
pie(x, explode=None, labels=None,
colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)
Make a pie chart of array *x*. The fractional area of each
wedge is given by x/sum(x). If sum(x) <= 1, then the values
of x give the fractional area directly and the array will not
be normalized.
Keyword arguments:
*explode*: [ None | len(x) sequence ]
If not *None*, is a len(*x*) array which specifies the
fraction of the radius with which to offset each wedge.
*colors*: [ None | color sequence ]
A sequence of matplotlib color args through which the pie chart
will cycle.
*labels*: [ None | len(x) sequence of strings ]
A sequence of strings providing the labels for each wedge
*autopct*: [ None | format string | format function ]
If not *None*, is a string or function used to label the
wedges with their numeric value. The label will be placed inside
the wedge. If it is a format string, the label will be ``fmt%pct``.
If it is a function, it will be called.
*pctdistance*: scalar
The ratio between the center of each pie slice and the
start of the text generated by *autopct*. Ignored if
*autopct* is *None*; default is 0.6.
*labeldistance*: scalar
The radial distance at which the pie labels are drawn
*shadow*: [ False | True ]
Draw a shadow beneath the pie.
The pie chart will probably look best if the figure and axes are
square. Eg.::
figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])
Return value:
If *autopct* is None, return the tuple (*patches*, *texts*):
- *patches* is a sequence of
:class:`matplotlib.patches.Wedge` instances
- *texts* is a list of the label
:class:`matplotlib.text.Text` instances.
If *autopct* is not *None*, return the tuple (*patches*,
*texts*, *autotexts*), where *patches* and *texts* are as
above, and *autotexts* is a list of
:class:`~matplotlib.text.Text` instances for the numeric
labels.
- plot(self, *args, **kwargs)
- Plot lines and/or markers to the
:class:`~matplotlib.axes.Axes`. *args* is a variable length
argument, allowing for multiple *x*, *y* pairs with an
optional format string. For example, each of the following is
legal::
plot(x, y) # plot x and y using the default line style and color
plot(x, y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses
If *x* and/or *y* is 2-dimensional, then the corresponding columns
will be plotted.
An arbitrary number of *x*, *y*, *fmt* groups can be
specified, as in::
a.plot(x1, y1, 'g^', x2, y2, 'g-')
Return value is a list of lines that were added.
The following line styles are supported::
- # solid line
-- # dashed line
-. # dash-dot line
: # dotted line
. # points
, # pixels
o # circle symbols
^ # triangle up symbols
v # triangle down symbols
< # triangle left symbols
> # triangle right symbols
s # square symbols
+ # plus symbols
x # cross symbols
D # diamond symbols
d # thin diamond symbols
1 # tripod down symbols
2 # tripod up symbols
3 # tripod left symbols
4 # tripod right symbols
h # hexagon symbols
H # rotated hexagon symbols
p # pentagon symbols
| # vertical line symbols
_ # horizontal line symbols
steps # use gnuplot style 'steps' # kwarg only
The following color abbreviations are supported::
b # blue
g # green
r # red
c # cyan
m # magenta
y # yellow
k # black
w # white
In addition, you can specify colors in many weird and
wonderful ways, including full names (``'green'``), hex
strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
grayscale intensities as a string (``'0.8'``). Of these, the
string specifications can be used in place of a ``fmt`` group,
but the tuple forms can be used only as ``kwargs``.
Line styles and colors are combined in a single format string, as in
``'bo'`` for blue circles.
The *kwargs* can be used to set line properties (any property that has
a ``set_*`` method). You can use this to set a line label (for auto
legends), linewidth, anitialising, marker face color, etc. Here is an
example::
plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs', label='line 2')
axis([0, 4, 0, 10])
legend()
If you make multiple lines with one plot command, the kwargs
apply to all those lines, e.g.::
plot(x1, y1, x2, y2, antialised=False)
Neither line will be antialiased.
The kwargs are :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
kwargs *scalex* and *scaley*, if defined, are passed on to
:meth:`~matplotlib.axes.Axes.autoscale_view` to determine
whether the *x* and *y* axes are autoscaled; the default is
*True*.
- plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs)
- call signature::
plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs)
Similar to the :func:`~matplotlib.pyplot.plot` command, except
the *x* or *y* (or both) data is considered to be dates, and the
axis is labeled accordingly.
*x* and/or *y* can be a sequence of dates represented as float days since
0001-01-01 UTC.
See :mod:`~matplotlib.dates` for helper functions
:func:`~matplotlib.dates.date2num`,
:func:`~matplotlib.dates.num2date` and
:func:`~matplotlib.dates.drange` for help on creating the
required floating point dates.
Keyword arguments:
*fmt*: string
The plot format string.
*tz*: [ None | timezone string ]
The time zone to use in labeling dates. If *None*, defaults to rc
value.
*xdate*: [ True | False ]
If *True*, the *x*-axis will be labeled with dates.
*ydate*: [ False | True ]
If *True*, the *y*-axis will be labeled with dates.
Note if you are using custom date tickers and formatters, it
may be necessary to set the formatters/locators after the call
to :meth:`plot_date` since :meth:`plot_date` will set the
default tick locator to
:class:`matplotlib.ticker.AutoDateLocator` (if the tick
locator is not already set to a
:class:`matplotlib.ticker.DateLocator` instance) and the
default tick formatter to
:class:`matplotlib.ticker.AutoDateFormatter` (if the tick
formatter is not already set to a
:class:`matplotlib.ticker.DateFormatter` instance).
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
- psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x26b5ed8>, window=<function window_hanning at 0x26b5578>, noverlap=0, **kwargs)
- call signature::
psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, **kwargs)
The power spectral density by Welches average periodogram
method. The vector *x* is divided into *NFFT* length
segments. Each segment is detrended by function *detrend* and
windowed by function *window*. *noperlap* gives the length of
the overlap between segments. The :math:`|\mathrm{fft}(i)|^2`
of each segment :math:`i` are averaged to compute *Pxx*, with a
scaling to correct for power loss due to windowing. *Fs* is the
sampling frequency.
Keyword arguments:
*NFFT*: integer
The length of the fft segment, must be a power of 2
*Fs*: integer
The sampling frequency.
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the yextents of the image to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
*detrend*:
The function applied to each segment before fft-ing,
designed to remove the mean or linear trend. Unlike in
matlab, where the *detrend* parameter is a vector, in
matplotlib is it a function. The :mod:`~matplotlib.pylab`
module defines :func:`~matplotlib.pylab.detrend_none`,
:func:`~matplotlib.pylab.detrend_mean`, and
:func:`~matplotlib.pylab.detrend_linear`, but you can use
a custom function as well.
*window*:
The function used to window the segments. *window* is a
function, unlike in matlab where it is a vector.
:mod:`~matplotlib.pylab` defines
:func:`~matplotlib.pylab.window_none`, and
:func:`~matplotlib.pylab.window_hanning`, but you can use
a custom function as well.
*noverlap*: integer
Gives the length of the overlap between segments.
Returns the tuple (*Pxx*, *freqs*).
For plotting, the power is plotted as
:math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
is returned.
References:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
- quiver(self, *args, **kw)
- Plot a 2-D field of arrows.
call signatures::
quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)
Arguments:
*X*, *Y*:
The x and y coordinates of the arrow locations
(default is tail of arrow; see *pivot* kwarg)
*U*, *V*:
give the *x* and *y* components of the arrow vectors
*C*:
an optional array used to map colors to the arrows
All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y*
are absent, they will be generated as a uniform grid. If *U* and *V*
are 2-D arrays but *X* and *Y* are 1-D, and if len(*X*) and len(*Y*)
match the column and row dimensions of *U*, then *X* and *Y* will be
expanded with :func:`numpy.meshgrid`.
*U*, *V*, *C* may be masked arrays, but masked *X*, ** are not
supported at present.
Keyword arguments:
*units*: ['width' | 'height' | 'dots' | 'inches' | 'x' | 'y' ]
arrow units; the arrow dimensions *except for length* are
in multiples of this unit.
* 'width' or 'height': the width or height of the axes
* 'dots' or 'inches': pixels or inches, based on the figure dpi
* 'x' or 'y': *X* or *Y* data units
In all cases the arrow aspect ratio is 1, so that if *U*==*V* the
angle of the arrow on the plot is 45 degrees CCW from the *x*-axis.
The arrows scale differently depending on the units, however.
For 'x' or 'y', the arrows get larger as one zooms in; for other
units, the arrow size is independent of the zoom state. For
'width or 'height', the arrow size increases with the width and
height of the axes, respectively, when the the window is resized;
for 'dots' or 'inches', resizing does not change the arrows.
*scale*: [ None | float ]
data units per arrow unit, e.g. m/s per plot width;
a smaller scale parameter makes the arrow longer.
If *None*, a simple autoscaling algorithm is used, based
on the average vector length and the number of vectors.
*width*:
shaft width in arrow units; default depends on choice of units,
above, and number of vectors; a typical starting value is about
0.005 times the width of the plot.
*headwidth*: scalar
head width as multiple of shaft width, default is 3
*headlength*: scalar
head length as multiple of shaft width, default is 5
*headaxislength*: scalar
head length at shaft intersection, default is 4.5
*minshaft*: scalar
length below which arrow scales, in units of head length. Do not
set this to less than 1, or small arrows will look terrible!
Default is 1
*minlength*: scalar
minimum length as a multiple of shaft width; if an arrow length
is less than this, plot a dot (hexagon) of this diameter instead.
Default is 1.
*pivot*: [ 'tail' | 'middle' | 'tip' ]
The part of the arrow that is at the grid point; the arrow
rotates about this point, hence the name *pivot*.
*color*: [ color | color sequence ]
This is a synonym for the
:class:`~matplotlib.collections.PolyCollection` facecolor kwarg.
If *C* has been set, *color* has no effect.
The defaults give a slightly swept-back arrow; to make the head a
triangle, make *headaxislength* the same as *headlength*. To make the
arrow more pointed, reduce *headwidth* or increase *headlength* and
*headaxislength*. To make the head smaller relative to the shaft,
scale down all the head parameters. You will probably do best to leave
minshaft alone.
linewidths and edgecolors can be used to customize the arrow
outlines. Additional :class:`~matplotlib.collections.PolyCollection`
keyword arguments:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
- quiverkey(self, *args, **kw)
- Add a key to a quiver plot.
call signature::
quiverkey(Q, X, Y, U, label, **kw)
Arguments:
*Q*:
The Quiver instance returned by a call to quiver.
*X*, *Y*:
The location of the key; additional explanation follows.
*U*:
The length of the key
*label*:
a string with the length and units of the key
Keyword arguments:
*coordinates* = [ 'axes' | 'figure' | 'data' | 'inches' ]
Coordinate system and units for *X*, *Y*: 'axes' and 'figure'
are normalized coordinate systems with 0,0 in the lower
left and 1,1 in the upper right; 'data' are the axes
data coordinates (used for the locations of the vectors
in the quiver plot itself); 'inches' is position in the
figure in inches, with 0,0 at the lower left corner.
*color*:
overrides face and edge colors from *Q*.
*labelpos* = [ 'N' | 'S' | 'E' | 'W' ]
Position the label above, below, to the right, to the left
of the arrow, respectively.
*labelsep*:
Distance in inches between the arrow and the label.
Default is 0.1
*labelcolor*:
defaults to default :class:`~matplotlib.text.Text` color.
*fontproperties*:
A dictionary with keyword arguments accepted by the
:class:`~matplotlib.font_manager.FontProperties` initializer:
*family*, *style*, *variant*, *size*, *weight*
Any additional keyword arguments are used to override vector
properties taken from *Q*.
The positioning of the key depends on *X*, *Y*, *coordinates*, and
*labelpos*. If *labelpos* is 'N' or 'S', *X*, *Y* give the position
of the middle of the key arrow. If *labelpos* is 'E', *X*, *Y*
positions the head, and if *labelpos* is 'W', *X*, *Y* positions the
tail; in either of these two cases, *X*, *Y* is somewhere in the
middle of the arrow+label key object.
- redraw_in_frame(self)
- This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
- relim(self)
- recompute the data limits based on current artists
- scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, faceted=True, verts=None, **kwargs)
- call signatures::
scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
verts=None, **kwargs)
Make a scatter plot of *x* versus *y*, where *x*, *y* are 1-D
sequences of the same length, *N*.
Keyword arguments:
*s*:
size in points^2. It is a scalar or an array of the same
length as *x* and *y*.
*c*:
a color. *c* can be a single color format string, or a
sequence of color specifications of length *N*, or a
sequence of *N* numbers to be mapped to colors using the
*cmap* and *norm* specified via kwargs (see below). Note
that *c* should not be a single numeric RGB or RGBA
sequence because that is indistinguishable from an array
of values to be colormapped. *c* can be a 2-D array in
which the rows are RGB or RGBA, however.
*marker*:
can be one of:
===== ==============
Value Description
===== ==============
's' square
'o' circle
'^' triangle up
'>' triangle right
'v' triangle down
'<' triangle left
'd' diamond
'p' pentagram
'h' hexagon
'8' octagon
'+' plus
'x' cross
===== ==============
The marker can also be a tuple (*numsides*, *style*,
*angle*), which will create a custom, regular symbol.
*numsides*:
the number of sides
*style*:
the style of the regular symbol:
===== =============================================
Value Description
===== =============================================
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (*numsides* and *angle* is ignored)
===== =============================================
*angle*:
the angle of rotation of the symbol
Finally, *marker* can be (*verts*, 0): *verts* is a
sequence of (*x*, *y*) vertices for a custom scatter
symbol. Alternatively, use the kwarg combination
*marker* = *None*, *verts* = *verts*.
Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in
which case all masks will be combined and only unmasked points
will be plotted.
Other keyword arguments: the color mapping and normalization
arguments will be used only if *c* is an array of floats.
*cmap*: [ None | Colormap ]
A :class:`matplotlib.colors.Colormap` instance. If *None*,
defaults to rc ``image.cmap``. *cmap* is only used if *c*
is an array of floats.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0, 1. If *None*, use the default
:func:`normalize`. *norm* is only used if *c* is an array
of floats.
*vmin*/*vmax*:
*vmin* and *vmax* are used in conjunction with norm to
normalize luminance data. If either are None, the min and
max of the color array *C* is used. Note if you pass a
*norm* instance, your settings for *vmin* and *vmax* will
be ignored.
*alpha*: 0 <= scalar <= 1
The alpha value for the patches
*linewidths*: [ None | scalar | sequence ]
If *None*, defaults to (lines.linewidth,). Note that this
is a tuple, and if you set the linewidths argument you
must set it as a sequence of floats, as required by
:class:`~matplotlib.collections.RegularPolyCollection`.
Optional kwargs control the
:class:`~matplotlib.collections.Collection` properties; in
particular:
*edgecolors*:
'none' to plot faces with no outlines
*facecolors*:
'none' to plot unfilled outlines
Here are the standard descriptions of all the
:class:`~matplotlib.collections.Collection` kwargs:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
A :class:`~matplotlib.collections.Collection` instance is
returned.
- semilogx(self, *args, **kwargs)
- call signature::
semilogx(*args, **kwargs)
Make a plot with log scaling on the *x* axis.
:func:`semilogx` supports all the keyword arguments of
:func:`~matplotlib.pyplot.plot` and
:meth:`matplotlib.axes.Axes.set_xscale`.
Notable keyword arguments:
*basex*: scalar > 1
base of the *x* logarithm
*subsx*: [ None | sequence ]
The location of the minor xticks; *None* defaults to
autosubs, which depend on the number of decades in the
plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for
details.
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
See :meth:`loglog` for example code and figure
- semilogy(self, *args, **kwargs)
- call signature::
semilogy(*args, **kwargs)
Make a plot with log scaling on the *y* axis.
:func:`semilogy` supports all the keyword arguments of
:func:`~matplotlib.pylab.plot` and
:meth:`matplotlib.axes.Axes.set_yscale`.
Notable keyword arguments:
*basey*: scalar > 1
Base of the *y* logarithm
*subsy*: [ None | sequence ]
The location of the minor yticks; *None* defaults to
autosubs, which depend on the number of decades in the
plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for
details.
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
See :meth:`loglog` for example code and figure
- set_adjustable(self, adjustable)
- ACCEPTS: [ 'box' | 'datalim' ]
- set_anchor(self, anchor)
- *anchor*
===== ============
value description
===== ============
'C' Center
'SW' bottom left
'S' bottom
'SE' bottom right
'E' right
'NE' top right
'N' top
'NW' top left
'W' left
===== ============
- set_aspect(self, aspect, adjustable=None, anchor=None)
- *aspect*
======== ================================================
value description
======== ================================================
'auto' automatic; fill position rectangle with data
'normal' same as 'auto'; deprecated
'equal' same scaling from data to plot units for x and y
num a circle will be stretched such that the height
is num times the width. aspect=1 is the same as
aspect='equal'.
======== ================================================
*adjustable*
========= ============================
value description
========= ============================
'box' change physical size of axes
'datalim' change xlim or ylim
========= ============================
*anchor*
===== =====================
value description
===== =====================
'C' centered
'SW' lower left corner
'S' middle of bottom edge
'SE' lower right corner
etc.
===== =====================
- set_autoscale_on(self, b)
- Set whether autoscaling is applied on plot commands
accepts: [ *True* | *False* ]
- set_axis_bgcolor(self, color)
- set the axes background color
ACCEPTS: any matplotlib color - see
:func:`~matplotlib.pyplot.colors`
- set_axis_off(self)
- turn off the axis
- set_axis_on(self)
- turn on the axis
- set_axisbelow(self, b)
- Set whether the axis ticks and gridlines are above or below most artists
ACCEPTS: [ *True* | *False* ]
- set_color_cycle(self, clist)
- Set the color cycle for any future plot commands on this Axes.
clist is a list of mpl color specifiers.
- set_cursor_props(self, *args)
- Set the cursor property as::
ax.set_cursor_props(linewidth, color)
or::
ax.set_cursor_props((linewidth, color))
ACCEPTS: a (*float*, *color*) tuple
- set_figure(self, fig)
- Set the class:`~matplotlib.axes.Axes` figure
accepts a class:`~matplotlib.figure.Figure` instance
- set_frame_on(self, b)
- Set whether the axes rectangle patch is drawn
ACCEPTS: [ *True* | *False* ]
- set_navigate(self, b)
- Set whether the axes responds to navigation toolbar commands
ACCEPTS: [ True | False ]
- set_navigate_mode(self, b)
- Set the navigation toolbar button status;
.. warning::
this is not a user-API function.
- set_position(self, pos, which='both')
- Set the axes position with::
pos = [left, bottom, width, height]
in relative 0,1 coords, or *pos* can be a
:class:`~matplotlib.transforms.Bbox`
There are two position variables: one which is ultimately
used, but which may be modified by :meth:`apply_aspect`, and a
second which is the starting point for :meth:`apply_aspect`.
Optional keyword arguments:
*which*
========== ====================
value description
========== ====================
'active' to change the first
'original' to change the second
'both' to change both
========== ====================
- set_title(self, label, fontdict=None, **kwargs)
- call signature::
set_title(label, fontdict=None, **kwargs):
Set the title for the axes. See the :meth:`text` for
information of how override and the optional args work
kwargs are Text properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: str
- set_xbound(self, lower=None, upper=None)
- Set the lower and upper numerical bounds of the x-axis.
This method will honor axes inversion regardless of parameter order.
- set_xlabel(self, xlabel, fontdict=None, **kwargs)
- call signature::
set_xlabel(xlabel, fontdict=None, **kwargs)
Set the label for the xaxis. See the :meth:`text` docstring
for information of how override and the optional args work.
Valid kwargs are Text properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: str
- set_xlim(self, xmin=None, xmax=None, emit=True, **kwargs)
- call signature::
set_xlim(self, *args, **kwargs)
Set the limits for the xaxis
Returns the current xlimits as a length 2 tuple: [*xmin*, *xmax*]
Examples::
set_xlim((valmin, valmax))
set_xlim(valmin, valmax)
set_xlim(xmin=1) # xmax unchanged
set_xlim(xmax=1) # xmin unchanged
Keyword arguments:
*ymin*: scalar
the min of the ylim
*ymax*: scalar
the max of the ylim
*emit*: [ True | False ]
notify observers of lim change
ACCEPTS: len(2) sequence of floats
- set_xscale(self, value, **kwargs)
- call signature::
set_xscale(value)
Set the scaling of the x-axis: 'linear' | 'log' | 'symlog'
ACCEPTS: ['linear' | 'log' | 'symlog']
Different kwargs are accepted, depending on the scale:
'linear'
'log'
*basex*/*basey*:
The base of the logarithm
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``
will place 10 logarithmically spaced minor ticks between
each major tick.
'symlog'
*basex*/*basey*:
The base of the logarithm
*linthreshx*/*linthreshy*:
The range (-*x*, *x*) within which the plot is linear (to
avoid having the plot go to infinity around zero).
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``
will place 10 logarithmically spaced minor ticks between
each major tick.
- set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs)
- call signature::
set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the xtick labels with list of strings *labels*. Return a
list of axis text instances.
*kwargs* set the :class:`~matplotlib.text.Text` properties.
Valid properties are
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: sequence of strings
- set_xticks(self, ticks, minor=False)
- Set the x ticks with list of *ticks*
ACCEPTS: sequence of floats
- set_ybound(self, lower=None, upper=None)
- Set the lower and upper numerical bounds of the y-axis.
This method will honor axes inversion regardless of parameter order.
- set_ylabel(self, ylabel, fontdict=None, **kwargs)
- call signature::
set_ylabel(ylabel, fontdict=None, **kwargs)
Set the label for the yaxis
See the :meth:`text` doctstring for information of how
override and the optional args work
Valid kwargs are Text properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: str
- set_ylim(self, ymin=None, ymax=None, emit=True, **kwargs)
- call signature::
set_ylim(self, *args, **kwargs):
Set the limits for the yaxis; v = [ymin, ymax]::
set_ylim((valmin, valmax))
set_ylim(valmin, valmax)
set_ylim(ymin=1) # ymax unchanged
set_ylim(ymax=1) # ymin unchanged
Keyword arguments:
*ymin*: scalar
the min of the ylim
*ymax*: scalar
the max of the ylim
*emit*: [ True | False ]
notify observers of lim change
Returns the current ylimits as a length 2 tuple
ACCEPTS: len(2) sequence of floats
- set_yscale(self, value, **kwargs)
- call signature::
set_yscale(value)
Set the scaling of the y-axis: 'linear' | 'log' | 'symlog'
ACCEPTS: ['linear' | 'log' | 'symlog']
Different kwargs are accepted, depending on the scale:
'linear'
'log'
*basex*/*basey*:
The base of the logarithm
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``
will place 10 logarithmically spaced minor ticks between
each major tick.
'symlog'
*basex*/*basey*:
The base of the logarithm
*linthreshx*/*linthreshy*:
The range (-*x*, *x*) within which the plot is linear (to
avoid having the plot go to infinity around zero).
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``
will place 10 logarithmically spaced minor ticks between
each major tick.
- set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs)
- call signature::
set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the ytick labels with list of strings *labels*. Return a list of
:class:`~matplotlib.text.Text` instances.
*kwargs* set :class:`~matplotlib.text.Text` properties for the labels.
Valid properties are
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: sequence of strings
- set_yticks(self, ticks, minor=False)
- Set the y ticks with list of *ticks*
ACCEPTS: sequence of floats
Keyword arguments:
*minor*: [ False | True ]
Sets the minor ticks if True
- specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x26b5ed8>, window=<function window_hanning at 0x26b5578>, noverlap=128, cmap=None, xextent=None)
- call signature::
specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window = mlab.window_hanning, noverlap=128,
cmap=None, xextent=None)
Compute a spectrogram of data in *x*. Data are split into
*NFFT* length segments and the PSD of each section is
computed. The windowing function *window* is applied to each
segment, and the amount of overlap of each segment is
specified with *noverlap*.
Keyword arguments:
*cmap*:
A :class:`matplotlib.cm.Colormap` instance; if *None* use
default determined by rc
*xextent*:
The image extent in the xaxes xextent=xmin, xmax
default 0, max(bins), 0, max(freqs) where bins is the return
value from mlab.specgram
See :meth:`~matplotlib.axes.Axes.psd` for information on the
other keyword arguments.
Return value is (*Pxx*, *freqs*, *bins*, *im*):
- *bins* are the time points the spectrogram is calculated over
- *freqs* is an array of frequencies
- *Pxx* is a len(times) x len(freqs) array of power
- *im* is a :class:`matplotlib.image.AxesImage` instance
Note: If *x* is real (i.e. non-complex), only the positive
spectrum is shown. If *x* is complex, both positive and
negative parts of the spectrum are shown.
- spy(self, Z, precision=None, marker=None, markersize=None, aspect='equal', **kwargs)
- call signature::
spy(Z, precision=None, marker=None, markersize=None,
aspect='equal', **kwargs)
``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*.
If *precision* is *None*, any non-zero value will be plotted;
else, values of :math:`|Z| > precision` will be plotted.
The array will be plotted as it would be printed, with
the first index (row) increasing down and the second
index (column) increasing to the right.
By default aspect is 'equal', so that each array element
occupies a square space; set the aspect kwarg to 'auto'
to allow the plot to fill the plot box, or to any scalar
number to specify the aspect ratio of an array element
directly.
Two plotting styles are available: image or marker. Both
are available for full arrays, but only the marker style
works for :class:`scipy.sparse.spmatrix` instances.
If *marker* and *markersize* are *None*, an image will be
returned and any remaining kwargs are passed to
:func:`~matplotlib.pyplot.imshow`; else, a
:class:`~matplotlib.lines.Line2D` object will be returned with
the value of marker determining the marker type, and any
remaining kwargs passed to the
:meth:`~matplotlib.axes.Axes.plot` method.
If *marker* and *markersize* are *None*, useful kwargs include:
* *cmap*
* *alpha*
See documentation for :func:`~matplotlib.pyplot.imshow` for details.
For controlling colors, e.g. cyan background and red marks,
use::
cmap = mcolors.ListedColormap(['c','r'])
If *marker* or *markersize* is not *None*, useful kwargs include:
* *marker*
* *markersize*
* *color*
See documentation for :func:`~matplotlib.pyplot.plot` for details.
Useful values for *marker* include:
* 's' square (default)
* 'o' circle
* '.' point
* ',' pixel
- start_pan(self, x, y, button)
- Called when a pan operation has started.
*x*, *y* are the mouse coordinates in display coords.
button is the mouse button number:
* 1: LEFT
* 2: MIDDLE
* 3: RIGHT
.. note::
Intended to be overridden by new projection types.
- stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-')
- call signature::
stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-')
A stem plot plots vertical lines (using *linefmt*) at each *x*
location from the baseline to *y*, and places a marker there
using *markerfmt*. A horizontal line at 0 is is plotted using
*basefmt*.
Return value is a tuple (*markerline*, *stemlines*,
*baseline*).
See `this document
<http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html>`_
for details and :file:`examples/pylab_examples/stem_plot.py` for a demo.
- step(self, x, y, *args, **kwargs)
- call signature::
step(x, y, *args, **kwargs)
Make a step plot. Additional keyword args to :func:`step` are the same
as those for :func:`~matplotlib.pyplot.plot`.
*x* and *y* must be 1-D sequences, and it is assumed, but not checked,
that *x* is uniformly increasing.
Keyword arguments:
*where*: [ 'pre' | 'post' | 'mid' ]
If 'pre', the interval from x[i] to x[i+1] has level y[i]
If 'post', that interval has level y[i+1]
If 'mid', the jumps in *y* occur half-way between the
*x*-values.
- table(self, **kwargs)
- call signature::
table(cellText=None, cellColours=None,
cellLoc='right', colWidths=None,
rowLabels=None, rowColours=None, rowLoc='left',
colLabels=None, colColours=None, colLoc='center',
loc='bottom', bbox=None):
Add a table to the current axes. Returns a
:class:`matplotlib.table.Table` instance. For finer grained
control over tables, use the :class:`~matplotlib.table.Table`
class and add it to the axes with
:meth:`~matplotlib.axes.Axes.add_table`.
Thanks to John Gill for providing the class and table.
kwargs control the :class:`~matplotlib.table.Table`
properties:
========= ===============================================
Property Description
========= ===============================================
alpha float
animated [True | False]
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
figure a :class:`matplotlib.figure.Figure` instance
fontsize a float in points
label any string
lod [True | False]
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
========= ===============================================
- text(self, x, y, s, fontdict=None, withdash=False, **kwargs)
- call signature::
text(x, y, s, fontdict=None, **kwargs)
Add text in string *s* to axis at location *x*, *y*, data
coordinates.
Keyword arguments:
*fontdict*:
A dictionary to override the default text properties.
If *fontdict* is *None*, the defaults are determined by your rc
parameters.
*withdash*: [ False | True ]
Creates a :class:`~matplotlib.text.TextWithDash` instance
instead of a :class:`~matplotlib.text.Text` instance.
Individual keyword arguments can be used to override any given
parameter::
text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords (0,0 is
lower-left and 1,1 is upper-right). The example below places
text in the center of the axes::
text(0.5, 0.5,'matplotlib',
horizontalalignment='center',
verticalalignment='center',
transform = ax.transAxes)
You can put a rectangular box around the text instance (eg. to
set a background color) by using the keyword *bbox*. *bbox* is
a dictionary of :class:`matplotlib.patches.Rectangle`
properties. For example::
text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
Valid kwargs are :class:`matplotlib.text.Text` properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
- ticklabel_format(self, **kwargs)
- Convenience method for manipulating the ScalarFormatter
used by default for linear axes.
Optional keyword arguments:
======= =====================================
Keyword Description
======= =====================================
*style* [ 'sci' (or 'scientific') | 'plain' ]
plain turns off scientific notation
*axis* [ 'x' | 'y' | 'both' ]
======= =====================================
Only the major ticks are affected.
If the method is called when the
:class:`~matplotlib.ticker.ScalarFormatter` is not the
:class:`~matplotlib.ticker.Formatter` being used, an
:exc:`AttributeError` will be raised with no additional error
message.
Additional capabilities and/or friendlier error checking may
be added.
- twinx(self)
- call signature::
ax = twinx()
create a twin of Axes for generating a plot with a sharex
x-axis but independent y axis. The y-axis of self will have
ticks on left and the returned axes will have ticks on the
right
- twiny(self)
- call signature::
ax = twiny()
create a twin of Axes for generating a plot with a shared
y-axis but independent x axis. The x-axis of self will have
ticks on bottom and the returned axes will have ticks on the
top
- update_datalim(self, xys)
- Update the data lim bbox with seq of xy tups or equiv. 2-D array
- update_datalim_bounds(self, bounds)
- Update the datalim to include the given
:class:`~matplotlib.transforms.Bbox` *bounds*
- update_datalim_numerix(self, x, y)
- Update the data lim bbox with seq of xy tups
- vlines(self, x, ymin, ymax, colors='k', linestyles='solid', label='', **kwargs)
- call signature::
vlines(x, ymin, ymax, color='k')
Plot vertical lines at each *x* from *ymin* to *ymax*. *ymin*
or *ymax* can be scalars or len(*x*) numpy arrays. If they are
scalars, then the respective values are constant, else the
heights of the lines are determined by *ymin* and *ymax*.
*colors* is a line collections color args, either a single color
or a len(*x*) list of colors
*linestyle* is one of [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
Returns the :class:`matplotlib.collections.LineCollection`
that was added.
kwargs are :class:`~matplotlib.collections.LineCollection` properties:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
segments unknown
transform unknown
verts unknown
visible [True | False]
zorder any number
============ ======================================================================
- xaxis_date(self, tz=None)
- Sets up x-axis ticks and labels that treat the x data as dates.
*tz* is the time zone to use in labeling dates. Defaults to rc value.
- xaxis_inverted(self)
- Returns True if the x-axis is inverted.
- xcorr(self, x, y, normed=False, detrend=<function detrend_none at 0x26b5ed8>, usevlines=False, maxlags=None, **kwargs)
- call signature::
xcorr(x, y, normed=False, detrend=mlab.detrend_none,
usevlines=False, **kwargs):
Plot the cross correlation between *x* and *y*. If *normed* =
*True*, normalize the data but the cross correlation at 0-th
lag. *x* and y are detrended by the *detrend* callable
(default no normalization). *x* and *y* must be equal length.
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length ``2*maxlags+1`` lag vector
- *c* is the ``2*maxlags+1`` auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :func:`~matplotlib.pyplot.plot`.
The default *linestyle* is *None* and the default *marker* is
'o', though these can be overridden with keyword args. The
cross correlation is performed with :func:`numpy.correlate`
with *mode* = 2.
If *usevlines* is *True*:
:func:`~matplotlib.pyplot.vlines`
rather than :func:`~matplotlib.pyplot.plot` is used to draw
vertical lines from the origin to the xcorr. Otherwise the
plotstyle is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties.
The return value is a tuple (*lags*, *c*, *linecol*, *b*)
where *linecol* is the
:class:`matplotlib.collections.LineCollection` instance and
*b* is the *x*-axis.
*maxlags* is a positive integer detailing the number of lags to show.
The default value of *None* will return all ``(2*len(x)-1)`` lags.
**Example:**
:func:`~matplotlib.pyplot.xcorr` above, and
:func:`~matplotlib.pyplot.acorr` below.
**Example:**
.. plot:: ../mpl_examples/pylab_examples/xcorr_demo.py
- yaxis_date(self, tz=None)
- Sets up y-axis ticks and labels that treat the y data as dates.
*tz* is the time zone to use in labeling dates. Defaults to rc value.
- yaxis_inverted(self)
- Returns True if the y-axis is inverted.
Data and other attributes defined here:
- name = 'rectilinear'
- x = 'symlog'
Methods inherited from matplotlib.artist.Artist:
- add_callback(self, func)
- convert_xunits(self, x)
- for artists in an axes, if the xaxis as units support,
convert *x* using xaxis unit type
- convert_yunits(self, y)
- for artists in an axes, if the yaxis as units support,
convert *y* using yaxis unit type
- findobj(self, match=None)
- pyplot signature:
findobj(o=gcf(), match=None)
recursively find all :class:matplotlib.artist.Artist instances
contained in self
*match* can be
- None: return all objects contained in artist (including artist)
- function with signature ``boolean = match(artist)`` used to filter matches
- class instance: eg Line2D. Only return artists of class type
.. plot:: ../mpl_examples/pylab_examples/findobj_demo.py
- get_alpha(self)
- Return the alpha value used for blending - not supported on all
backends
- get_animated(self)
- return the artist's animated state
- get_axes(self)
- return the axes instance the artist resides in, or *None*
- get_clip_box(self)
- Return artist clipbox
- get_clip_on(self)
- Return whether artist uses clipping
- get_clip_path(self)
- Return artist clip path
- get_contains(self)
- return the _contains test used by the artist, or *None* for default.
- get_figure(self)
- Return the :class:`~matplotlib.figure.Figure` instance the
artist belongs to.
- get_label(self)
- get_picker(self)
- return the Pickeration instance used by this artist
- get_transform(self)
- Return the :class:`~matplotlib.transforms.Transform`
instance used by this artist.
- get_transformed_clip_path_and_affine(self)
- Return the clip path with the non-affine part of its
transformation applied, and the remaining affine part of its
transformation.
- get_visible(self)
- return the artist's visiblity
- get_zorder(self)
- have_units(self)
- return *True* if units are set on the x or y axes
- hitlist(self, event)
- List the children of the artist which contain the mouse event
- is_figure_set(self)
- is_transform_set(self)
- Artist has transform explicity let
- pchanged(self)
- fire event when property changed
- pickable(self)
- return *True* if self is pickable
- remove(self)
- Remove the artist from the figure if possible. The effect
will not be visible until the figure is redrawn, e.g., with
:meth:`matplotlib.axes.Axes.draw_idle`. Call
:meth:`matplotlib.axes.Axes.relim` to update the axes limits
if desired.
Note: :meth:`~matplotlib.axes.Axes.relim` will not see
collections even if the collection was added to axes with
*autolim* = True.
Note: there is no support for removing the artist's legend entry.
- remove_callback(self, oid)
- set(self, **kwargs)
- A tkstyle set command, pass *kwargs* to set properties
- set_alpha(self, alpha)
- Set the alpha value used for blending - not supported on
all backends
ACCEPTS: float
- set_animated(self, b)
- set the artist's animation state
ACCEPTS: [True | False]
- set_axes(self, axes)
- set the axes instance in which the artist resides, if any
ACCEPTS: an axes instance
- set_clip_box(self, clipbox)
- Set the artist's clip Bbox
ACCEPTS: a :class:`matplotlib.transform.Bbox` instance
- set_clip_on(self, b)
- Set whether artist uses clipping
ACCEPTS: [True | False]
- set_clip_path(self, path, transform=None)
- Set the artist's clip path, which may be:
* a :class:`~matplotlib.patches.Patch` (or subclass) instance
* a :class:`~matplotlib.path.Path` instance, in which case
an optional :class:`~matplotlib.transforms.Transform`
instance may be provided, which will be applied to the
path before using it for clipping.
* *None*, to remove the clipping path
For efficiency, if the path happens to be an axis-aligned
rectangle, this method will set the clipping box to the
corresponding rectangle and set the clipping path to *None*.
ACCEPTS: a :class:`~matplotlib.path.Path` instance and a
:class:`~matplotlib.transforms.Transform` instance, a
:class:`~matplotlib.patches.Patch` instance, or *None*.
- set_contains(self, picker)
- Replace the contains test used by this artist. The new picker should
be a callable function which determines whether the artist is hit by the
mouse event::
hit, props = picker(artist, mouseevent)
If the mouse event is over the artist, return *hit=True* and *props*
is a dictionary of properties you want returned with the contains test.
- set_label(self, s)
- Set the line label to *s* for auto legend
ACCEPTS: any string
- set_lod(self, on)
- Set Level of Detail on or off. If on, the artists may examine
things like the pixel width of the axes and draw a subset of
their contents accordingly
ACCEPTS: [True | False]
- set_picker(self, picker)
- set the epsilon for picking used by this artist
*picker* can be one of the following:
* *None*: picking is disabled for this artist (default)
* A boolean: if *True* then picking will be enabled and the
artist will fire a pick event if the mouse event is over
the artist
* A float: if picker is a number it is interpreted as an
epsilon tolerance in points and the artist will fire
off an event if it's data is within epsilon of the mouse
event. For some artists like lines and patch collections,
the artist may provide additional data to the pick event
that is generated, e.g. the indices of the data within
epsilon of the pick event
* A function: if picker is callable, it is a user supplied
function which determines whether the artist is hit by the
mouse event::
hit, props = picker(artist, mouseevent)
to determine the hit test. if the mouse event is over the
artist, return *hit=True* and props is a dictionary of
properties you want added to the PickEvent attributes.
ACCEPTS: [None|float|boolean|callable]
- set_transform(self, t)
- Set the :class:`~matplotlib.transforms.Transform` instance
used by this artist.
- set_visible(self, b)
- set the artist's visiblity
ACCEPTS: [True | False]
- set_zorder(self, level)
- Set the zorder for the artist
ACCEPTS: any number
- update(self, props)
- update_from(self, other)
- Copy properties from *other* to *self*.
Data descriptors inherited from matplotlib.artist.Artist:
- __dict__
- dictionary for instance variables (if defined)
- __weakref__
- list of weak references to the object (if defined)
Data and other attributes inherited from matplotlib.artist.Artist:
- aname = 'Artist'
- zorder = 0
|
Subplot = class AxesSubplot(SubplotBase, Axes) |
| |
- Method resolution order:
- AxesSubplot
- SubplotBase
- Axes
- matplotlib.artist.Artist
- __builtin__.object
Methods inherited from SubplotBase:
- __init__(self, fig, *args, **kwargs)
- fig is a figure instance
args is numRows, numCols, plotNum
where the array of subplots in the figure has dimensions
numRows, numCols, and where plotNum is the number of the
subplot being created. plotNum starts at 1 in the upper
right corner and increases to the right.
If numRows<=numCols<=plotNum<10, args can be the decimal
integer numRows*100 + numCols*10 + plotNum.
- change_geometry(self, numrows, numcols, num)
- change subplot geometry, eg from 1,1,1 to 2,2,3
- get_geometry(self)
- get the subplot geometry, eg 2,2,3
- is_first_col(self)
- is_first_row(self)
- is_last_col(self)
- is_last_row(self)
- label_outer(self)
- set the visible property on ticklabels so xticklabels are
visible only if the subplot is in the last row and yticklabels
are visible only if the subplot is in the first column
- update_params(self)
- update the subplot position from fig.subplotpars
Methods inherited from Axes:
- __str__(self)
- acorr(self, x, **kwargs)
- call signature::
acorr(x, normed=False, detrend=mlab.detrend_none, usevlines=False,
maxlags=None, **kwargs)
Plot the autocorrelation of *x*. If *normed* = *True*,
normalize the data but the autocorrelation at 0-th lag. *x* is
detrended by the *detrend* callable (default no normalization).
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length 2*maxlags+1 lag vector
- *c* is the 2*maxlags+1 auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :meth:`plot`
The default *linestyle* is None and the default *marker* is
``'o'``, though these can be overridden with keyword args.
The cross correlation is performed with :func:`numpy.correlate` with
*mode* = 2.
If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines`
rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw
vertical lines from the origin to the acorr. Otherwise, the
plot style is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties. The return
value is a tuple (*lags*, *c*, *linecol*, *b*) where
- *linecol* is the
:class:`~matplotlib.collections.LineCollection`
- *b* is the *x*-axis.
*maxlags* is a positive integer detailing the number of lags
to show. The default value of *None* will return all
``(2*len(x)-1)`` lags.
See the respective :meth:`~matplotlib.axes.Axes.plot` or
:meth:`~matplotlib.axes.Axes.vlines` functions for
documentation on valid kwargs.
**Example:**
:func:`~matplotlib.pyplot.xcorr` above, and
:func:`~matplotlib.pyplot.acorr` below.
**Example:**
.. plot:: ../mpl_examples/pylab_examples/xcorr_demo.py
- add_artist(self, a)
- Add any :class:`~matplotlib.artist.Artist` to the axes
- add_collection(self, collection, autolim=True)
- add a :class:`~matplotlib.collections.Collection` instance
to the axes
- add_line(self, line)
- Add a :class:`~matplotlib.lines.Line2D` to the list of plot
lines
- add_patch(self, p)
- Add a :class:`~matplotlib.patches.Patch` *p* to the list of
axes patches; the clipbox will be set to the Axes clipping
box. If the transform is not set, it will be set to
:attr:`transData`.
- add_table(self, tab)
- Add a :class:`~matplotlib.tables.Table` instance to the
list of axes tables
- annotate(self, *args, **kwargs)
- call signature::
annotate(s, xy, xytext=None, xycoords='data',
textcoords='data', arrowprops=None, **kwargs)
Keyword arguments:
Annotate the *x*, *y* point *xy* with text *s* at *x*, *y*
location *xytext*. (If *xytext* = *None*, defaults to *xy*,
and if *textcoords* = *None*, defaults to *xycoords*).
*arrowprops*, if not *None*, is a dictionary of line properties
(see :class:`matplotlib.lines.Line2D`) for the arrow that connects
annotation to the point. Valid keys are
========= ===========================================================
Key Description
========= ===========================================================
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
headwidth the width of the base of the arrow head in points
shrink oftentimes it is convenient to have the arrowtip
and base a bit away from the text and point being
annotated. If *d* is the distance between the text and
annotated point, shrink will shorten the arrow so the tip
and base are shink percent of the distance *d* away from the
endpoints. ie, ``shrink=0.05 is 5%``
? any key for :class:`matplotlib.patches.polygon`
========= ===========================================================
*xycoords* and *textcoords* are strings that indicate the
coordinates of *xy* and *xytext*.
================= ===================================================
Property Description
================= ===================================================
'figure points' points from the lower left corner of the figure
'figure pixels' pixels from the lower left corner of the figure
'figure fraction' 0,0 is lower left of figure and 1,1 is upper, right
'axes points' points from lower left corner of axes
'axes pixels' pixels from lower left corner of axes
'axes fraction' 0,1 is lower left of axes and 1,1 is upper right
'data' use the coordinate system of the object being
annotated (default)
'offset points' Specify an offset (in points) from the *xy* value
'polar' you can specify *theta*, *r* for the annotation,
even in cartesian plots. Note that if you
are using a polar axes, you do not need
to specify polar for the coordinate
system since that is the native "data" coordinate
system.
================= ===================================================
If a 'points' or 'pixels' option is specified, values will be
added to the bottom-left and if negative, values will be
subtracted from the top-right. Eg::
# 10 points to the right of the left border of the axes and
# 5 points below the top border
xy=(10,-5), xycoords='axes points'
Additional kwargs are Text properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
- apply_aspect(self, position=None)
- Use :meth:`_aspect` and :meth:`_adjustable` to modify the
axes box or the view limits.
- arrow(self, x, y, dx, dy, **kwargs)
- call signature::
arrow(x, y, dx, dy, **kwargs)
Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*,
*y* + *dy*).
Optional kwargs control the arrow properties:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/arrow_demo.py
- autoscale_view(self, tight=False, scalex=True, scaley=True)
- autoscale the view limits using the data limits. You can
selectively autoscale only a single axis, eg, the xaxis by
setting *scaley* to *False*. The autoscaling preserves any
axis direction reversal that has already been done.
- axhline(self, y=0, xmin=0, xmax=1, **kwargs)
- call signature::
axhline(y=0, xmin=0, xmax=1, **kwargs)
Axis Horizontal Line
Draw a horizontal line at *y* from *xmin* to *xmax*. With the
default values of *xmin* = 0 and *xmax* = 1, this line will
always span the horizontal extent of the axes, regardless of
the xlim settings, even if you change them, eg. with the
:meth:`set_xlim` command. That is, the horizontal extent is
in axes coords: 0=left, 0.5=middle, 1.0=right but the *y*
location is in data coordinates.
Return value is the :class:`~matplotlib.lines.Line2D`
instance. kwargs are the same as kwargs to plot, and can be
used to control the line properties. Eg.,
* draw a thick red hline at *y* = 0 that spans the xrange
>>> axhline(linewidth=4, color='r')
* draw a default hline at *y* = 1 that spans the xrange
>>> axhline(y=1)
* draw a default hline at *y* = .5 that spans the the middle half of
the xrange
>>> axhline(y=.5, xmin=0.25, xmax=0.75)
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
See :meth:`axhspan` for example plot and source code
- axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs)
- call signature::
axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
Axis Horizontal Span.
*y* coords are in data units and *x* coords are in axes (relative
0-1) units.
Draw a horizontal span (rectangle) from *ymin* to *ymax*.
With the default values of *xmin* = 0 and *xmax* = 1, this
always span the xrange, regardless of the xlim settings, even
if you change them, eg. with the :meth:`set_xlim` command.
That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the *y* location is in data
coordinates.
Return value is a :class:`matplotlib.patches.Polygon`
instance.
Examples:
* draw a gray rectangle from *y* = 0.25-0.75 that spans the
horizontal extent of the axes
>>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
Valid kwargs are :class:`~matplotlib.patches.Polygon` properties:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/axhspan_demo.py
- axis(self, *v, **kwargs)
- Convenience method for manipulating the x and y view limits
and the aspect ratio of the plot.
*kwargs* are passed on to :meth:`set_xlim` and
:meth:`set_ylim`
- axvline(self, x=0, ymin=0, ymax=1, **kwargs)
- call signature::
axvline(x=0, ymin=0, ymax=1, **kwargs)
Axis Vertical Line
Draw a vertical line at *x* from *ymin* to *ymax*. With the
default values of *ymin* = 0 and *ymax* = 1, this line will
always span the vertical extent of the axes, regardless of the
xlim settings, even if you change them, eg. with the
:meth:`set_xlim` command. That is, the vertical extent is in
axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location
is in data coordinates.
Return value is the :class:`~matplotlib.lines.Line2D`
instance. kwargs are the same as kwargs to plot, and can be
used to control the line properties. Eg.,
* draw a thick red vline at *x* = 0 that spans the yrange
>>> axvline(linewidth=4, color='r')
* draw a default vline at *x* = 1 that spans the yrange
>>> axvline(x=1)
* draw a default vline at *x* = .5 that spans the the middle half of
the yrange
>>> axvline(x=.5, ymin=0.25, ymax=0.75)
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
See :meth:`axhspan` for example plot and source code
- axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs)
- call signature::
axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
Axis Vertical Span.
*x* coords are in data units and *y* coords are in axes (relative
0-1) units.
Draw a vertical span (rectangle) from *xmin* to *xmax*. With
the default values of *ymin* = 0 and *ymax* = 1, this always
span the yrange, regardless of the ylim settings, even if you
change them, eg. with the :meth:`set_ylim` command. That is,
the vertical extent is in axes coords: 0=bottom, 0.5=middle,
1.0=top but the *y* location is in data coordinates.
Return value is the :class:`matplotlib.patches.Polygon`
instance.
Examples:
* draw a vertical green translucent rectangle from x=1.25 to 1.55 that
spans the yrange of the axes
>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
Valid kwargs are :class:`~matplotlib.patches.Polygon`
properties:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
See :meth:`axhspan` for example plot and source code
- bar(self, left, height, width=0.80000000000000004, bottom=None, color=None, edgecolor=None, linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align='edge', orientation='vertical', log=False, **kwargs)
- call signature::
bar(left, height, width=0.8, bottom=0,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align='edge', orientation='vertical', log=False)
Make a bar plot with rectangles bounded by:
*left*, *left* + *width*, *bottom*, *bottom* + *height*
(left, right, bottom and top edges)
*left*, *height*, *width*, and *bottom* can be either scalars
or sequences
Return value is a list of
:class:`matplotlib.patches.Rectangle` instances.
Required arguments:
======== ===============================================
Argument Description
======== ===============================================
*left* the x coordinates of the left sides of the bars
*height* the heights of the bars
======== ===============================================
Optional keyword arguments:
=============== ==========================================
Keyword Description
=============== ==========================================
*width* the widths of the bars
*bottom* the y coordinates of the bottom edges of
the bars
*color* the colors of the bars
*edgecolor* the colors of the bar edges
*linewidth* width of bar edges; None means use default
linewidth; 0 means don't draw edges.
*xerr* if not None, will be used to generate
errorbars on the bar chart
*yerr* if not None, will be used to generate
errorbars on the bar chart
*ecolor* specifies the color of any errorbar
*capsize* (default 3) determines the length in
points of the error bar caps
*align* 'edge' (default) | 'center'
*orientation* 'vertical' | 'horizontal'
*log* [False|True] False (default) leaves the
orientation axis as-is; True sets it to
log scale
=============== ==========================================
For vertical bars, *align* = 'edge' aligns bars by their left
edges in left, while *align* = 'center' interprets these
values as the *x* coordinates of the bar centers. For
horizontal bars, *align* = 'edge' aligns bars by their bottom
edges in bottom, while *align* = 'center' interprets these
values as the *y* coordinates of the bar centers.
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
bar as the basis for stacked bar charts, or candlestick plots.
Other optional kwargs:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
**Example:** A stacked bar chart.
.. plot:: ../mpl_examples/pylab_examples/bar_stacked.py
- barbs(self, *args, **kw)
- Plot a 2-D field of barbs.
call signatures::
barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)
Arguments:
*X*, *Y*:
The x and y coordinates of the barb locations
(default is head of barb; see *pivot* kwarg)
*U*, *V*:
give the *x* and *y* components of the barb shaft
*C*:
an optional array used to map colors to the barbs
All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y*
are absent, they will be generated as a uniform grid. If *U* and *V*
are 2-D arrays but *X* and *Y* are 1-D, and if len(*X*) and len(*Y*)
match the column and row dimensions of *U*, then *X* and *Y* will be
expanded with :func:`numpy.meshgrid`.
*U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not
supported at present.
Keyword arguments:
*length*:
Length of the barb in points; the other parts of the barb
are scaled against this.
Default is 9
*pivot*: [ 'tip' | 'middle' ]
The part of the arrow that is at the grid point; the arrow
rotates about this point, hence the name *pivot*.
Default is 'tip'
*barbcolor*: [ color | color sequence ]
Specifies the color all parts of the barb except any flags.
This parameter is analagous to the *edgecolor* parameter
for polygons, which can be used instead. However this parameter
will override facecolor.
*flagcolor*: [ color | color sequence ]
Specifies the color of any flags on the barb.
This parameter is analagous to the *facecolor* parameter
for polygons, which can be used instead. However this parameter
will override facecolor. If this is not set (and *C* has not either)
then *flagcolor* will be set to match *barbcolor* so that the barb
has a uniform color. If *C* has been set, *flagcolor* has no effect.
*sizes*:
A dictionary of coefficients specifying the ratio of a given feature
to the length of the barb. Only those values one wishes to override
need to be included. These features include:
'spacing' - space between features (flags, full/half barbs)
'height' - height (distance from shaft to top) of a flag or full barb
'width' - width of a flag, twice the width of a full barb
'emptybarb' - radius of the circle used for low magnitudes
*fill_empty*:
A flag on whether the empty barbs (circles) that are drawn should be filled
with the flag color. If they are not filled, they will be drawn such that
no color is applied to the center.
Default is False
*rounding*:
A flag to indicate whether the vector magnitude should be rounded when
allocating barb components. If True, the magnitude is rounded to the
nearest multiple of the half-barb increment. If False, the magnitude
is simply truncated to the next lowest multiple.
Default is True
*barb_increments*:
A dictionary of increments specifying values to associate with different
parts of the barb. Only those values one wishes to override need to be
included.
'half' - half barbs (Default is 5)
'full' - full barbs (Default is 10)
'flag' - flags (default is 50)
*flip_barb*:
Either a single boolean flag or an array of booleans. Single boolean
indicates whether the lines and flags should point opposite to normal
for all barbs. An array (which should be the same size as the other
data arrays) indicates whether to flip for each individual barb.
Normal behavior is for the barbs and lines to point right (comes from
wind barbs having these features point towards low pressure in the
Northern Hemisphere.)
Default is False
Barbs are traditionally used in meteorology as a way to plot the speed
and direction of wind observations, but can technically be used to plot
any two dimensional vector quantity. As opposed to arrows, which give
vector magnitude by the length of the arrow, the barbs give more quantitative
information about the vector magnitude by putting slanted lines or a triangle
for various increments in magnitude, as show schematically below:
/\ / \ / \ \ / \ \ ------------------------------
The largest increment is given by a triangle (or "flag"). After those come full
lines (barbs). The smallest increment is a half line. There is only, of
course, ever at most 1 half line. If the magnitude is small and only needs a
single half-line and no full lines or triangles, the half-line is offset from
the end of the barb so that it can be easily distinguished from barbs with a
single full line. The magnitude for the barb shown above would nominally be
65, using the standard increments of 50, 10, and 5.
linewidths and edgecolors can be used to customize the barb.
Additional :class:`~matplotlib.collections.PolyCollection`
keyword arguments:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
- barh(self, bottom, width, height=0.80000000000000004, left=None, **kwargs)
- call signature::
barh(bottom, width, height=0.8, left=0, **kwargs)
Make a horizontal bar plot with rectangles bounded by:
*left*, *left* + *width*, *bottom*, *bottom* + *height*
(left, right, bottom and top edges)
*bottom*, *width*, *height*, and *left* can be either scalars
or sequences
Return value is a list of
:class:`matplotlib.patches.Rectangle` instances.
Required arguments:
======== ======================================================
Argument Description
======== ======================================================
*bottom* the vertical positions of the bottom edges of the bars
*width* the lengths of the bars
======== ======================================================
Optional keyword arguments:
=============== ==========================================
Keyword Description
=============== ==========================================
*height* the heights (thicknesses) of the bars
*left* the x coordinates of the left edges of the
bars
*color* the colors of the bars
*edgecolor* the colors of the bar edges
*linewidth* width of bar edges; None means use default
linewidth; 0 means don't draw edges.
*xerr* if not None, will be used to generate
errorbars on the bar chart
*yerr* if not None, will be used to generate
errorbars on the bar chart
*ecolor* specifies the color of any errorbar
*capsize* (default 3) determines the length in
points of the error bar caps
*align* 'edge' (default) | 'center'
*log* [False|True] False (default) leaves the
horizontal axis as-is; True sets it to log
scale
=============== ==========================================
Setting *align* = 'edge' aligns bars by their bottom edges in
bottom, while *align* = 'center' interprets these values as
the *y* coordinates of the bar centers.
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
barh as the basis for stacked bar charts, or candlestick
plots.
other optional kwargs:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
- boxplot(self, x, notch=0, sym='b+', vert=1, whis=1.5, positions=None, widths=None)
- call signature::
boxplot(x, notch=0, sym='+', vert=1, whis=1.5,
positions=None, widths=None)
Make a box and whisker plot for each column of *x* or each
vector in sequence *x*. The box extends from the lower to
upper quartile values of the data, with a line at the median.
The whiskers extend from the box to show the range of the
data. Flier points are those past the end of the whiskers.
- *notch* = 0 (default) produces a rectangular box plot.
- *notch* = 1 will produce a notched box plot
*sym* (default 'b+') is the default symbol for flier points.
Enter an empty string ('') if you don't want to show fliers.
- *vert* = 1 (default) makes the boxes vertical.
- *vert* = 0 makes horizontal boxes. This seems goofy, but
that's how Matlab did it.
*whis* (default 1.5) defines the length of the whiskers as
a function of the inner quartile range. They extend to the
most extreme data point within ( ``whis*(75%-25%)`` ) data range.
*positions* (default 1,2,...,n) sets the horizontal positions of
the boxes. The ticks and limits are automatically set to match
the positions.
*widths* is either a scalar or a vector and sets the width of
each box. The default is 0.5, or ``0.15*(distance between extreme
positions)`` if that is smaller.
*x* is an array or a sequence of vectors.
Returns a list of the :class:`matplotlib.lines.Line2D`
instances added.
**Example:**
.. plot:: boxplot_demo.py
- broken_barh(self, xranges, yrange, **kwargs)
- call signature::
broken_barh(self, xranges, yrange, **kwargs)
A collection of horizontal bars spanning *yrange* with a sequence of
*xranges*.
Required arguments:
========= ==============================
Argument Description
========= ==============================
*xranges* sequence of (*xmin*, *xwidth*)
*yrange* sequence of (*ymin*, *ywidth*)
========= ==============================
kwargs are
:class:`matplotlib.collections.BrokenBarHCollection`
properties:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
these can either be a single argument, ie::
facecolors = 'black'
or a sequence of arguments for the various bars, ie::
facecolors = ('black', 'red', 'green')
**Example:**
.. plot:: ../mpl_examples/pylab_examples/broken_barh.py
- can_zoom(self)
- Return *True* if this axes support the zoom box
- cla(self)
- Clear the current axes
- clabel(self, CS, *args, **kwargs)
- call signature::
clabel(cs, **kwargs)
adds labels to line contours in *cs*, where *cs* is a
:class:`~matplotlib.contour.ContourSet` object returned by
contour.
::
clabel(cs, v, **kwargs)
only labels contours listed in *v*.
Optional keyword arguments:
*fontsize*:
See http://matplotlib.sf.net/fonts.html
.. TODO: Update this link to new fonts document
*colors*:
- if *None*, the color of each label matches the color of
the corresponding contour
- if one string color, e.g. *colors* = 'r' or *colors* =
'red', all labels will be plotted in this color
- if a tuple of matplotlib color args (string, float, rgb, etc),
different labels will be plotted in different colors in the order
specified
*inline*:
controls whether the underlying contour is removed or
not. Default is *True*.
*inline_spacing*:
space in pixels to leave on each side of label when
placing inline. Defaults to 5. This spacing will be
exact for labels at locations where the contour is
straight, less so for labels on curved contours.
*fmt*:
a format string for the label. Default is '%1.3f'
Alternatively, this can be a dictionary matching contour
levels with arbitrary strings to use for each contour level
(i.e., fmt[level]=string)
*manual*:
if *True*, contour labels will be placed manually using
mouse clicks. Click the first button near a contour to
add a label, click the second button (or potentially both
mouse buttons at once) to finish adding labels. The third
button can be used to remove the last label added, but
only if labels are not inline.
- clear(self)
- clear the axes
- cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x26b5ed8>, window=<function window_hanning at 0x26b5578>, noverlap=0, **kwargs)
- call signature::
cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, **kwargs)
cohere the coherence between *x* and *y*. Coherence is the normalized
cross spectral density:
.. math::
C_{xy} = \frac{|P_{xy}|^2}{P_{xx}*P_{yy}}
The return value is a tuple (*Cxy*, *f*), where *f* are the
frequencies of the coherence vector.
See the :meth:`psd` for a description of the optional parameters.
kwargs are applied to the lines.
References:
* Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the :class:`~matplotlib.lines.Line2D`
properties of the coherence plot:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/cohere_demo.py
- connect(self, s, func)
- Register observers to be notified when certain events occur. Register
with callback functions with the following signatures. The function
has the following signature::
func(ax) # where ax is the instance making the callback.
The following events can be connected to:
'xlim_changed','ylim_changed'
The connection id is is returned - you can use this with
disconnect to disconnect from the axes event
- contains(self, mouseevent)
- Test whether the mouse event occured in the axes.
Returns T/F, {}
- contour(self, *args, **kwargs)
- :func:`~matplotlib.pyplot.contour` and
:func:`~matplotlib.pyplot.contourf` draw contour lines and
filled contours, respectively. Except as noted, function
signatures and return values are the same for both versions.
:func:`~matplotlib.pyplot.contourf` differs from the Matlab
(TM) version in that it does not draw the polygon edges,
because the contouring engine yields simply connected regions
with branch cuts. To draw the edges, add line contours with
calls to :func:`~matplotlib.pyplot.contour`.
call signatures::
contour(Z)
make a contour plot of an array *Z*. The level values are chosen
automatically.
::
contour(X,Y,Z)
*X*, *Y* specify the (*x*, *y*) coordinates of the surface
::
contour(Z,N)
contour(X,Y,Z,N)
contour *N* automatically-chosen levels.
::
contour(Z,V)
contour(X,Y,Z,V)
draw contour lines at the values specified in sequence *V*
::
contourf(..., V)
fill the (len(*V*)-1) regions between the values in *V*
::
contour(Z, **kwargs)
Use keyword args to control colors, linewidth, origin, cmap ... see
below for more details.
*X*, *Y*, and *Z* must be arrays with the same dimensions.
*Z* may be a masked array, but filled contouring may not
handle internal masked regions correctly.
``C = contour(...)`` returns a
:class:`~matplotlib.contour.ContourSet` object.
Optional keyword arguments:
*colors*: [ None | string | (mpl_colors) ]
If *None*, the colormap specified by cmap will be used.
If a string, like 'r' or 'red', all levels will be plotted in this
color.
If a tuple of matplotlib color args (string, float, rgb, etc),
different levels will be plotted in different colors in the order
specified.
*alpha*: float
The alpha blending value
*cmap*: [ None | Colormap ]
A cm :class:`~matplotlib.cm.Colormap` instance or
*None*. If *cmap* is *None* and *colors* is *None*, a
default Colormap is used.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance for
scaling data values to colors. If *norm* is *None* and
*colors* is *None*, the default linear scaling is used.
*origin*: [ None | 'upper' | 'lower' | 'image' ]
If *None*, the first value of *Z* will correspond to the
lower left corner, location (0,0). If 'image', the rc
value for ``image.origin`` will be used.
This keyword is not active if *X* and *Y* are specified in
the call to contour.
*extent*: [ None | (x0,x1,y0,y1) ]
If *origin* is not *None*, then *extent* is interpreted as
in :func:`matplotlib.pyplot.imshow`: it gives the outer
pixel boundaries. In this case, the position of Z[0,0]
is the center of the pixel, not a corner. If *origin* is
*None*, then (*x0*, *y0*) is the position of Z[0,0], and
(*x1*, *y1*) is the position of Z[-1,-1].
This keyword is not active if *X* and *Y* are specified in
the call to contour.
*locator*: [ None | ticker.Locator subclass ]
If *locator* is None, the default
:class:`~matplotlib.ticker.MaxNLocator` is used. The
locator is used to determine the contour levels if they
are not given explicitly via the *V* argument.
*extend*: [ 'neither' | 'both' | 'min' | 'max' ]
Unless this is 'neither', contour levels are automatically
added to one or both ends of the range so that all data
are included. These added ranges are then mapped to the
special colormap values which default to the ends of the
colormap range, but can be set via
:meth:`matplotlib.cm.Colormap.set_under` and
:meth:`matplotlib.cm.Colormap.set_over` methods.
contour-only keyword arguments:
*linewidths*: [ None | number | tuple of numbers ]
If *linewidths* is *None*, the default width in
``lines.linewidth`` in ``matplotlibrc`` is used
If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with different
linewidths in the order specified
contourf-only keyword arguments:
*antialiased*: [ True | False ]
enable antialiasing
*nchunk*: [ 0 | integer ]
If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly *nchunk* by *nchunk*
points. This may never actually be advantageous, so this option may
be removed. Chunking introduces artifacts at the chunk boundaries
unless *antialiased* is *False*.
**Example:**
.. plot:: contour_demo.py
- contourf(self, *args, **kwargs)
- :func:`~matplotlib.pyplot.contour` and
:func:`~matplotlib.pyplot.contourf` draw contour lines and
filled contours, respectively. Except as noted, function
signatures and return values are the same for both versions.
:func:`~matplotlib.pyplot.contourf` differs from the Matlab
(TM) version in that it does not draw the polygon edges,
because the contouring engine yields simply connected regions
with branch cuts. To draw the edges, add line contours with
calls to :func:`~matplotlib.pyplot.contour`.
call signatures::
contour(Z)
make a contour plot of an array *Z*. The level values are chosen
automatically.
::
contour(X,Y,Z)
*X*, *Y* specify the (*x*, *y*) coordinates of the surface
::
contour(Z,N)
contour(X,Y,Z,N)
contour *N* automatically-chosen levels.
::
contour(Z,V)
contour(X,Y,Z,V)
draw contour lines at the values specified in sequence *V*
::
contourf(..., V)
fill the (len(*V*)-1) regions between the values in *V*
::
contour(Z, **kwargs)
Use keyword args to control colors, linewidth, origin, cmap ... see
below for more details.
*X*, *Y*, and *Z* must be arrays with the same dimensions.
*Z* may be a masked array, but filled contouring may not
handle internal masked regions correctly.
``C = contour(...)`` returns a
:class:`~matplotlib.contour.ContourSet` object.
Optional keyword arguments:
*colors*: [ None | string | (mpl_colors) ]
If *None*, the colormap specified by cmap will be used.
If a string, like 'r' or 'red', all levels will be plotted in this
color.
If a tuple of matplotlib color args (string, float, rgb, etc),
different levels will be plotted in different colors in the order
specified.
*alpha*: float
The alpha blending value
*cmap*: [ None | Colormap ]
A cm :class:`~matplotlib.cm.Colormap` instance or
*None*. If *cmap* is *None* and *colors* is *None*, a
default Colormap is used.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance for
scaling data values to colors. If *norm* is *None* and
*colors* is *None*, the default linear scaling is used.
*origin*: [ None | 'upper' | 'lower' | 'image' ]
If *None*, the first value of *Z* will correspond to the
lower left corner, location (0,0). If 'image', the rc
value for ``image.origin`` will be used.
This keyword is not active if *X* and *Y* are specified in
the call to contour.
*extent*: [ None | (x0,x1,y0,y1) ]
If *origin* is not *None*, then *extent* is interpreted as
in :func:`matplotlib.pyplot.imshow`: it gives the outer
pixel boundaries. In this case, the position of Z[0,0]
is the center of the pixel, not a corner. If *origin* is
*None*, then (*x0*, *y0*) is the position of Z[0,0], and
(*x1*, *y1*) is the position of Z[-1,-1].
This keyword is not active if *X* and *Y* are specified in
the call to contour.
*locator*: [ None | ticker.Locator subclass ]
If *locator* is None, the default
:class:`~matplotlib.ticker.MaxNLocator` is used. The
locator is used to determine the contour levels if they
are not given explicitly via the *V* argument.
*extend*: [ 'neither' | 'both' | 'min' | 'max' ]
Unless this is 'neither', contour levels are automatically
added to one or both ends of the range so that all data
are included. These added ranges are then mapped to the
special colormap values which default to the ends of the
colormap range, but can be set via
:meth:`matplotlib.cm.Colormap.set_under` and
:meth:`matplotlib.cm.Colormap.set_over` methods.
contour-only keyword arguments:
*linewidths*: [ None | number | tuple of numbers ]
If *linewidths* is *None*, the default width in
``lines.linewidth`` in ``matplotlibrc`` is used
If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with different
linewidths in the order specified
contourf-only keyword arguments:
*antialiased*: [ True | False ]
enable antialiasing
*nchunk*: [ 0 | integer ]
If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly *nchunk* by *nchunk*
points. This may never actually be advantageous, so this option may
be removed. Chunking introduces artifacts at the chunk boundaries
unless *antialiased* is *False*.
**Example:**
.. plot:: contour_demo.py
- csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x26b5ed8>, window=<function window_hanning at 0x26b5578>, noverlap=0, **kwargs)
- call signature::
csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=window_hanning, noverlap=0, **kwargs)
The cross spectral density :math:`P_{xy}` by Welches average
periodogram method. The vectors *x* and *y* are divided into
*NFFT* length segments. Each segment is detrended by function
*detrend* and windowed by function *window*. The product of
the direct FFTs of *x* and *y* are averaged over each segment
to compute :math:`P_{xy}`, with a scaling to correct for power
loss due to windowing.
See :meth:`psd` for a description of the optional parameters.
Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum
(complex valued), and :math:`10\log_{10}|P_{xy}|` is
plotted.
References:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the Line2D properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/csd_demo.py
- disconnect(self, cid)
- disconnect from the Axes event.
- drag_pan(self, button, key, x, y)
- Called when the mouse moves during a pan operation.
*button* is the mouse button number:
* 1: LEFT
* 2: MIDDLE
* 3: RIGHT
*key* is a "shift" key
*x*, *y* are the mouse coordinates in display coords.
.. note::
Intended to be overridden by new projection types.
- draw(self, renderer=None, inframe=False)
- Draw everything (plot lines, axes, labels)
- draw_artist(self, a)
- This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
- end_pan(self)
- Called when a pan operation completes (when the mouse button
is up.)
.. note::
Intended to be overridden by new projection types.
- errorbar(self, x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, **kwargs)
- call signature::
errorbar(x, y, yerr=None, xerr=None,
fmt='-', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)
Plot *x* versus *y* with error deltas in *yerr* and *xerr*.
Vertical errorbars are plotted if *yerr* is not *None*.
Horizontal errorbars are plotted if *xerr* is not *None*.
*x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a
single error bar at *x*, *y*.
Optional keyword arguments:
*xerr*/*yerr*: [ scalar | N, Nx1, Nx2 array-like ]
If a scalar number, len(N) array-like object, or an Nx1 array-like
object, errorbars are drawn +/- value.
If a rank-1, Nx2 Numpy array, errorbars are drawn at -column1 and
+column2
*fmt*: '-'
The plot format symbol for *y*. If *fmt* is *None*, just plot the
errorbars with no line symbols. This can be useful for creating a
bar plot with errorbars.
*ecolor*: [ None | mpl color ]
a matplotlib color arg which gives the color the errorbar lines; if
*None*, use the marker color.
*elinewidth*: scalar
the linewidth of the errorbar lines. If *None*, use the linewidth.
*capsize*: scalar
the size of the error bar caps in points
*barsabove*: [ True | False ]
if *True*, will plot the errorbars above the plot
symbols. Default is below.
*lolims*/*uplims*/*xlolims*/*xuplims*: [ False | True ]
These arguments can be used to indicate that a value gives
only upper/lower limits. In that case a caret symbol is
used to indicate this. lims-arguments may be of the same
type as *xerr* and *yerr*.
All other keyword arguments are passed on to the plot command for the
markers, so you can add additional key=value pairs to control the
errorbar markers. For example, this code makes big red squares with
thick green edges::
x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker='s',
mfc='red', mec='green', ms=20, mew=4)
where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
and *markeredgewith*.
valid kwargs for the marker properties are
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
Return value is a length 3 tuple. The first element is the
:class:`~matplotlib.lines.Line2D` instance for the *y* symbol
lines. The second element is a list of error bar cap lines,
the third element is a list of
:class:`~matplotlib.collections.LineCollection` instances for
the horizontal and vertical error ranges.
**Example:**
.. plot:: errorbar_demo.py
- fill(self, *args, **kwargs)
- call signature::
fill(*args, **kwargs)
Plot filled polygons. *args* is a variable length argument,
allowing for multiple *x*, *y* pairs with an optional color
format string; see :func:`~matplotlib.pyplot.plot` for details
on the argument parsing. For example, to plot a polygon with
vertices at *x*, *y* in blue.::
ax.fill(x,y, 'b' )
An arbitrary number of *x*, *y*, *color* groups can be specified::
ax.fill(x1, y1, 'g', x2, y2, 'r')
Return value is a list of :class:`~matplotlib.patches.Patch`
instances that were added.
The same color strings that :func:`~matplotlib.pyplot.plot`
supports are supported by the fill format string.
If you would like to fill below a curve, eg. shade a region
between 0 and *y* along *x*, use
:func:`~matplotlib.pylab.poly_between`, eg.::
xs, ys = poly_between(x, 0, y)
axes.fill(xs, ys, facecolor='red', alpha=0.5)
See :file:`examples/pylab_examples/fill_between.py` for more examples.
The *closed* kwarg will close the polygon when *True* (default).
kwargs control the Polygon properties:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/fill_demo.py
- format_coord(self, x, y)
- return a format string formatting the *x*, *y* coord
- format_xdata(self, x)
- Return *x* string formatted. This function will use the attribute
self.fmt_xdata if it is callable, else will fall back on the xaxis
major formatter
- format_ydata(self, y)
- Return y string formatted. This function will use the
:attr:`fmt_ydata` attribute if it is callable, else will fall
back on the yaxis major formatter
- get_adjustable(self)
- get_anchor(self)
- get_aspect(self)
- get_autoscale_on(self)
- Get whether autoscaling is applied on plot commands
- get_axis_bgcolor(self)
- Return the axis background color
- get_axisbelow(self)
- Get whether axis below is true or not
- get_child_artists(self)
- Return a list of artists the axes contains.
.. deprecated:: 0.98
- get_children(self)
- return a list of child artists
- get_cursor_props(self)
- return the cursor propertiess as a (*linewidth*, *color*)
tuple, where *linewidth* is a float and *color* is an RGBA
tuple
- get_data_ratio(self)
- Returns the aspect ratio of the raw data.
This method is intended to be overridden by new projection
types.
- get_frame(self)
- Return the axes Rectangle frame
- get_frame_on(self)
- Get whether the axes rectangle patch is drawn
- get_images(self)
- return a list of Axes images contained by the Axes
- get_legend(self)
- Return the legend.Legend instance, or None if no legend is defined
- get_lines(self)
- Return a list of lines contained by the Axes
- get_navigate(self)
- Get whether the axes responds to navigation commands
- get_navigate_mode(self)
- Get the navigation toolbar button status: 'PAN', 'ZOOM', or None
- get_position(self, original=False)
- Return the a copy of the axes rectangle as a Bbox
- get_renderer_cache(self)
- get_shared_x_axes(self)
- Return a copy of the shared axes Grouper object for x axes
- get_shared_y_axes(self)
- Return a copy of the shared axes Grouper object for y axes
- get_title(self)
- Get the title text string.
- get_window_extent(self, *args, **kwargs)
- get the axes bounding box in display space; *args* and
*kwargs* are empty
- get_xaxis(self)
- Return the XAxis instance
- get_xaxis_text1_transform(self, pad_points)
- Get the transformation used for drawing x-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in data coordinates
and the y-direction is in axis coordinates. Returns a
3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_xaxis_text2_transform(self, pad_points)
- Get the transformation used for drawing the secondary x-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in data
coordinates and the y-direction is in axis coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_xaxis_transform(self)
- Get the transformation used for drawing x-axis labels, ticks
and gridlines. The x-direction is in data coordinates and the
y-direction is in axis coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_xbound(self)
- Returns the x-axis numerical bounds where::
lowerBound < upperBound
- get_xgridlines(self)
- Get the x grid lines as a list of Line2D instances
- get_xlabel(self)
- Get the xlabel text string.
- get_xlim(self)
- Get the x-axis range [*xmin*, *xmax*]
- get_xmajorticklabels(self)
- Get the xtick labels as a list of Text instances
- get_xminorticklabels(self)
- Get the xtick labels as a list of Text instances
- get_xscale(self)
- get_xticklabels(self, minor=False)
- Get the xtick labels as a list of Text instances
- get_xticklines(self)
- Get the xtick lines as a list of Line2D instances
- get_xticks(self, minor=False)
- Return the x ticks as a list of locations
- get_yaxis(self)
- Return the YAxis instance
- get_yaxis_text1_transform(self, pad_points)
- Get the transformation used for drawing y-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in axis coordinates
and the y-direction is in data coordinates. Returns a 3-tuple
of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_yaxis_text2_transform(self, pad_points)
- Get the transformation used for drawing the secondary y-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in axis
coordinates and the y-direction is in data coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_yaxis_transform(self)
- Get the transformation used for drawing y-axis labels, ticks
and gridlines. The x-direction is in axis coordinates and the
y-direction is in data coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
- get_ybound(self)
- Returns the y-axis numerical bounds in the form of lowerBound < upperBound
- get_ygridlines(self)
- Get the y grid lines as a list of Line2D instances
- get_ylabel(self)
- Get the ylabel text string.
- get_ylim(self)
- Get the y-axis range [*ymin*, *ymax*]
- get_ymajorticklabels(self)
- Get the xtick labels as a list of Text instances
- get_yminorticklabels(self)
- Get the xtick labels as a list of Text instances
- get_yscale(self)
- get_yticklabels(self, minor=False)
- Get the xtick labels as a list of Text instances
- get_yticklines(self)
- Get the ytick lines as a list of Line2D instances
- get_yticks(self, minor=False)
- Return the y ticks as a list of locations
- grid(self, b=None, **kwargs)
- call signature::
grid(self, b=None, **kwargs)
Set the axes grids on or off; *b* is a boolean
If *b* is *None* and ``len(kwargs)==0``, toggle the grid state. If
*kwargs* are supplied, it is assumed that you want a grid and *b*
is thus set to *True*
*kawrgs* are used to set the grid line properties, eg::
ax.grid(color='r', linestyle='-', linewidth=2)
Valid :class:`~matplotlib.lines.Line2D` kwargs are
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
- has_data(self)
- Return *True* if any artists have been added to axes.
This should not be used to determine whether the *dataLim*
need to be updated, and may not actually be useful for
anything.
- hexbin(self, x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors='none', reduce_C_function=<function mean at 0x1eebaa0>, **kwargs)
- call signature::
hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = 'linear', yscale = 'linear',
cmap=None, norm=None, vmin=None, vmax=None,
alpha=1.0, linewidths=None, edgecolors='none'
reduce_C_function = np.mean,
**kwargs)
Make a hexagonal binning plot of *x* versus *y*, where *x*,
*y* are 1-D sequences of the same length, *N*. If *C* is None
(the default), this is a histogram of the number of occurences
of the observations at (x[i],y[i]).
If *C* is specified, it specifies values at the coordinate
(x[i],y[i]). These values are accumulated for each hexagonal
bin and then reduced according to *reduce_C_function*, which
defaults to numpy's mean function (np.mean). (If *C* is
specified, it must also be a 1-D sequence of the same length
as *x* and *y*.)
*x*, *y* and/or *C* may be masked arrays, in which case only
unmasked points will be plotted.
Optional keyword arguments:
*gridsize*: [ 100 | integer ]
The number of hexagons in the *x*-direction, default is
100. The corresponding number of hexagons in the
*y*-direction is chosen such that the hexagons are
approximately regular. Alternatively, gridsize can be a
tuple with two elements specifying the number of hexagons
in the *x*-direction and the *y*-direction.
*bins*: [ None | 'log' | integer | sequence ]
If *None*, no binning is applied; the color of each hexagon
directly corresponds to its count value.
If 'log', use a logarithmic scale for the color
map. Internally, :math:`log_{10}(i+1)` is used to
determine the hexagon color.
If an integer, divide the counts in the specified number
of bins, and color the hexagons accordingly.
If a sequence of values, the values of the lower bound of
the bins to be used.
*xscale*: [ 'linear' | 'log' ]
Use a linear or log10 scale on the horizontal axis.
*scale*: [ 'linear' | 'log' ]
Use a linear or log10 scale on the vertical axis.
Other keyword arguments controlling color mapping and normalization
arguments:
*cmap*: [ None | Colormap ]
a :class:`matplotlib.cm.Colormap` instance. If *None*,
defaults to rc ``image.cmap``.
*norm*: [ None | Normalize ]
:class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1.
*vmin*/*vmax*: scalar
*vmin* and *vmax* are used in conjunction with *norm* to normalize
luminance data. If either are *None*, the min and max of the color
array *C* is used. Note if you pass a norm instance, your settings
for *vmin* and *vmax* will be ignored.
*alpha*: scalar
the alpha value for the patches
*linewidths*: [ None | scalar ]
If *None*, defaults to rc lines.linewidth. Note that this
is a tuple, and if you set the linewidths argument you
must set it as a sequence of floats, as required by
:class:`~matplotlib.collections.RegularPolyCollection`.
Other keyword arguments controlling the Collection properties:
*edgecolors*: [ None | mpl color | color sequence ]
If 'none', draws the edges in the same color as the fill color.
This is the default, as it avoids unsightly unpainted pixels
between the hexagons.
If *None*, draws the outlines in the default color.
If a matplotlib color arg or sequence of rgba tuples, draws the
outlines in the specified color.
Here are the standard descriptions of all the
:class:`~matplotlib.collections.Collection` kwargs:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
The return value is a
:class:`~matplotlib.collections.PolyCollection` instance; use
:meth:`~matplotlib.collection.PolyCollection.get_array` on
this :class:`~matplotlib.collections.PolyCollection` to get
the counts in each hexagon.
**Example:**
.. plot:: ../mpl_examples/pylab_examples/hexbin_demo.py
- hist(self, x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, **kwargs)
- call signature::
hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype='bar', align='mid',
orientation='vertical', rwidth=None, log=False, **kwargs)
Compute the histogram of *x*. The return value is a tuple
(*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*,
[*patches0*, *patches1*,...]) if the input contains multiple
data.
Keyword arguments:
*bins*:
either an integer number of bins or a sequence giving the
bins. *x* are the data to be binned. *x* can be an array or a
2D array with multiple data in its columns. Note, if *bins*
is an integer input argument=numbins, *bins* + 1 bin edges
will be returned, compatible with the semantics of
:func:`numpy.histogram` with the *new* = True argument.
Unequally spaced bins are supported if *bins* is a sequence.
*range*:
The lower and upper range of the bins. Lower and upper outliers
are ignored. If not provided, *range* is (x.min(), x.max()).
Range has no effect if *bins* is a sequence.
*normed*:
If *True*, the first element of the return tuple will
be the counts normalized to form a probability density, i.e.,
``n/(len(x)*dbin)``. In a probability density, the integral of
the histogram should be 1; you can verify that with a
trapezoidal integration of the probability density function::
pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))
*cumulative*:
If *True*, then a histogram is computed where each bin
gives the counts in that bin plus all bins for smaller values.
The last bin gives the total number of datapoints. If *normed*
is also *True* then the histogram is normalized such that the
last bin equals one. If *cumulative* evaluates to less than 0
(e.g. -1), the direction of accumulation is reversed. In this
case, if *normed* is also *True*, then the histogram is normalized
such that the first bin equals 1.
*histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ]
The type of histogram to draw.
- 'bar' is a traditional bar-type histogram
- 'barstacked' is a bar-type histogram where multiple
data are stacked on top of each other.
- 'step' generates a lineplot that is by default
unfilled
- 'stepfilled' generates a lineplot that this by default
filled.
*align*: ['left' | 'mid' | 'right' ]
Controls how the histogram is plotted.
- 'left': bars are centered on the left bin edges
- 'mid': bars are centered between the bin edges
- 'right': bars are centered on the right bin edges.
*orientation*: [ 'horizontal' | 'vertical' ]
If 'horizontal', :func:`~matplotlib.pyplot.barh` will be
used for bar-type histograms and the *bottom* kwarg will be
the left edges.
*rwidth*:
the relative width of the bars as a fraction of the bin
width. If *None*, automatically compute the width. Ignored
if *histtype* = 'step'.
*log*:
If *True*, the histogram axis will be set to a log scale.
If *log* is *True* and *x* is a 1D array, empty bins will
be filtered out and only the non-empty (*n*, *bins*,
*patches*) will be returned.
kwargs are used to update the properties of the hist
:class:`~matplotlib.patches.Rectangle` instances:
=========== ===========================================================
Property Description
=========== ===========================================================
aa [True | False] or None for default
alpha float
animated [True | False]
antialiased [True | False] or None for default
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
ec mpl color spec, or None for default, or 'none' for no color
edgecolor mpl color spec, or None for default, or 'none' for no color
facecolor mpl color spec, or None for default, or 'none' for no color
fc mpl color spec, or None for default, or 'none' for no color
figure a :class:`matplotlib.figure.Figure` instance
fill [True | False]
hatch unknown
label any string
linestyle ['solid' | 'dashed' | 'dashdot' | 'dotted']
linewidth float or None for default
lod [True | False]
ls ['solid' | 'dashed' | 'dashdot' | 'dotted']
lw float or None for default
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
=========== ===========================================================
You can use labels for your histogram, and only the first
:class:`~matplotlib.patches.Rectangle` gets the label (the
others get the magic string '_nolegend_'. This will make the
histograms work in the intuitive way for bar charts::
ax.hist(10+2*np.random.randn(1000), label='men')
ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5)
ax.legend()
**Example:**
.. plot:: ../mpl_examples/pylab_examples/histogram_demo.py
- hlines(self, y, xmin, xmax, colors='k', linestyles='solid', label='', **kwargs)
- call signature::
hlines(y, xmin, xmax, colors='k', linestyle='solid', **kwargs)
Plot horizontal lines at each *y* from *xmin* to *xmax*.
Returns the :class:`~matplotlib.collections.LineCollection`
that was added.
Required arguments:
*y*:
a 1-D numpy array or iterable.
*xmin* and *xmax*:
can be scalars or ``len(x)`` numpy arrays. If they are
scalars, then the respective values are constant, else the
widths of the lines are determined by *xmin* and *xmax*.
Optional keyword arguments:
*colors*:
a line collections color argument, either a single color
or a ``len(y)`` list of colors
*linestyle*:
[ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
**Example:**
.. plot:: ../mpl_examples/pylab_examples/hline_demo.py
- hold(self, b=None)
- call signature::
hold(b=None)
Set the hold state. If *hold* is *None* (default), toggle the
*hold* state. Else set the *hold* state to boolean value *b*.
Examples:
* toggle hold:
>>> hold()
* turn hold on:
>>> hold(True)
* turn hold off
>>> hold(False)
When hold is True, subsequent plot commands will be added to
the current axes. When hold is False, the current axes and
figure will be cleared on the next plot command
- imshow(self, X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, **kwargs)
- call signature::
imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)
Display the image in *X* to current axes. *X* may be a float
array, a uint8 array or a PIL image. If *X* is an array, *X*
can have the following shapes:
* MxN -- luminance (grayscale, float array only)
* MxNx3 -- RGB (float or uint8 array)
* MxNx4 -- RGBA (float or uint8 array)
The value for each component of MxNx3 and MxNx4 float arrays should be
in the range 0.0 to 1.0; MxN float arrays may be normalised.
An :class:`matplotlib.image.AxesImage` instance is returned.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance, eg. cm.jet.
If *None*, default to rc ``image.cmap`` value.
*cmap* is ignored when *X* has RGB(A) information
*aspect*: [ None | 'auto' | 'equal' | scalar ]
If 'auto', changes the image aspect ratio to match that of the axes
If 'equal', and *extent* is *None*, changes the axes
aspect ratio to match that of the image. If *extent* is
not *None*, the axes aspect ratio is changed to match that
of the extent.
If *None*, default to rc ``image.aspect`` value.
*interpolation*:
Acceptable values are *None*, 'nearest', 'bilinear', 'bicubic',
'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser',
'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc',
'lanczos', 'blackman'
If *interpolation* is *None*, default to rc
``image.interpolation``. See also the *filternorm* and
*filterrad* parameters
*norm*: [ None | Normalize ]
An :class:`matplotlib.colors.Normalize` instance; if
*None*, default is ``normalization()``. This scales
luminance -> 0-1
*norm* is only used for an MxN float array.
*vmin*/*vmax*: [ None | scalar ]
Used to scale a luminance image to 0-1. If either is
*None*, the min and max of the luminance values will be
used. Note if *norm* is not *None*, the settings for
*vmin* and *vmax* will be ignored.
*alpha*: scalar
The alpha blending value, between 0 (transparent) and 1 (opaque)
*origin*: [ None | 'upper' | 'lower' ]
Place the [0,0] index of the array in the upper left or lower left
corner of the axes. If *None*, default to rc ``image.origin``.
*extent*: [ None | scalars (left, right, bottom, top) ]
Eata values of the axes. The default assigns zero-based row,
column indices to the *x*, *y* centers of the pixels.
*shape*: [ None | scalars (columns, rows) ]
For raw buffer images
*filternorm*:
A parameter for the antigrain image resize filter. From the
antigrain documentation, if *filternorm* = 1, the filter normalizes
integer values and corrects the rounding errors. It doesn't do
anything with the source floating point values, it corrects only
integers according to the rule of 1.0 which means that any sum of
pixel weights must be equal to 1.0. So, the filter function must
produce a graph of the proper shape.
*filterrad*:
The filter radius for filters that have a radius
parameter, i.e. when interpolation is one of: 'sinc',
'lanczos' or 'blackman'
Additional kwargs are :class:`~matplotlib.artist.Artist` properties:
========= ===============================================
Property Description
========= ===============================================
alpha float
animated [True | False]
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
figure a :class:`matplotlib.figure.Figure` instance
label any string
lod [True | False]
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
========= ===============================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/image_demo.py
- in_axes(self, mouseevent)
- return *True* if the given *mouseevent* (in display coords)
is in the Axes
- invert_xaxis(self)
- Invert the x-axis.
- invert_yaxis(self)
- Invert the y-axis.
- ishold(self)
- return the HOLD status of the axes
- legend(self, *args, **kwargs)
- call signature::
legend(*args, **kwargs)
Place a legend on the current axes at location *loc*. Labels are a
sequence of strings and *loc* can be a string or an integer specifying
the legend location.
To make a legend with existing lines::
legend()
:meth:`legend` by itself will try and build a legend using the label
property of the lines/patches/collections. You can set the label of
a line by doing::
plot(x, y, label='my data')
or::
line.set_label('my data').
If label is set to '_nolegend_', the item will not be shown in
legend.
To automatically generate the legend from labels::
legend( ('label1', 'label2', 'label3') )
To make a legend for a list of lines and labels::
legend( (line1, line2, line3), ('label1', 'label2', 'label3') )
To make a legend at a given location, using a location argument::
legend( ('label1', 'label2', 'label3'), loc='upper left')
or::
legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc=2)
The location codes are
=============== =============
Location String Location Code
=============== =============
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10
=============== =============
If none of these are locations are suitable, loc can be a 2-tuple
giving x,y in axes coords, ie::
loc = 0, 1 # left top
loc = 0.5, 0.5 # center
Keyword arguments:
*isaxes*: [ True | False ]
Indicates that this is an axes legend
*numpoints*: integer
The number of points in the legend line, default is 4
*prop*: [ None | FontProperties ]
A :class:`matplotlib.font_manager.FontProperties`
instance, or *None* to use rc settings.
*pad*: [ None | scalar ]
The fractional whitespace inside the legend border, between 0 and 1.
If *None*, use rc settings.
*markerscale*: [ None | scalar ]
The relative size of legend markers vs. original. If *None*, use rc
settings.
*shadow*: [ None | False | True ]
If *True*, draw a shadow behind legend. If *None*, use rc settings.
*labelsep*: [ None | scalar ]
The vertical space between the legend entries. If *None*, use rc
settings.
*handlelen*: [ None | scalar ]
The length of the legend lines. If *None*, use rc settings.
*handletextsep*: [ None | scalar ]
The space between the legend line and legend text. If *None*, use rc
settings.
*axespad*: [ None | scalar ]
The border between the axes and legend edge. If *None*, use rc
settings.
**Example:**
.. plot:: ../mpl_examples/api/legend_demo.py
- loglog(self, *args, **kwargs)
- call signature::
loglog(*args, **kwargs)
Make a plot with log scaling on the *x* and *y* axis.
:func:`~matplotlib.pyplot.loglog` supports all the keyword
arguments of :func:`~matplotlib.pyplot.plot` and
:meth:`matplotlib.axes.Axes.set_xscale`/:meth:`matplotlib.axes.Axes.set_yscale`.
Notable keyword arguments:
*basex*/*basey*: scalar > 1
base of the *x*/*y* logarithm
*subsx*/*subsy*: [ None | sequence ]
the location of the minor *x*/*y* ticks; *None* defaults
to autosubs, which depend on the number of decades in the
plot; see
:meth:`matplotlib.axes.Axes.set_xscale`/:meth:`matplotlib.axes.Axes.set_yscale`
for details
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
**Example:**
.. plot:: ../mpl_examples/pylab_examples/log_demo.py
- matshow(self, Z, **kwargs)
- Plot a matrix or array as an image.
The matrix will be shown the way it would be printed,
with the first row at the top. Row and column numbering
is zero-based.
Argument:
*Z* anything that can be interpreted as a 2-D array
kwargs all are passed to :meth:`~matplotlib.axes.Axes.imshow`.
:meth:`matshow` sets defaults for *extent*, *origin*,
*interpolation*, and *aspect*; use care in overriding the
*extent* and *origin* kwargs, because they interact. (Also,
if you want to change them, you probably should be using
imshow directly in your own version of matshow.)
Returns: an :class:`matplotlib.image.AxesImage` instance.
- pcolor(self, *args, **kwargs)
- call signatures::
pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)
Create a pseudocolor plot of a 2-D array.
*C* is the array of color values.
*X* and *Y*, if given, specify the (*x*, *y*) coordinates of
the colored quadrilaterals; the quadrilateral for C[i,j] has
corners at::
(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).
Ideally the dimensions of *X* and *Y* should be one greater
than those of *C*; if the dimensions are the same, then the
last row and column of *C* will be ignored.
Note that the the column index corresponds to the
*x*-coordinate, and the row index corresponds to *y*; for
details, see the :ref:`Grid Orientation
<axes-pcolor-grid-orientation>` section below.
If either or both of *X* and *Y* are 1-D arrays or column vectors,
they will be expanded as needed into the appropriate 2-D arrays,
making a rectangular grid.
*X*, *Y* and *C* may be masked arrays. If either C[i, j], or one
of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j],
[i, j+1],[i+1, j+1]) is masked, nothing is plotted.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance. If *None*, use
rc settings.
norm: [ None | Normalize ]
An :class:`matplotlib.colors.Normalize` instance is used
to scale luminance data to 0,1. If *None*, defaults to
:func:`normalize`.
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If either are *None*, the min
and max of the color array *C* is used. If you pass a
*norm* instance, *vmin* and *vmax* will be ignored.
*shading*: [ 'flat' | 'faceted' ]
If 'faceted', a black grid is drawn around each rectangle; if
'flat', edges are not drawn. Default is 'flat', contrary to
Matlab(TM).
This kwarg is deprecated; please use 'edgecolors' instead:
* shading='flat' -- edgecolors='None'
* shading='faceted -- edgecolors='k'
*edgecolors*: [ None | 'None' | color | color sequence]
If *None*, the rc setting is used by default.
If 'None', edges will not be visible.
An mpl color or sequence of colors will set the edge color
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is a :class:`matplotlib.collection.Collection`
instance.
.. _axes-pcolor-grid-orientation:
The grid orientation follows the Matlab(TM) convention: an
array *C* with shape (*nrows*, *ncolumns*) is plotted with
the column number as *X* and the row number as *Y*, increasing
up; hence it is plotted the way the array would be printed,
except that the *Y* axis is reversed. That is, *C* is taken
as *C*(*y*, *x*).
Similarly for :func:`~matplotlib.pyplot.meshgrid`::
x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)
is equivalent to:
X = array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])
Y = array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2]])
so if you have::
C = rand( len(x), len(y))
then you need::
pcolor(X, Y, C.T)
or::
pcolor(C.T)
Matlab :func:`pcolor` always discards the last row and column
of *C*, but matplotlib displays the last row and column if *X* and
*Y* are not specified, or if *X* and *Y* have one more row and
column than *C*.
kwargs can be used to control the
:class:`~matplotlib.collection.PolyCollection` properties:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
- pcolorfast(self, *args, **kwargs)
- pseudocolor plot of a 2-D array
Experimental; this is a version of pcolor that
does not draw lines, that provides the fastest
possible rendering with the Agg backend, and that
can handle any quadrilateral grid.
Call signatures::
pcolor(C, **kwargs)
pcolor(xr, yr, C, **kwargs)
pcolor(x, y, C, **kwargs)
pcolor(X, Y, C, **kwargs)
C is the 2D array of color values corresponding to quadrilateral
cells. Let (nr, nc) be its shape. C may be a masked array.
``pcolor(C, **kwargs)`` is equivalent to
``pcolor([0,nc], [0,nr], C, **kwargs)``
*xr*, *yr* specify the ranges of *x* and *y* corresponding to the
rectangular region bounding *C*. If::
xr = [x0, x1]
and::
yr = [y0,y1]
then *x* goes from *x0* to *x1* as the second index of *C* goes
from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of
cell (0,0), and (*x1*, *y1*) is the outermost corner of cell
(*nr*-1, *nc*-1). All cells are rectangles of the same size.
This is the fastest version.
*x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively,
giving the x and y boundaries of the cells. Hence the cells are
rectangular but the grid may be nonuniform. The speed is
intermediate. (The grid is checked, and if found to be
uniform the fast version is used.)
*X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify
the (x,y) coordinates of the corners of the colored
quadrilaterals; the quadrilateral for C[i,j] has corners at
(X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]),
(X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular.
This is the most general, but the slowest to render. It may
produce faster and more compact output using ps, pdf, and
svg backends, however.
Note that the the column index corresponds to the x-coordinate,
and the row index corresponds to y; for details, see
the "Grid Orientation" section below.
Optional keyword arguments:
*cmap*: [ None | Colormap ]
A cm Colormap instance from cm. If None, use rc settings.
*norm*: [ None | Normalize ]
An mcolors.Normalize instance is used to scale luminance data to
0,1. If None, defaults to normalize()
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with norm to normalize
luminance data. If either are *None*, the min and max of the color
array *C* is used. If you pass a norm instance, *vmin* and *vmax*
will be *None*.
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is an image if a regular or rectangular grid
is specified, and a QuadMesh collection in the general
quadrilateral case.
- pcolormesh(self, *args, **kwargs)
- call signatures::
pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)
*C* may be a masked array, but *X* and *Y* may not. Masked
array support is implemented via *cmap* and *norm*; in
contrast, :func:`~matplotlib.pyplot.pcolor` simply does not
draw quadrilaterals with masked colors or vertices.
Keyword arguments:
*cmap*: [ None | Colormap ]
A :class:`matplotlib.cm.Colormap` instance. If None, use
rc settings.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1. If None, defaults to
:func:`normalize`.
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If either are *None*, the min
and max of the color array *C* is used. If you pass a
*norm* instance, *vmin* and *vmax* will be ignored.
*shading*: [ 'flat' | 'faceted' ]
If 'faceted', a black grid is drawn around each rectangle; if
'flat', edges are not drawn. Default is 'flat', contrary to
Matlab(TM).
This kwarg is deprecated; please use 'edgecolors' instead:
* shading='flat' -- edgecolors='None'
* shading='faceted -- edgecolors='k'
*edgecolors*: [ None | 'None' | color | color sequence]
If None, the rc setting is used by default.
If 'None', edges will not be visible.
An mpl color or sequence of colors will set the edge color
*alpha*: 0 <= scalar <= 1
the alpha blending value
Return value is a :class:`matplotlib.collection.QuadMesh`
object.
See :func:`~matplotlib.pyplot.pcolor` for an explanation of
the grid orientation and the expansion of 1-D *X* and/or *Y*
to 2-D arrays.
kwargs can be used to control the
:class:`matplotlib.collections.QuadMesh`
properties:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
- pick(self, *args)
- call signature::
pick(mouseevent)
each child artist will fire a pick event if mouseevent is over
the artist and the artist has picker set
- pie(self, x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.59999999999999998, shadow=False, labeldistance=1.1000000000000001)
- call signature::
pie(x, explode=None, labels=None,
colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)
Make a pie chart of array *x*. The fractional area of each
wedge is given by x/sum(x). If sum(x) <= 1, then the values
of x give the fractional area directly and the array will not
be normalized.
Keyword arguments:
*explode*: [ None | len(x) sequence ]
If not *None*, is a len(*x*) array which specifies the
fraction of the radius with which to offset each wedge.
*colors*: [ None | color sequence ]
A sequence of matplotlib color args through which the pie chart
will cycle.
*labels*: [ None | len(x) sequence of strings ]
A sequence of strings providing the labels for each wedge
*autopct*: [ None | format string | format function ]
If not *None*, is a string or function used to label the
wedges with their numeric value. The label will be placed inside
the wedge. If it is a format string, the label will be ``fmt%pct``.
If it is a function, it will be called.
*pctdistance*: scalar
The ratio between the center of each pie slice and the
start of the text generated by *autopct*. Ignored if
*autopct* is *None*; default is 0.6.
*labeldistance*: scalar
The radial distance at which the pie labels are drawn
*shadow*: [ False | True ]
Draw a shadow beneath the pie.
The pie chart will probably look best if the figure and axes are
square. Eg.::
figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])
Return value:
If *autopct* is None, return the tuple (*patches*, *texts*):
- *patches* is a sequence of
:class:`matplotlib.patches.Wedge` instances
- *texts* is a list of the label
:class:`matplotlib.text.Text` instances.
If *autopct* is not *None*, return the tuple (*patches*,
*texts*, *autotexts*), where *patches* and *texts* are as
above, and *autotexts* is a list of
:class:`~matplotlib.text.Text` instances for the numeric
labels.
- plot(self, *args, **kwargs)
- Plot lines and/or markers to the
:class:`~matplotlib.axes.Axes`. *args* is a variable length
argument, allowing for multiple *x*, *y* pairs with an
optional format string. For example, each of the following is
legal::
plot(x, y) # plot x and y using the default line style and color
plot(x, y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses
If *x* and/or *y* is 2-dimensional, then the corresponding columns
will be plotted.
An arbitrary number of *x*, *y*, *fmt* groups can be
specified, as in::
a.plot(x1, y1, 'g^', x2, y2, 'g-')
Return value is a list of lines that were added.
The following line styles are supported::
- # solid line
-- # dashed line
-. # dash-dot line
: # dotted line
. # points
, # pixels
o # circle symbols
^ # triangle up symbols
v # triangle down symbols
< # triangle left symbols
> # triangle right symbols
s # square symbols
+ # plus symbols
x # cross symbols
D # diamond symbols
d # thin diamond symbols
1 # tripod down symbols
2 # tripod up symbols
3 # tripod left symbols
4 # tripod right symbols
h # hexagon symbols
H # rotated hexagon symbols
p # pentagon symbols
| # vertical line symbols
_ # horizontal line symbols
steps # use gnuplot style 'steps' # kwarg only
The following color abbreviations are supported::
b # blue
g # green
r # red
c # cyan
m # magenta
y # yellow
k # black
w # white
In addition, you can specify colors in many weird and
wonderful ways, including full names (``'green'``), hex
strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
grayscale intensities as a string (``'0.8'``). Of these, the
string specifications can be used in place of a ``fmt`` group,
but the tuple forms can be used only as ``kwargs``.
Line styles and colors are combined in a single format string, as in
``'bo'`` for blue circles.
The *kwargs* can be used to set line properties (any property that has
a ``set_*`` method). You can use this to set a line label (for auto
legends), linewidth, anitialising, marker face color, etc. Here is an
example::
plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs', label='line 2')
axis([0, 4, 0, 10])
legend()
If you make multiple lines with one plot command, the kwargs
apply to all those lines, e.g.::
plot(x1, y1, x2, y2, antialised=False)
Neither line will be antialiased.
The kwargs are :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
kwargs *scalex* and *scaley*, if defined, are passed on to
:meth:`~matplotlib.axes.Axes.autoscale_view` to determine
whether the *x* and *y* axes are autoscaled; the default is
*True*.
- plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs)
- call signature::
plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs)
Similar to the :func:`~matplotlib.pyplot.plot` command, except
the *x* or *y* (or both) data is considered to be dates, and the
axis is labeled accordingly.
*x* and/or *y* can be a sequence of dates represented as float days since
0001-01-01 UTC.
See :mod:`~matplotlib.dates` for helper functions
:func:`~matplotlib.dates.date2num`,
:func:`~matplotlib.dates.num2date` and
:func:`~matplotlib.dates.drange` for help on creating the
required floating point dates.
Keyword arguments:
*fmt*: string
The plot format string.
*tz*: [ None | timezone string ]
The time zone to use in labeling dates. If *None*, defaults to rc
value.
*xdate*: [ True | False ]
If *True*, the *x*-axis will be labeled with dates.
*ydate*: [ False | True ]
If *True*, the *y*-axis will be labeled with dates.
Note if you are using custom date tickers and formatters, it
may be necessary to set the formatters/locators after the call
to :meth:`plot_date` since :meth:`plot_date` will set the
default tick locator to
:class:`matplotlib.ticker.AutoDateLocator` (if the tick
locator is not already set to a
:class:`matplotlib.ticker.DateLocator` instance) and the
default tick formatter to
:class:`matplotlib.ticker.AutoDateFormatter` (if the tick
formatter is not already set to a
:class:`matplotlib.ticker.DateFormatter` instance).
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
- psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x26b5ed8>, window=<function window_hanning at 0x26b5578>, noverlap=0, **kwargs)
- call signature::
psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, **kwargs)
The power spectral density by Welches average periodogram
method. The vector *x* is divided into *NFFT* length
segments. Each segment is detrended by function *detrend* and
windowed by function *window*. *noperlap* gives the length of
the overlap between segments. The :math:`|\mathrm{fft}(i)|^2`
of each segment :math:`i` are averaged to compute *Pxx*, with a
scaling to correct for power loss due to windowing. *Fs* is the
sampling frequency.
Keyword arguments:
*NFFT*: integer
The length of the fft segment, must be a power of 2
*Fs*: integer
The sampling frequency.
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the yextents of the image to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
*detrend*:
The function applied to each segment before fft-ing,
designed to remove the mean or linear trend. Unlike in
matlab, where the *detrend* parameter is a vector, in
matplotlib is it a function. The :mod:`~matplotlib.pylab`
module defines :func:`~matplotlib.pylab.detrend_none`,
:func:`~matplotlib.pylab.detrend_mean`, and
:func:`~matplotlib.pylab.detrend_linear`, but you can use
a custom function as well.
*window*:
The function used to window the segments. *window* is a
function, unlike in matlab where it is a vector.
:mod:`~matplotlib.pylab` defines
:func:`~matplotlib.pylab.window_none`, and
:func:`~matplotlib.pylab.window_hanning`, but you can use
a custom function as well.
*noverlap*: integer
Gives the length of the overlap between segments.
Returns the tuple (*Pxx*, *freqs*).
For plotting, the power is plotted as
:math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
is returned.
References:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the :class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
- quiver(self, *args, **kw)
- Plot a 2-D field of arrows.
call signatures::
quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)
Arguments:
*X*, *Y*:
The x and y coordinates of the arrow locations
(default is tail of arrow; see *pivot* kwarg)
*U*, *V*:
give the *x* and *y* components of the arrow vectors
*C*:
an optional array used to map colors to the arrows
All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y*
are absent, they will be generated as a uniform grid. If *U* and *V*
are 2-D arrays but *X* and *Y* are 1-D, and if len(*X*) and len(*Y*)
match the column and row dimensions of *U*, then *X* and *Y* will be
expanded with :func:`numpy.meshgrid`.
*U*, *V*, *C* may be masked arrays, but masked *X*, ** are not
supported at present.
Keyword arguments:
*units*: ['width' | 'height' | 'dots' | 'inches' | 'x' | 'y' ]
arrow units; the arrow dimensions *except for length* are
in multiples of this unit.
* 'width' or 'height': the width or height of the axes
* 'dots' or 'inches': pixels or inches, based on the figure dpi
* 'x' or 'y': *X* or *Y* data units
In all cases the arrow aspect ratio is 1, so that if *U*==*V* the
angle of the arrow on the plot is 45 degrees CCW from the *x*-axis.
The arrows scale differently depending on the units, however.
For 'x' or 'y', the arrows get larger as one zooms in; for other
units, the arrow size is independent of the zoom state. For
'width or 'height', the arrow size increases with the width and
height of the axes, respectively, when the the window is resized;
for 'dots' or 'inches', resizing does not change the arrows.
*scale*: [ None | float ]
data units per arrow unit, e.g. m/s per plot width;
a smaller scale parameter makes the arrow longer.
If *None*, a simple autoscaling algorithm is used, based
on the average vector length and the number of vectors.
*width*:
shaft width in arrow units; default depends on choice of units,
above, and number of vectors; a typical starting value is about
0.005 times the width of the plot.
*headwidth*: scalar
head width as multiple of shaft width, default is 3
*headlength*: scalar
head length as multiple of shaft width, default is 5
*headaxislength*: scalar
head length at shaft intersection, default is 4.5
*minshaft*: scalar
length below which arrow scales, in units of head length. Do not
set this to less than 1, or small arrows will look terrible!
Default is 1
*minlength*: scalar
minimum length as a multiple of shaft width; if an arrow length
is less than this, plot a dot (hexagon) of this diameter instead.
Default is 1.
*pivot*: [ 'tail' | 'middle' | 'tip' ]
The part of the arrow that is at the grid point; the arrow
rotates about this point, hence the name *pivot*.
*color*: [ color | color sequence ]
This is a synonym for the
:class:`~matplotlib.collections.PolyCollection` facecolor kwarg.
If *C* has been set, *color* has no effect.
The defaults give a slightly swept-back arrow; to make the head a
triangle, make *headaxislength* the same as *headlength*. To make the
arrow more pointed, reduce *headwidth* or increase *headlength* and
*headaxislength*. To make the head smaller relative to the shaft,
scale down all the head parameters. You will probably do best to leave
minshaft alone.
linewidths and edgecolors can be used to customize the arrow
outlines. Additional :class:`~matplotlib.collections.PolyCollection`
keyword arguments:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
- quiverkey(self, *args, **kw)
- Add a key to a quiver plot.
call signature::
quiverkey(Q, X, Y, U, label, **kw)
Arguments:
*Q*:
The Quiver instance returned by a call to quiver.
*X*, *Y*:
The location of the key; additional explanation follows.
*U*:
The length of the key
*label*:
a string with the length and units of the key
Keyword arguments:
*coordinates* = [ 'axes' | 'figure' | 'data' | 'inches' ]
Coordinate system and units for *X*, *Y*: 'axes' and 'figure'
are normalized coordinate systems with 0,0 in the lower
left and 1,1 in the upper right; 'data' are the axes
data coordinates (used for the locations of the vectors
in the quiver plot itself); 'inches' is position in the
figure in inches, with 0,0 at the lower left corner.
*color*:
overrides face and edge colors from *Q*.
*labelpos* = [ 'N' | 'S' | 'E' | 'W' ]
Position the label above, below, to the right, to the left
of the arrow, respectively.
*labelsep*:
Distance in inches between the arrow and the label.
Default is 0.1
*labelcolor*:
defaults to default :class:`~matplotlib.text.Text` color.
*fontproperties*:
A dictionary with keyword arguments accepted by the
:class:`~matplotlib.font_manager.FontProperties` initializer:
*family*, *style*, *variant*, *size*, *weight*
Any additional keyword arguments are used to override vector
properties taken from *Q*.
The positioning of the key depends on *X*, *Y*, *coordinates*, and
*labelpos*. If *labelpos* is 'N' or 'S', *X*, *Y* give the position
of the middle of the key arrow. If *labelpos* is 'E', *X*, *Y*
positions the head, and if *labelpos* is 'W', *X*, *Y* positions the
tail; in either of these two cases, *X*, *Y* is somewhere in the
middle of the arrow+label key object.
- redraw_in_frame(self)
- This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
- relim(self)
- recompute the data limits based on current artists
- scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, faceted=True, verts=None, **kwargs)
- call signatures::
scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
verts=None, **kwargs)
Make a scatter plot of *x* versus *y*, where *x*, *y* are 1-D
sequences of the same length, *N*.
Keyword arguments:
*s*:
size in points^2. It is a scalar or an array of the same
length as *x* and *y*.
*c*:
a color. *c* can be a single color format string, or a
sequence of color specifications of length *N*, or a
sequence of *N* numbers to be mapped to colors using the
*cmap* and *norm* specified via kwargs (see below). Note
that *c* should not be a single numeric RGB or RGBA
sequence because that is indistinguishable from an array
of values to be colormapped. *c* can be a 2-D array in
which the rows are RGB or RGBA, however.
*marker*:
can be one of:
===== ==============
Value Description
===== ==============
's' square
'o' circle
'^' triangle up
'>' triangle right
'v' triangle down
'<' triangle left
'd' diamond
'p' pentagram
'h' hexagon
'8' octagon
'+' plus
'x' cross
===== ==============
The marker can also be a tuple (*numsides*, *style*,
*angle*), which will create a custom, regular symbol.
*numsides*:
the number of sides
*style*:
the style of the regular symbol:
===== =============================================
Value Description
===== =============================================
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (*numsides* and *angle* is ignored)
===== =============================================
*angle*:
the angle of rotation of the symbol
Finally, *marker* can be (*verts*, 0): *verts* is a
sequence of (*x*, *y*) vertices for a custom scatter
symbol. Alternatively, use the kwarg combination
*marker* = *None*, *verts* = *verts*.
Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in
which case all masks will be combined and only unmasked points
will be plotted.
Other keyword arguments: the color mapping and normalization
arguments will be used only if *c* is an array of floats.
*cmap*: [ None | Colormap ]
A :class:`matplotlib.colors.Colormap` instance. If *None*,
defaults to rc ``image.cmap``. *cmap* is only used if *c*
is an array of floats.
*norm*: [ None | Normalize ]
A :class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0, 1. If *None*, use the default
:func:`normalize`. *norm* is only used if *c* is an array
of floats.
*vmin*/*vmax*:
*vmin* and *vmax* are used in conjunction with norm to
normalize luminance data. If either are None, the min and
max of the color array *C* is used. Note if you pass a
*norm* instance, your settings for *vmin* and *vmax* will
be ignored.
*alpha*: 0 <= scalar <= 1
The alpha value for the patches
*linewidths*: [ None | scalar | sequence ]
If *None*, defaults to (lines.linewidth,). Note that this
is a tuple, and if you set the linewidths argument you
must set it as a sequence of floats, as required by
:class:`~matplotlib.collections.RegularPolyCollection`.
Optional kwargs control the
:class:`~matplotlib.collections.Collection` properties; in
particular:
*edgecolors*:
'none' to plot faces with no outlines
*facecolors*:
'none' to plot unfilled outlines
Here are the standard descriptions of all the
:class:`~matplotlib.collections.Collection` kwargs:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
transform unknown
visible [True | False]
zorder any number
============ ======================================================================
A :class:`~matplotlib.collections.Collection` instance is
returned.
- semilogx(self, *args, **kwargs)
- call signature::
semilogx(*args, **kwargs)
Make a plot with log scaling on the *x* axis.
:func:`semilogx` supports all the keyword arguments of
:func:`~matplotlib.pyplot.plot` and
:meth:`matplotlib.axes.Axes.set_xscale`.
Notable keyword arguments:
*basex*: scalar > 1
base of the *x* logarithm
*subsx*: [ None | sequence ]
The location of the minor xticks; *None* defaults to
autosubs, which depend on the number of decades in the
plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for
details.
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
See :meth:`loglog` for example code and figure
- semilogy(self, *args, **kwargs)
- call signature::
semilogy(*args, **kwargs)
Make a plot with log scaling on the *y* axis.
:func:`semilogy` supports all the keyword arguments of
:func:`~matplotlib.pylab.plot` and
:meth:`matplotlib.axes.Axes.set_yscale`.
Notable keyword arguments:
*basey*: scalar > 1
Base of the *y* logarithm
*subsy*: [ None | sequence ]
The location of the minor yticks; *None* defaults to
autosubs, which depend on the number of decades in the
plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for
details.
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
====================== ====================================================================================================
Property Description
====================== ====================================================================================================
alpha float
animated [True | False]
antialiased or aa [True | False]
axes unknown
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color or c any matplotlib color
contains unknown
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle or ls [ '-' | '--' | '-.' | ':' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' | 'None' | ' ' | '' ]
linewidth or lw float value in points
lod [True | False]
marker [ '+' | ',' | '.' | '1' | '2' | '3' | '4'
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
picker unknown
pickradius unknown
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number
====================== ====================================================================================================
See :meth:`loglog` for example code and figure
- set_adjustable(self, adjustable)
- ACCEPTS: [ 'box' | 'datalim' ]
- set_anchor(self, anchor)
- *anchor*
===== ============
value description
===== ============
'C' Center
'SW' bottom left
'S' bottom
'SE' bottom right
'E' right
'NE' top right
'N' top
'NW' top left
'W' left
===== ============
- set_aspect(self, aspect, adjustable=None, anchor=None)
- *aspect*
======== ================================================
value description
======== ================================================
'auto' automatic; fill position rectangle with data
'normal' same as 'auto'; deprecated
'equal' same scaling from data to plot units for x and y
num a circle will be stretched such that the height
is num times the width. aspect=1 is the same as
aspect='equal'.
======== ================================================
*adjustable*
========= ============================
value description
========= ============================
'box' change physical size of axes
'datalim' change xlim or ylim
========= ============================
*anchor*
===== =====================
value description
===== =====================
'C' centered
'SW' lower left corner
'S' middle of bottom edge
'SE' lower right corner
etc.
===== =====================
- set_autoscale_on(self, b)
- Set whether autoscaling is applied on plot commands
accepts: [ *True* | *False* ]
- set_axis_bgcolor(self, color)
- set the axes background color
ACCEPTS: any matplotlib color - see
:func:`~matplotlib.pyplot.colors`
- set_axis_off(self)
- turn off the axis
- set_axis_on(self)
- turn on the axis
- set_axisbelow(self, b)
- Set whether the axis ticks and gridlines are above or below most artists
ACCEPTS: [ *True* | *False* ]
- set_color_cycle(self, clist)
- Set the color cycle for any future plot commands on this Axes.
clist is a list of mpl color specifiers.
- set_cursor_props(self, *args)
- Set the cursor property as::
ax.set_cursor_props(linewidth, color)
or::
ax.set_cursor_props((linewidth, color))
ACCEPTS: a (*float*, *color*) tuple
- set_figure(self, fig)
- Set the class:`~matplotlib.axes.Axes` figure
accepts a class:`~matplotlib.figure.Figure` instance
- set_frame_on(self, b)
- Set whether the axes rectangle patch is drawn
ACCEPTS: [ *True* | *False* ]
- set_navigate(self, b)
- Set whether the axes responds to navigation toolbar commands
ACCEPTS: [ True | False ]
- set_navigate_mode(self, b)
- Set the navigation toolbar button status;
.. warning::
this is not a user-API function.
- set_position(self, pos, which='both')
- Set the axes position with::
pos = [left, bottom, width, height]
in relative 0,1 coords, or *pos* can be a
:class:`~matplotlib.transforms.Bbox`
There are two position variables: one which is ultimately
used, but which may be modified by :meth:`apply_aspect`, and a
second which is the starting point for :meth:`apply_aspect`.
Optional keyword arguments:
*which*
========== ====================
value description
========== ====================
'active' to change the first
'original' to change the second
'both' to change both
========== ====================
- set_title(self, label, fontdict=None, **kwargs)
- call signature::
set_title(label, fontdict=None, **kwargs):
Set the title for the axes. See the :meth:`text` for
information of how override and the optional args work
kwargs are Text properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: str
- set_xbound(self, lower=None, upper=None)
- Set the lower and upper numerical bounds of the x-axis.
This method will honor axes inversion regardless of parameter order.
- set_xlabel(self, xlabel, fontdict=None, **kwargs)
- call signature::
set_xlabel(xlabel, fontdict=None, **kwargs)
Set the label for the xaxis. See the :meth:`text` docstring
for information of how override and the optional args work.
Valid kwargs are Text properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: str
- set_xlim(self, xmin=None, xmax=None, emit=True, **kwargs)
- call signature::
set_xlim(self, *args, **kwargs)
Set the limits for the xaxis
Returns the current xlimits as a length 2 tuple: [*xmin*, *xmax*]
Examples::
set_xlim((valmin, valmax))
set_xlim(valmin, valmax)
set_xlim(xmin=1) # xmax unchanged
set_xlim(xmax=1) # xmin unchanged
Keyword arguments:
*ymin*: scalar
the min of the ylim
*ymax*: scalar
the max of the ylim
*emit*: [ True | False ]
notify observers of lim change
ACCEPTS: len(2) sequence of floats
- set_xscale(self, value, **kwargs)
- call signature::
set_xscale(value)
Set the scaling of the x-axis: 'linear' | 'log' | 'symlog'
ACCEPTS: ['linear' | 'log' | 'symlog']
Different kwargs are accepted, depending on the scale:
'linear'
'log'
*basex*/*basey*:
The base of the logarithm
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``
will place 10 logarithmically spaced minor ticks between
each major tick.
'symlog'
*basex*/*basey*:
The base of the logarithm
*linthreshx*/*linthreshy*:
The range (-*x*, *x*) within which the plot is linear (to
avoid having the plot go to infinity around zero).
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``
will place 10 logarithmically spaced minor ticks between
each major tick.
- set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs)
- call signature::
set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the xtick labels with list of strings *labels*. Return a
list of axis text instances.
*kwargs* set the :class:`~matplotlib.text.Text` properties.
Valid properties are
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: sequence of strings
- set_xticks(self, ticks, minor=False)
- Set the x ticks with list of *ticks*
ACCEPTS: sequence of floats
- set_ybound(self, lower=None, upper=None)
- Set the lower and upper numerical bounds of the y-axis.
This method will honor axes inversion regardless of parameter order.
- set_ylabel(self, ylabel, fontdict=None, **kwargs)
- call signature::
set_ylabel(ylabel, fontdict=None, **kwargs)
Set the label for the yaxis
See the :meth:`text` doctstring for information of how
override and the optional args work
Valid kwargs are Text properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: str
- set_ylim(self, ymin=None, ymax=None, emit=True, **kwargs)
- call signature::
set_ylim(self, *args, **kwargs):
Set the limits for the yaxis; v = [ymin, ymax]::
set_ylim((valmin, valmax))
set_ylim(valmin, valmax)
set_ylim(ymin=1) # ymax unchanged
set_ylim(ymax=1) # ymin unchanged
Keyword arguments:
*ymin*: scalar
the min of the ylim
*ymax*: scalar
the max of the ylim
*emit*: [ True | False ]
notify observers of lim change
Returns the current ylimits as a length 2 tuple
ACCEPTS: len(2) sequence of floats
- set_yscale(self, value, **kwargs)
- call signature::
set_yscale(value)
Set the scaling of the y-axis: 'linear' | 'log' | 'symlog'
ACCEPTS: ['linear' | 'log' | 'symlog']
Different kwargs are accepted, depending on the scale:
'linear'
'log'
*basex*/*basey*:
The base of the logarithm
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``
will place 10 logarithmically spaced minor ticks between
each major tick.
'symlog'
*basex*/*basey*:
The base of the logarithm
*linthreshx*/*linthreshy*:
The range (-*x*, *x*) within which the plot is linear (to
avoid having the plot go to infinity around zero).
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]``
will place 10 logarithmically spaced minor ticks between
each major tick.
- set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs)
- call signature::
set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the ytick labels with list of strings *labels*. Return a list of
:class:`~matplotlib.text.Text` instances.
*kwargs* set :class:`~matplotlib.text.Text` properties for the labels.
Valid properties are
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
ACCEPTS: sequence of strings
- set_yticks(self, ticks, minor=False)
- Set the y ticks with list of *ticks*
ACCEPTS: sequence of floats
Keyword arguments:
*minor*: [ False | True ]
Sets the minor ticks if True
- specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x26b5ed8>, window=<function window_hanning at 0x26b5578>, noverlap=128, cmap=None, xextent=None)
- call signature::
specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window = mlab.window_hanning, noverlap=128,
cmap=None, xextent=None)
Compute a spectrogram of data in *x*. Data are split into
*NFFT* length segments and the PSD of each section is
computed. The windowing function *window* is applied to each
segment, and the amount of overlap of each segment is
specified with *noverlap*.
Keyword arguments:
*cmap*:
A :class:`matplotlib.cm.Colormap` instance; if *None* use
default determined by rc
*xextent*:
The image extent in the xaxes xextent=xmin, xmax
default 0, max(bins), 0, max(freqs) where bins is the return
value from mlab.specgram
See :meth:`~matplotlib.axes.Axes.psd` for information on the
other keyword arguments.
Return value is (*Pxx*, *freqs*, *bins*, *im*):
- *bins* are the time points the spectrogram is calculated over
- *freqs* is an array of frequencies
- *Pxx* is a len(times) x len(freqs) array of power
- *im* is a :class:`matplotlib.image.AxesImage` instance
Note: If *x* is real (i.e. non-complex), only the positive
spectrum is shown. If *x* is complex, both positive and
negative parts of the spectrum are shown.
- spy(self, Z, precision=None, marker=None, markersize=None, aspect='equal', **kwargs)
- call signature::
spy(Z, precision=None, marker=None, markersize=None,
aspect='equal', **kwargs)
``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*.
If *precision* is *None*, any non-zero value will be plotted;
else, values of :math:`|Z| > precision` will be plotted.
The array will be plotted as it would be printed, with
the first index (row) increasing down and the second
index (column) increasing to the right.
By default aspect is 'equal', so that each array element
occupies a square space; set the aspect kwarg to 'auto'
to allow the plot to fill the plot box, or to any scalar
number to specify the aspect ratio of an array element
directly.
Two plotting styles are available: image or marker. Both
are available for full arrays, but only the marker style
works for :class:`scipy.sparse.spmatrix` instances.
If *marker* and *markersize* are *None*, an image will be
returned and any remaining kwargs are passed to
:func:`~matplotlib.pyplot.imshow`; else, a
:class:`~matplotlib.lines.Line2D` object will be returned with
the value of marker determining the marker type, and any
remaining kwargs passed to the
:meth:`~matplotlib.axes.Axes.plot` method.
If *marker* and *markersize* are *None*, useful kwargs include:
* *cmap*
* *alpha*
See documentation for :func:`~matplotlib.pyplot.imshow` for details.
For controlling colors, e.g. cyan background and red marks,
use::
cmap = mcolors.ListedColormap(['c','r'])
If *marker* or *markersize* is not *None*, useful kwargs include:
* *marker*
* *markersize*
* *color*
See documentation for :func:`~matplotlib.pyplot.plot` for details.
Useful values for *marker* include:
* 's' square (default)
* 'o' circle
* '.' point
* ',' pixel
- start_pan(self, x, y, button)
- Called when a pan operation has started.
*x*, *y* are the mouse coordinates in display coords.
button is the mouse button number:
* 1: LEFT
* 2: MIDDLE
* 3: RIGHT
.. note::
Intended to be overridden by new projection types.
- stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-')
- call signature::
stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-')
A stem plot plots vertical lines (using *linefmt*) at each *x*
location from the baseline to *y*, and places a marker there
using *markerfmt*. A horizontal line at 0 is is plotted using
*basefmt*.
Return value is a tuple (*markerline*, *stemlines*,
*baseline*).
See `this document
<http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html>`_
for details and :file:`examples/pylab_examples/stem_plot.py` for a demo.
- step(self, x, y, *args, **kwargs)
- call signature::
step(x, y, *args, **kwargs)
Make a step plot. Additional keyword args to :func:`step` are the same
as those for :func:`~matplotlib.pyplot.plot`.
*x* and *y* must be 1-D sequences, and it is assumed, but not checked,
that *x* is uniformly increasing.
Keyword arguments:
*where*: [ 'pre' | 'post' | 'mid' ]
If 'pre', the interval from x[i] to x[i+1] has level y[i]
If 'post', that interval has level y[i+1]
If 'mid', the jumps in *y* occur half-way between the
*x*-values.
- table(self, **kwargs)
- call signature::
table(cellText=None, cellColours=None,
cellLoc='right', colWidths=None,
rowLabels=None, rowColours=None, rowLoc='left',
colLabels=None, colColours=None, colLoc='center',
loc='bottom', bbox=None):
Add a table to the current axes. Returns a
:class:`matplotlib.table.Table` instance. For finer grained
control over tables, use the :class:`~matplotlib.table.Table`
class and add it to the axes with
:meth:`~matplotlib.axes.Axes.add_table`.
Thanks to John Gill for providing the class and table.
kwargs control the :class:`~matplotlib.table.Table`
properties:
========= ===============================================
Property Description
========= ===============================================
alpha float
animated [True | False]
axes an axes instance
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
contains unknown
figure a :class:`matplotlib.figure.Figure` instance
fontsize a float in points
label any string
lod [True | False]
picker [None|float|boolean|callable]
transform unknown
visible [True | False]
zorder any number
========= ===============================================
- text(self, x, y, s, fontdict=None, withdash=False, **kwargs)
- call signature::
text(x, y, s, fontdict=None, **kwargs)
Add text in string *s* to axis at location *x*, *y*, data
coordinates.
Keyword arguments:
*fontdict*:
A dictionary to override the default text properties.
If *fontdict* is *None*, the defaults are determined by your rc
parameters.
*withdash*: [ False | True ]
Creates a :class:`~matplotlib.text.TextWithDash` instance
instead of a :class:`~matplotlib.text.Text` instance.
Individual keyword arguments can be used to override any given
parameter::
text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords (0,0 is
lower-left and 1,1 is upper-right). The example below places
text in the center of the axes::
text(0.5, 0.5,'matplotlib',
horizontalalignment='center',
verticalalignment='center',
transform = ax.transAxes)
You can put a rectangular box around the text instance (eg. to
set a background color) by using the keyword *bbox*. *bbox* is
a dictionary of :class:`matplotlib.patches.Rectangle`
properties. For example::
text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
Valid kwargs are :class:`matplotlib.text.Text` properties:
========================= =====================================================================
Property Description
========================= =====================================================================
alpha float
animated [True | False]
axes an axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
color any matplotlib color
contains unknown
family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ]
figure a :class:`matplotlib.figure.Figure` instance
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' | 'right' | 'left' ]
label any string
linespacing float
lod [True | False]
multialignment ['left' | 'right' | 'center' ]
name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [ angle in degrees 'vertical' | 'horizontal'
size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ]
style or fontstyle [ 'normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform unknown
variant [ 'normal' | 'small-caps' ]
verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ]
visible [True | False]
weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight']
x float
y float
zorder any number
========================= =====================================================================
- ticklabel_format(self, **kwargs)
- Convenience method for manipulating the ScalarFormatter
used by default for linear axes.
Optional keyword arguments:
======= =====================================
Keyword Description
======= =====================================
*style* [ 'sci' (or 'scientific') | 'plain' ]
plain turns off scientific notation
*axis* [ 'x' | 'y' | 'both' ]
======= =====================================
Only the major ticks are affected.
If the method is called when the
:class:`~matplotlib.ticker.ScalarFormatter` is not the
:class:`~matplotlib.ticker.Formatter` being used, an
:exc:`AttributeError` will be raised with no additional error
message.
Additional capabilities and/or friendlier error checking may
be added.
- twinx(self)
- call signature::
ax = twinx()
create a twin of Axes for generating a plot with a sharex
x-axis but independent y axis. The y-axis of self will have
ticks on left and the returned axes will have ticks on the
right
- twiny(self)
- call signature::
ax = twiny()
create a twin of Axes for generating a plot with a shared
y-axis but independent x axis. The x-axis of self will have
ticks on bottom and the returned axes will have ticks on the
top
- update_datalim(self, xys)
- Update the data lim bbox with seq of xy tups or equiv. 2-D array
- update_datalim_bounds(self, bounds)
- Update the datalim to include the given
:class:`~matplotlib.transforms.Bbox` *bounds*
- update_datalim_numerix(self, x, y)
- Update the data lim bbox with seq of xy tups
- vlines(self, x, ymin, ymax, colors='k', linestyles='solid', label='', **kwargs)
- call signature::
vlines(x, ymin, ymax, color='k')
Plot vertical lines at each *x* from *ymin* to *ymax*. *ymin*
or *ymax* can be scalars or len(*x*) numpy arrays. If they are
scalars, then the respective values are constant, else the
heights of the lines are determined by *ymin* and *ymax*.
*colors* is a line collections color args, either a single color
or a len(*x*) list of colors
*linestyle* is one of [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
Returns the :class:`matplotlib.collections.LineCollection`
that was added.
kwargs are :class:`~matplotlib.collections.LineCollection` properties:
============ ======================================================================
Property Description
============ ======================================================================
alpha float
animated [True | False]
antialiased Boolean or sequence of booleans
antialiaseds Boolean or sequence of booleans
array unknown
axes an axes instance
clim a length 2 sequence of floats
clip_box a :class:`matplotlib.transform.Bbox` instance
clip_on [True | False]
clip_path a :class:`~matplotlib.path.Path` instance and a
cmap a colormap
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains unknown
dashes ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
edgecolor matplotlib color arg or sequence of rgba tuples
edgecolors matplotlib color arg or sequence of rgba tuples
facecolor matplotlib color arg or sequence of rgba tuples
facecolors matplotlib color arg or sequence of rgba tuples
figure a :class:`matplotlib.figure.Figure` instance
label any string
linestyle ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linestyles ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ]
linewidth float or sequence of floats
linewidths float or sequence of floats
lod [True | False]
lw float or sequence of floats
norm unknown
offsets float or sequence of floats
picker [None|float|boolean|callable]
pickradius unknown
segments unknown
transform unknown
verts unknown
visible [True | False]
zorder any number
============ ======================================================================
- xaxis_date(self, tz=None)
- Sets up x-axis ticks and labels that treat the x data as dates.
*tz* is the time zone to use in labeling dates. Defaults to rc value.
- xaxis_inverted(self)
- Returns True if the x-axis is inverted.
- xcorr(self, x, y, normed=False, detrend=<function detrend_none at 0x26b5ed8>, usevlines=False, maxlags=None, **kwargs)
- call signature::
xcorr(x, y, normed=False, detrend=mlab.detrend_none,
usevlines=False, **kwargs):
Plot the cross correlation between *x* and *y*. If *normed* =
*True*, normalize the data but the cross correlation at 0-th
lag. *x* and y are detrended by the *detrend* callable
(default no normalization). *x* and *y* must be equal length.
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length ``2*maxlags+1`` lag vector
- *c* is the ``2*maxlags+1`` auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :func:`~matplotlib.pyplot.plot`.
The default *linestyle* is *None* and the default *marker* is
'o', though these can be overridden with keyword args. The
cross correlation is performed with :func:`numpy.correlate`
with *mode* = 2.
If *usevlines* is *True*:
:func:`~matplotlib.pyplot.vlines`
rather than :func:`~matplotlib.pyplot.plot` is used to draw
vertical lines from the origin to the xcorr. Otherwise the
plotstyle is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties.
The return value is a tuple (*lags*, *c*, *linecol*, *b*)
where *linecol* is the
:class:`matplotlib.collections.LineCollection` instance and
*b* is the *x*-axis.
*maxlags* is a positive integer detailing the number of lags to show.
The default value of *None* will return all ``(2*len(x)-1)`` lags.
**Example:**
:func:`~matplotlib.pyplot.xcorr` above, and
:func:`~matplotlib.pyplot.acorr` below.
**Example:**
.. plot:: ../mpl_examples/pylab_examples/xcorr_demo.py
- yaxis_date(self, tz=None)
- Sets up y-axis ticks and labels that treat the y data as dates.
*tz* is the time zone to use in labeling dates. Defaults to rc value.
- yaxis_inverted(self)
- Returns True if the y-axis is inverted.
Data and other attributes inherited from Axes:
- name = 'rectilinear'
- x = 'symlog'
Methods inherited from matplotlib.artist.Artist:
- add_callback(self, func)
- convert_xunits(self, x)
- for artists in an axes, if the xaxis as units support,
convert *x* using xaxis unit type
- convert_yunits(self, y)
- for artists in an axes, if the yaxis as units support,
convert *y* using yaxis unit type
- findobj(self, match=None)
- pyplot signature:
findobj(o=gcf(), match=None)
recursively find all :class:matplotlib.artist.Artist instances
contained in self
*match* can be
- None: return all objects contained in artist (including artist)
- function with signature ``boolean = match(artist)`` used to filter matches
- class instance: eg Line2D. Only return artists of class type
.. plot:: ../mpl_examples/pylab_examples/findobj_demo.py
- get_alpha(self)
- Return the alpha value used for blending - not supported on all
backends
- get_animated(self)
- return the artist's animated state
- get_axes(self)
- return the axes instance the artist resides in, or *None*
- get_clip_box(self)
- Return artist clipbox
- get_clip_on(self)
- Return whether artist uses clipping
- get_clip_path(self)
- Return artist clip path
- get_contains(self)
- return the _contains test used by the artist, or *None* for default.
- get_figure(self)
- Return the :class:`~matplotlib.figure.Figure` instance the
artist belongs to.
- get_label(self)
- get_picker(self)
- return the Pickeration instance used by this artist
- get_transform(self)
- Return the :class:`~matplotlib.transforms.Transform`
instance used by this artist.
- get_transformed_clip_path_and_affine(self)
- Return the clip path with the non-affine part of its
transformation applied, and the remaining affine part of its
transformation.
- get_visible(self)
- return the artist's visiblity
- get_zorder(self)
- have_units(self)
- return *True* if units are set on the x or y axes
- hitlist(self, event)
- List the children of the artist which contain the mouse event
- is_figure_set(self)
- is_transform_set(self)
- Artist has transform explicity let
- pchanged(self)
- fire event when property changed
- pickable(self)
- return *True* if self is pickable
- remove(self)
- Remove the artist from the figure if possible. The effect
will not be visible until the figure is redrawn, e.g., with
:meth:`matplotlib.axes.Axes.draw_idle`. Call
:meth:`matplotlib.axes.Axes.relim` to update the axes limits
if desired.
Note: :meth:`~matplotlib.axes.Axes.relim` will not see
collections even if the collection was added to axes with
*autolim* = True.
Note: there is no support for removing the artist's legend entry.
- remove_callback(self, oid)
- set(self, **kwargs)
- A tkstyle set command, pass *kwargs* to set properties
- set_alpha(self, alpha)
- Set the alpha value used for blending - not supported on
all backends
ACCEPTS: float
- set_animated(self, b)
- set the artist's animation state
ACCEPTS: [True | False]
- set_axes(self, axes)
- set the axes instance in which the artist resides, if any
ACCEPTS: an axes instance
- set_clip_box(self, clipbox)
- Set the artist's clip Bbox
ACCEPTS: a :class:`matplotlib.transform.Bbox` instance
- set_clip_on(self, b)
- Set whether artist uses clipping
ACCEPTS: [True | False]
- set_clip_path(self, path, transform=None)
- Set the artist's clip path, which may be:
* a :class:`~matplotlib.patches.Patch` (or subclass) instance
* a :class:`~matplotlib.path.Path` instance, in which case
an optional :class:`~matplotlib.transforms.Transform`
instance may be provided, which will be applied to the
path before using it for clipping.
* *None*, to remove the clipping path
For efficiency, if the path happens to be an axis-aligned
rectangle, this method will set the clipping box to the
corresponding rectangle and set the clipping path to *None*.
ACCEPTS: a :class:`~matplotlib.path.Path` instance and a
:class:`~matplotlib.transforms.Transform` instance, a
:class:`~matplotlib.patches.Patch` instance, or *None*.
- set_contains(self, picker)
- Replace the contains test used by this artist. The new picker should
be a callable function which determines whether the artist is hit by the
mouse event::
hit, props = picker(artist, mouseevent)
If the mouse event is over the artist, return *hit=True* and *props*
is a dictionary of properties you want returned with the contains test.
- set_label(self, s)
- Set the line label to *s* for auto legend
ACCEPTS: any string
- set_lod(self, on)
- Set Level of Detail on or off. If on, the artists may examine
things like the pixel width of the axes and draw a subset of
their contents accordingly
ACCEPTS: [True | False]
- set_picker(self, picker)
- set the epsilon for picking used by this artist
*picker* can be one of the following:
* *None*: picking is disabled for this artist (default)
* A boolean: if *True* then picking will be enabled and the
artist will fire a pick event if the mouse event is over
the artist
* A float: if picker is a number it is interpreted as an
epsilon tolerance in points and the artist will fire
off an event if it's data is within epsilon of the mouse
event. For some artists like lines and patch collections,
the artist may provide additional data to the pick event
that is generated, e.g. the indices of the data within
epsilon of the pick event
* A function: if picker is callable, it is a user supplied
function which determines whether the artist is hit by the
mouse event::
hit, props = picker(artist, mouseevent)
to determine the hit test. if the mouse event is over the
artist, return *hit=True* and props is a dictionary of
properties you want added to the PickEvent attributes.
ACCEPTS: [None|float|boolean|callable]
- set_transform(self, t)
- Set the :class:`~matplotlib.transforms.Transform` instance
used by this artist.
- set_visible(self, b)
- set the artist's visiblity
ACCEPTS: [True | False]
- set_zorder(self, level)
- Set the zorder for the artist
ACCEPTS: any number
- update(self, props)
- update_from(self, other)
- Copy properties from *other* to *self*.
Data descriptors inherited from matplotlib.artist.Artist:
- __dict__
- dictionary for instance variables (if defined)
- __weakref__
- list of weak references to the object (if defined)
Data and other attributes inherited from matplotlib.artist.Artist:
- aname = 'Artist'
- zorder = 0
|
class SubplotBase |
|
Base class for subplots, which are Axes instances with additional
methods to facilitate generating and manipulating a set of Axes
within a figure. |
|
Methods defined here:
- __init__(self, fig, *args, **kwargs)
- fig is a figure instance
args is numRows, numCols, plotNum
where the array of subplots in the figure has dimensions
numRows, numCols, and where plotNum is the number of the
subplot being created. plotNum starts at 1 in the upper
right corner and increases to the right.
If numRows<=numCols<=plotNum<10, args can be the decimal
integer numRows*100 + numCols*10 + plotNum.
- change_geometry(self, numrows, numcols, num)
- change subplot geometry, eg from 1,1,1 to 2,2,3
- get_geometry(self)
- get the subplot geometry, eg 2,2,3
- is_first_col(self)
- is_first_row(self)
- is_last_col(self)
- is_last_row(self)
- label_outer(self)
- set the visible property on ticklabels so xticklabels are
visible only if the subplot is in the last row and yticklabels
are visible only if the subplot is in the first column
- update_params(self)
- update the subplot position from fig.subplotpars
| |