Menu

[r6763]: / trunk / py4science / examples / pyrex / nnbf / nnbf.pyx  Maximize  Restore  History

Download this file

113 lines (87 with data), 3.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
"""
A brute force nearest neighbor routine with incremental add. The
internal array data structure grows as you add points
"""
import numpy as np
cimport numpy as np
cdef extern from "math.h":
float sqrt(float)
cdef inline int is_neighbor(int n, double*row, double*pp, double d2max):
"""
return 1 if the sum-of-squares of n length array row[j]-pp[j] <= d2max
"""
cdef int j
cdef double d, d2
d2 = 0.
for j in range(n):
d = row[j] - pp[j]
d2 += d*d
if d2>d2max:
return 0
return 1
cdef class NNBF:
cdef readonly object data
#cdef double* raw_data
cdef readonly int n, numrows, numpoints
def __init__(self, n):
"""
create a buffer to hold n dimensional points
"""
#cdef np.ndarray[double, ndim=2] inner_data
self.n = n
self.numrows = 100
# XXX how to create mepty as contiguous w/o copy?
self.data = np.empty((self.numrows, self.n), dtype=np.float)
#inner_data = self.data
#self.raw_data = <double*>inner_data.data
self.numpoints = 0
def add(NNBF self, object point):
"""
add a point to the buffer, grow if necessary
"""
#cdef np.ndarray[double, ndim=2] inner_data
cdef np.ndarray[double, ndim=1] pp
pp = np.asarray(point).astype(np.float)
self.data[self.numpoints] = pp
self.numpoints += 1
if self.numpoints==self.numrows:
## XXX do I need to do memory management here, eg free
## raw_data if I were using it?
self.numrows *= 2
newdata = np.empty((self.numrows, self.n), np.float)
newdata[:self.numpoints] = self.data
self.data = newdata
#self.raw_data = <double*>inner_data.data
def get_data(NNBF self):
"""
return a copy of data added so far as a numpoints x n array
"""
return self.data[:self.numpoints]
def find_neighbors(NNBF self, object point, double radius):
"""
return a list of indices into data which are within radius
from point
"""
cdef int i, neighbor
cdef double d2max
cdef np.ndarray[double, ndim=1] pp
cdef np.ndarray[double, ndim=1] row
if len(point)!=self.n:
raise ValueError('Expected a length %d vector'%self.n)
pp = np.asarray(point).astype(np.float)
d2max = radius*radius
neighbors = []
for i in range(self.numpoints):
# XXX : is there a more efficient way to access the row
# data? Can/should we be using raw_data here?
row = self.data[i]
neighbor = is_neighbor(
self.n,
<double*>row.data,
<double*>pp.data,
d2max)
# if the number of points in the cluster is small, the
# python list performance should not kill us
if neighbor:
neighbors.append(i)
return neighbors
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.