Menu

[r6280]: / trunk / matplotlib / lib / matplotlib / collections.py  Maximize  Restore  History

Download this file

1090 lines (902 with data), 38.6 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
"""
Classes for the efficient drawing of large collections of objects that
share most properties, e.g. a large number of line segments or
polygons.
The classes are not meant to be as flexible as their single element
counterparts (e.g. you may not be able to select all line styles) but
they are meant to be fast for common use cases (e.g. a bunch of solid
line segemnts)
"""
import copy, math, warnings
import numpy as np
from numpy import ma
import matplotlib as mpl
import matplotlib.cbook as cbook
import matplotlib.colors as _colors # avoid conflict with kwarg
import matplotlib.cm as cm
import matplotlib.transforms as transforms
import matplotlib.artist as artist
import matplotlib.backend_bases as backend_bases
import matplotlib.path as mpath
class Collection(artist.Artist, cm.ScalarMappable):
"""
Base class for Collections. Must be subclassed to be usable.
All properties in a collection must be sequences or scalars;
if scalars, they will be converted to sequences. The
property of the ith element of the collection is::
prop[i % len(props)]
Keyword arguments and default values:
* *edgecolors*: None
* *facecolors*: None
* *linewidths*: None
* *antialiaseds*: None
* *offsets*: None
* *transOffset*: transforms.IdentityTransform()
* *norm*: None (optional for
:class:`matplotlib.cm.ScalarMappable`)
* *cmap*: None (optional for
:class:`matplotlib.cm.ScalarMappable`)
*offsets* and *transOffset* are used to translate the patch after
rendering (default no offsets).
If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds*
are None, they default to their :data:`matplotlib.rcParams` patch
setting, in sequence form.
The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If
the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None
(ie a call to set_array has been made), at draw time a call to
scalar mappable will be made to set the face colors.
"""
_offsets = np.array([], np.float_)
_transOffset = transforms.IdentityTransform()
_transforms = []
zorder = 1
def __init__(self,
edgecolors=None,
facecolors=None,
linewidths=None,
linestyles='solid',
antialiaseds = None,
offsets = None,
transOffset = None,
norm = None, # optional for ScalarMappable
cmap = None, # ditto
pickradius = 5.0,
**kwargs
):
"""
Create a Collection
%(Collection)s
"""
artist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
self.set_edgecolor(edgecolors)
self.set_facecolor(facecolors)
self.set_linewidth(linewidths)
self.set_linestyle(linestyles)
self.set_antialiased(antialiaseds)
self._uniform_offsets = None
self._offsets = np.array([], np.float_)
if offsets is not None:
offsets = np.asarray(offsets)
if len(offsets.shape) == 1:
offsets = offsets[np.newaxis,:] # Make it Nx2.
if transOffset is not None:
self._offsets = offsets
self._transOffset = transOffset
else:
self._uniform_offsets = offsets
self._pickradius = pickradius
self.update(kwargs)
def _get_value(self, val):
try: return (float(val), )
except TypeError:
if cbook.iterable(val) and len(val):
try: float(val[0])
except TypeError: pass # raise below
else: return val
raise TypeError('val must be a float or nonzero sequence of floats')
def _get_bool(self, val):
try: return (bool(val), )
except TypeError:
if cbook.iterable(val) and len(val):
try: bool(val[0])
except TypeError: pass # raise below
else: return val
raise TypeError('val must be a bool or nonzero sequence of them')
def get_paths(self):
raise NotImplementedError
def get_transforms(self):
return self._transforms
def get_datalim(self, transData):
transform = self.get_transform()
transOffset = self._transOffset
offsets = self._offsets
paths = self.get_paths()
if not transform.is_affine:
paths = [transform.transform_path_non_affine(p) for p in paths]
transform = transform.get_affine()
if not transOffset.is_affine:
offsets = transOffset.transform_non_affine(offsets)
transOffset = transOffset.get_affine()
offsets = np.asarray(offsets, np.float_)
result = mpath.get_path_collection_extents(
transform.frozen(), paths, self.get_transforms(),
offsets, transOffset.frozen())
result = result.inverse_transformed(transData)
return result
def get_window_extent(self, renderer):
bbox = self.get_datalim(transforms.IdentityTransform())
#TODO:check to ensure that this does not fail for
#cases other than scatter plot legend
return bbox
def _prepare_points(self):
"""Point prep for drawing and hit testing"""
transform = self.get_transform()
transOffset = self._transOffset
offsets = self._offsets
paths = self.get_paths()
if self.have_units():
paths = []
for path in self.get_paths():
vertices = path.vertices
xs, ys = vertices[:, 0], vertices[:, 1]
xs = self.convert_xunits(xs)
ys = self.convert_yunits(ys)
paths.append(mpath.Path(zip(xs, ys), path.codes))
if len(self._offsets):
xs = self.convert_xunits(self._offsets[:0])
ys = self.convert_yunits(self._offsets[:1])
offsets = zip(xs, ys)
offsets = np.asarray(offsets, np.float_)
if not transform.is_affine:
paths = [transform.transform_path_non_affine(path) for path in paths]
transform = transform.get_affine()
if not transOffset.is_affine:
offsets = transOffset.transform_non_affine(offsets)
transOffset = transOffset.get_affine()
return transform, transOffset, offsets, paths
def draw(self, renderer):
if not self.get_visible(): return
renderer.open_group(self.__class__.__name__)
self.update_scalarmappable()
clippath, clippath_trans = self.get_transformed_clip_path_and_affine()
if clippath_trans is not None:
clippath_trans = clippath_trans.frozen()
transform, transOffset, offsets, paths = self._prepare_points()
renderer.draw_path_collection(
transform.frozen(), self.clipbox, clippath, clippath_trans,
paths, self.get_transforms(),
offsets, transOffset,
self.get_facecolor(), self.get_edgecolor(), self._linewidths,
self._linestyles, self._antialiaseds)
renderer.close_group(self.__class__.__name__)
def contains(self, mouseevent):
"""
Test whether the mouse event occurred in the collection.
Returns True | False, ``dict(ind=itemlist)``, where every
item in itemlist contains the event.
"""
if callable(self._contains): return self._contains(self,mouseevent)
if not self.get_visible(): return False,{}
transform, transOffset, offsets, paths = self._prepare_points()
ind = mpath.point_in_path_collection(
mouseevent.x, mouseevent.y, self._pickradius,
transform.frozen(), paths, self.get_transforms(),
offsets, transOffset, len(self._facecolors)>0)
return len(ind)>0,dict(ind=ind)
def set_pickradius(self,pickradius): self.pickradius = 5
def get_pickradius(self): return self.pickradius
def set_offsets(self, offsets):
"""
Set the offsets for the collection. *offsets* can be a scalar
or a sequence.
ACCEPTS: float or sequence of floats
"""
offsets = np.asarray(offsets, np.float_)
if len(offsets.shape) == 1:
offsets = offsets[np.newaxis,:] # Make it Nx2.
#This decision is based on how they are initialized above
if self._uniform_offsets is None:
self._offsets = offsets
else:
self._uniform_offsets = offsets
def get_offsets(self):
"""
Return the offsets for the collection.
"""
#This decision is based on how they are initialized above in __init__()
if self._uniform_offsets is None:
return self._offsets
else:
return self._uniform_offsets
def set_linewidths(self, lw):
"""
Set the linewidth(s) for the collection. *lw* can be a scalar
or a sequence; if it is a sequence the patches will cycle
through the sequence
ACCEPTS: float or sequence of floats
"""
if lw is None: lw = mpl.rcParams['patch.linewidth']
self._linewidths = self._get_value(lw)
set_lw = set_linewidth = set_linewidths
def set_linestyles(self, ls):
"""
Set the linestyles(s) for the collection.
ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' |
(offset, on-off-dash-seq) ]
"""
try:
dashd = backend_bases.GraphicsContextBase.dashd
if cbook.is_string_like(ls):
if ls in dashd:
dashes = [dashd[ls]]
elif ls in cbook.ls_mapper:
dashes = [dashd[cbook.ls_mapper[ls]]]
else:
raise ValueError()
elif cbook.iterable(ls):
try:
dashes = []
for x in ls:
if cbook.is_string_like(x):
if x in dashd:
dashes.append(dashd[x])
elif x in cbook.ls_mapper:
dashes.append(dashd[cbook.ls_mapper[x]])
else:
raise ValueError()
elif cbook.iterable(x) and len(x) == 2:
dashes.append(x)
else:
raise ValueError()
except ValueError:
if len(ls)==2:
dashes = ls
else:
raise ValueError()
else:
raise ValueError()
except ValueError:
raise ValueError('Do not know how to convert %s to dashes'%ls)
self._linestyles = dashes
set_dashes = set_linestyle = set_linestyles
def set_antialiased(self, aa):
"""
Set the antialiasing state for rendering.
ACCEPTS: Boolean or sequence of booleans
"""
if aa is None:
aa = mpl.rcParams['patch.antialiased']
self._antialiaseds = self._get_bool(aa)
set_antialiaseds = set_antialiased
def set_color(self, c):
"""
Set both the edgecolor and the facecolor.
ACCEPTS: matplotlib color arg or sequence of rgba tuples
.. seealso::
:meth:`set_facecolor`, :meth:`set_edgecolor`
"""
self.set_facecolor(c)
self.set_edgecolor(c)
def set_facecolor(self, c):
"""
Set the facecolor(s) of the collection. *c* can be a
matplotlib color arg (all patches have same color), or a
sequence or rgba tuples; if it is a sequence the patches will
cycle through the sequence
ACCEPTS: matplotlib color arg or sequence of rgba tuples
"""
if c is None: c = mpl.rcParams['patch.facecolor']
self._facecolors_original = c
self._facecolors = _colors.colorConverter.to_rgba_array(c, self._alpha)
set_facecolors = set_facecolor
def get_facecolor(self):
return self._facecolors
get_facecolors = get_facecolor
def get_edgecolor(self):
if self._edgecolors == 'face':
return self.get_facecolors()
else:
return self._edgecolors
get_edgecolors = get_edgecolor
def set_edgecolor(self, c):
"""
Set the edgecolor(s) of the collection. *c* can be a
matplotlib color arg (all patches have same color), or a
sequence or rgba tuples; if it is a sequence the patches will
cycle through the sequence.
If *c* is 'face', the edge color will always be the same as
the face color.
ACCEPTS: matplotlib color arg or sequence of rgba tuples
"""
if c == 'face':
self._edgecolors = 'face'
self._edgecolors_original = 'face'
else:
if c is None: c = mpl.rcParams['patch.edgecolor']
self._edgecolors_original = c
self._edgecolors = _colors.colorConverter.to_rgba_array(c, self._alpha)
set_edgecolors = set_edgecolor
def set_alpha(self, alpha):
"""
Set the alpha tranparencies of the collection. *alpha* must be
a float.
ACCEPTS: float
"""
try: float(alpha)
except TypeError: raise TypeError('alpha must be a float')
else:
artist.Artist.set_alpha(self, alpha)
try:
self._facecolors = _colors.colorConverter.to_rgba_array(
self._facecolors_original, self._alpha)
except (AttributeError, TypeError, IndexError):
pass
try:
if self._edgecolors_original != 'face':
self._edgecolors = _colors.colorConverter.to_rgba_array(
self._edgecolors_original, self._alpha)
except (AttributeError, TypeError, IndexError):
pass
def get_linewidths(self):
return self._linewidths
get_linewidth = get_linewidths
def get_linestyles(self):
return self._linestyles
get_dashes = get_linestyle = get_linestyles
def update_scalarmappable(self):
"""
If the scalar mappable array is not none, update colors
from scalar data
"""
if self._A is None: return
if self._A.ndim > 1:
raise ValueError('Collections can only map rank 1 arrays')
if len(self._facecolors):
self._facecolors = self.to_rgba(self._A, self._alpha)
else:
self._edgecolors = self.to_rgba(self._A, self._alpha)
def update_from(self, other):
'copy properties from other to self'
artist.Artist.update_from(self, other)
self._antialiaseds = other._antialiaseds
self._edgecolors_original = other._edgecolors_original
self._edgecolors = other._edgecolors
self._facecolors_original = other._facecolors_original
self._facecolors = other._facecolors
self._linewidths = other._linewidths
self._linestyles = other._linestyles
self._pickradius = other._pickradius
# these are not available for the object inspector until after the
# class is built so we define an initial set here for the init
# function and they will be overridden after object defn
artist.kwdocd['Collection'] = """\
Valid Collection keyword arguments:
* *edgecolors*: None
* *facecolors*: None
* *linewidths*: None
* *antialiaseds*: None
* *offsets*: None
* *transOffset*: transforms.IdentityTransform()
* *norm*: None (optional for
:class:`matplotlib.cm.ScalarMappable`)
* *cmap*: None (optional for
:class:`matplotlib.cm.ScalarMappable`)
*offsets* and *transOffset* are used to translate the patch after
rendering (default no offsets)
If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds*
are None, they default to their :data:`matplotlib.rcParams` patch
setting, in sequence form.
"""
class QuadMesh(Collection):
"""
Class for the efficient drawing of a quadrilateral mesh.
A quadrilateral mesh consists of a grid of vertices. The
dimensions of this array are (*meshWidth* + 1, *meshHeight* +
1). Each vertex in the mesh has a different set of "mesh
coordinates" representing its position in the topology of the
mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth*
and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates
(*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*)
form one of the quadrilaterals in the mesh. There are thus
(*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh
need not be regular and the polygons need not be convex.
A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) *
(*meshHeight* + 1))) numpy array *coordinates*, where each row is
the *x* and *y* coordinates of one of the vertices. To define the
function that maps from a data point to its corresponding color,
use the :meth:`set_cmap` method. Each of these arrays is indexed in
row-major order by the mesh coordinates of the vertex (or the mesh
coordinates of the lower left vertex, in the case of the
colors).
For example, the first entry in *coordinates* is the
coordinates of the vertex at mesh coordinates (0, 0), then the one
at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and
so on.
"""
def __init__(self, meshWidth, meshHeight, coordinates, showedges, antialiased=True):
Collection.__init__(self)
self._meshWidth = meshWidth
self._meshHeight = meshHeight
self._coordinates = coordinates
self._showedges = showedges
self._antialiased = antialiased
self._paths = None
self._bbox = transforms.Bbox.unit()
self._bbox.update_from_data_xy(coordinates.reshape(
((meshWidth + 1) * (meshHeight + 1), 2)))
# By converting to floats now, we can avoid that on every draw.
self._coordinates = self._coordinates.reshape((meshHeight + 1, meshWidth + 1, 2))
self._coordinates = np.array(self._coordinates, np.float_)
def get_paths(self, dataTrans=None):
if self._paths is None:
self._paths = self.convert_mesh_to_paths(
self._meshWidth, self._meshHeight, self._coordinates)
return self._paths
#@staticmethod
def convert_mesh_to_paths(meshWidth, meshHeight, coordinates):
"""
Converts a given mesh into a sequence of
:class:`matplotlib.path.Path` objects for easier rendering by
backends that do not directly support quadmeshes.
This function is primarily of use to backend implementers.
"""
Path = mpath.Path
if ma.isMaskedArray(coordinates):
c = coordinates.data
else:
c = coordinates
# We could let the Path constructor generate the codes for us,
# but this is faster, since we know they'll always be the same
codes = np.array(
[Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY],
Path.code_type)
points = np.concatenate((
c[0:-1, 0:-1],
c[0:-1, 1: ],
c[1: , 1: ],
c[1: , 0:-1],
c[0:-1, 0:-1]
), axis=2)
points = points.reshape((meshWidth * meshHeight, 5, 2))
return [Path(x, codes) for x in points]
convert_mesh_to_paths = staticmethod(convert_mesh_to_paths)
def get_datalim(self, transData):
return self._bbox
def draw(self, renderer):
if not self.get_visible(): return
renderer.open_group(self.__class__.__name__)
transform = self.get_transform()
transOffset = self._transOffset
offsets = self._offsets
if self.have_units():
if len(self._offsets):
xs = self.convert_xunits(self._offsets[:0])
ys = self.convert_yunits(self._offsets[:1])
offsets = zip(xs, ys)
offsets = np.asarray(offsets, np.float_)
if self.check_update('array'):
self.update_scalarmappable()
clippath, clippath_trans = self.get_transformed_clip_path_and_affine()
if clippath_trans is not None:
clippath_trans = clippath_trans.frozen()
if not transform.is_affine:
coordinates = self._coordinates.reshape(
(self._coordinates.shape[0] *
self._coordinates.shape[1],
2))
coordinates = transform.transform(coordinates)
coordinates = coordinates.reshape(self._coordinates.shape)
transform = transforms.IdentityTransform()
else:
coordinates = self._coordinates
if not transOffset.is_affine:
offsets = transOffset.transform_non_affine(offsets)
transOffset = transOffset.get_affine()
renderer.draw_quad_mesh(
transform.frozen(), self.clipbox, clippath, clippath_trans,
self._meshWidth, self._meshHeight, coordinates,
offsets, transOffset, self.get_facecolor(), self._antialiased,
self._showedges)
renderer.close_group(self.__class__.__name__)
class PolyCollection(Collection):
def __init__(self, verts, sizes = None, closed = True, **kwargs):
"""
*verts* is a sequence of ( *verts0*, *verts1*, ...) where
*verts_i* is a sequence of *xy* tuples of vertices, or an
equivalent :mod:`numpy` array of shape (*nv*, 2).
*sizes* is *None* (default) or a sequence of floats that
scale the corresponding *verts_i*. The scaling is applied
before the Artist master transform; if the latter is an identity
transform, then the overall scaling is such that if
*verts_i* specify a unit square, then *sizes_i* is the area
of that square in points^2.
If len(*sizes*) < *nv*, the additional values will be
taken cyclically from the array.
*closed*, when *True*, will explicitly close the polygon.
%(Collection)s
"""
Collection.__init__(self,**kwargs)
self._sizes = sizes
self.set_verts(verts, closed)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def set_verts(self, verts, closed=True):
'''This allows one to delay initialization of the vertices.'''
if closed:
self._paths = []
for xy in verts:
if np.ma.isMaskedArray(xy):
if len(xy) and (xy[0] != xy[-1]).any():
xy = np.ma.concatenate([xy, [xy[0]]])
else:
xy = np.asarray(xy)
if len(xy) and (xy[0] != xy[-1]).any():
xy = np.concatenate([xy, [xy[0]]])
self._paths.append(mpath.Path(xy))
else:
self._paths = [mpath.Path(xy) for xy in verts]
def get_paths(self):
return self._paths
def draw(self, renderer):
if self._sizes is not None:
self._transforms = [
transforms.Affine2D().scale(
(np.sqrt(x) * self.figure.dpi / 72.0))
for x in self._sizes]
return Collection.draw(self, renderer)
class BrokenBarHCollection(PolyCollection):
"""
A collection of horizontal bars spanning *yrange* with a sequence of
*xranges*.
"""
def __init__(self, xranges, yrange, **kwargs):
"""
*xranges*
sequence of (*xmin*, *xwidth*)
*yrange*
*ymin*, *ywidth*
%(Collection)s
"""
ymin, ywidth = yrange
ymax = ymin + ywidth
verts = [ [(xmin, ymin), (xmin, ymax), (xmin+xwidth, ymax), (xmin+xwidth, ymin), (xmin, ymin)] for xmin, xwidth in xranges]
PolyCollection.__init__(self, verts, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
class RegularPolyCollection(Collection):
"""Draw a collection of regular polygons with *numsides*."""
_path_generator = mpath.Path.unit_regular_polygon
def __init__(self,
numsides,
rotation = 0 ,
sizes = (1,),
**kwargs):
"""
*numsides*
the number of sides of the polygon
*rotation*
the rotation of the polygon in radians
*sizes*
gives the area of the circle circumscribing the
regular polygon in points^2
%(Collection)s
Example: see :file:`examples/dynamic_collection.py` for
complete example::
offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)
collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)
"""
Collection.__init__(self,**kwargs)
self._sizes = sizes
self._numsides = numsides
self._paths = [self._path_generator(numsides)]
self._rotation = rotation
self.set_transform(transforms.IdentityTransform())
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def draw(self, renderer):
self._transforms = [
transforms.Affine2D().rotate(-self._rotation).scale(
(np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi))
for x in self._sizes]
return Collection.draw(self, renderer)
def get_paths(self):
return self._paths
def get_numsides(self):
return self._numsides
def get_rotation(self):
return self._rotation
def get_sizes(self):
return self._sizes
class StarPolygonCollection(RegularPolyCollection):
"""
Draw a collection of regular stars with *numsides* points."""
_path_generator = mpath.Path.unit_regular_star
class AsteriskPolygonCollection(RegularPolyCollection):
"""
Draw a collection of regular asterisks with *numsides* points."""
_path_generator = mpath.Path.unit_regular_asterisk
class LineCollection(Collection):
"""
All parameters must be sequences or scalars; if scalars, they will
be converted to sequences. The property of the ith line
segment is::
prop[i % len(props)]
i.e., the properties cycle if the ``len`` of props is less than the
number of segments.
"""
zorder = 2
def __init__(self, segments, # Can be None.
linewidths = None,
colors = None,
antialiaseds = None,
linestyles = 'solid',
offsets = None,
transOffset = None,
norm = None,
cmap = None,
pickradius = 5,
**kwargs
):
"""
*segments*
a sequence of (*line0*, *line1*, *line2*), where::
linen = (x0, y0), (x1, y1), ... (xm, ym)
or the equivalent numpy array with two columns. Each line
can be a different length.
*colors*
must be a sequence of RGBA tuples (eg arbitrary color
strings, etc, not allowed).
*antialiaseds*
must be a sequence of ones or zeros
*linestyles* [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
a string or dash tuple. The dash tuple is::
(offset, onoffseq),
where *onoffseq* is an even length tuple of on and off ink
in points.
If *linewidths*, *colors*, or *antialiaseds* is None, they
default to their rcParams setting, in sequence form.
If *offsets* and *transOffset* are not None, then
*offsets* are transformed by *transOffset* and applied after
the segments have been transformed to display coordinates.
If *offsets* is not None but *transOffset* is None, then the
*offsets* are added to the segments before any transformation.
In this case, a single offset can be specified as::
offsets=(xo,yo)
and this value will be added cumulatively to each successive
segment, so as to produce a set of successively offset curves.
*norm*
None (optional for :class:`matplotlib.cm.ScalarMappable`)
*cmap*
None (optional for :class:`matplotlib.cm.ScalarMappable`)
*pickradius* is the tolerance for mouse clicks picking a line.
The default is 5 pt.
The use of :class:`~matplotlib.cm.ScalarMappable` is optional.
If the :class:`~matplotlib.cm.ScalarMappable` matrix
:attr:`~matplotlib.cm.ScalarMappable._A` is not None (ie a call to
:meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at
draw time a call to scalar mappable will be made to set the colors.
"""
if colors is None: colors = mpl.rcParams['lines.color']
if linewidths is None: linewidths = (mpl.rcParams['lines.linewidth'],)
if antialiaseds is None: antialiaseds = (mpl.rcParams['lines.antialiased'],)
self.set_linestyles(linestyles)
colors = _colors.colorConverter.to_rgba_array(colors)
Collection.__init__(
self,
edgecolors=colors,
linewidths=linewidths,
linestyles=linestyles,
antialiaseds=antialiaseds,
offsets=offsets,
transOffset=transOffset,
norm=norm,
cmap=cmap,
pickradius=pickradius,
**kwargs)
self.set_facecolors([])
self.set_segments(segments)
def get_paths(self):
return self._paths
def set_segments(self, segments):
if segments is None: return
_segments = []
for seg in segments:
if not np.ma.isMaskedArray(seg):
seg = np.asarray(seg, np.float_)
_segments.append(seg)
if self._uniform_offsets is not None:
_segments = self._add_offsets(_segments)
self._paths = [mpath.Path(seg) for seg in _segments]
set_verts = set_segments # for compatibility with PolyCollection
def _add_offsets(self, segs):
offsets = self._uniform_offsets
Nsegs = len(segs)
Noffs = offsets.shape[0]
if Noffs == 1:
for i in range(Nsegs):
segs[i] = segs[i] + i * offsets
else:
for i in range(Nsegs):
io = i%Noffs
segs[i] = segs[i] + offsets[io:io+1]
return segs
def set_color(self, c):
"""
Set the color(s) of the line collection. *c* can be a
matplotlib color arg (all patches have same color), or a
sequence or rgba tuples; if it is a sequence the patches will
cycle through the sequence
ACCEPTS: matplotlib color arg or sequence of rgba tuples
"""
self._edgecolors = _colors.colorConverter.to_rgba_array(c)
def color(self, c):
"""
Set the color(s) of the line collection. *c* can be a
matplotlib color arg (all patches have same color), or a
sequence or rgba tuples; if it is a sequence the patches will
cycle through the sequence
ACCEPTS: matplotlib color arg or sequence of rgba tuples
"""
warnings.warn('LineCollection.color deprecated; use set_color instead')
return self.set_color(c)
def get_color(self):
return self._edgecolors
get_colors = get_color # for compatibility with old versions
class CircleCollection(Collection):
"""
A collection of circles, drawn using splines.
"""
def __init__(self, sizes, **kwargs):
"""
*sizes*
Gives the area of the circle in points^2
%(Collection)s
"""
Collection.__init__(self,**kwargs)
self._sizes = sizes
self.set_transform(transforms.IdentityTransform())
self._paths = [mpath.Path.unit_circle()]
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def draw(self, renderer):
# sizes is the area of the circle circumscribing the polygon
# in points^2
self._transforms = [
transforms.Affine2D().scale(
(np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi))
for x in self._sizes]
return Collection.draw(self, renderer)
def get_paths(self):
return self._paths
class EllipseCollection(Collection):
"""
A collection of ellipses, drawn using splines.
"""
def __init__(self, widths, heights, angles, units='points', **kwargs):
"""
*widths*: sequence
half-lengths of first axes (e.g., semi-major axis lengths)
*heights*: sequence
half-lengths of second axes
*angles*: sequence
angles of first axes, degrees CCW from the X-axis
*units*: ['points' | 'inches' | 'dots' | 'width' | 'height' | 'x' | 'y']
units in which majors and minors are given; 'width' and 'height'
refer to the dimensions of the axes, while 'x' and 'y'
refer to the *offsets* data units.
Additional kwargs inherited from the base :class:`Collection`:
%(Collection)s
"""
Collection.__init__(self,**kwargs)
self._widths = np.asarray(widths).ravel()
self._heights = np.asarray(heights).ravel()
self._angles = np.asarray(angles).ravel() *(np.pi/180.0)
self._units = units
self.set_transform(transforms.IdentityTransform())
self._transforms = []
self._paths = [mpath.Path.unit_circle()]
self._initialized = False
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def _init(self):
def on_dpi_change(fig):
self._transforms = []
self.figure.callbacks.connect('dpi_changed', on_dpi_change)
self._initialized = True
def set_transforms(self):
if not self._initialized:
self._init()
self._transforms = []
ax = self.axes
fig = self.figure
if self._units in ('x', 'y'):
if self._units == 'x':
dx0 = ax.viewLim.width
dx1 = ax.bbox.width
else:
dx0 = ax.viewLim.height
dx1 = ax.bbox.height
sc = dx1/dx0
else:
if self._units == 'inches':
sc = fig.dpi
elif self._units == 'points':
sc = fig.dpi / 72.0
elif self._units == 'width':
sc = ax.bbox.width
elif self._units == 'height':
sc = ax.bbox.height
elif self._units == 'dots':
sc = 1.0
else:
raise ValueError('unrecognized units: %s' % self._units)
_affine = transforms.Affine2D
for x, y, a in zip(self._widths, self._heights, self._angles):
trans = _affine().scale(x * sc, y * sc).rotate(a)
self._transforms.append(trans)
def draw(self, renderer):
if True: ###not self._transforms:
self.set_transforms()
return Collection.draw(self, renderer)
def get_paths(self):
return self._paths
class PatchCollection(Collection):
"""
A generic collection of patches.
This makes it easier to assign a color map to a heterogeneous
collection of patches.
This also may improve plotting speed, since PatchCollection will
draw faster than a large number of patches.
"""
def __init__(self, patches, match_original=False, **kwargs):
"""
*patches*
a sequence of Patch objects. This list may include
a heterogeneous assortment of different patch types.
*match_original*
If True, use the colors and linewidths of the original
patches. If False, new colors may be assigned by
providing the standard collection arguments, facecolor,
edgecolor, linewidths, norm or cmap.
If any of *edgecolors*, *facecolors*, *linewidths*,
*antialiaseds* are None, they default to their
:data:`matplotlib.rcParams` patch setting, in sequence form.
The use of :class:`~matplotlib.cm.ScalarMappable` is optional.
If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not
None (ie a call to set_array has been made), at draw time a
call to scalar mappable will be made to set the face colors.
"""
if match_original:
def determine_facecolor(patch):
if patch.fill:
return patch.get_facecolor()
return [0, 0, 0, 0]
facecolors = [determine_facecolor(p) for p in patches]
edgecolors = [p.get_edgecolor() for p in patches]
linewidths = [p.get_linewidths() for p in patches]
antialiaseds = [p.get_antialiased() for p in patches]
Collection.__init__(
self,
edgecolors=edgecolors,
facecolors=facecolors,
linewidths=linewidths,
linestyles='solid',
antialiaseds = antialiaseds)
else:
Collection.__init__(self, **kwargs)
paths = [p.get_transform().transform_path(p.get_path())
for p in patches]
self._paths = paths
def get_paths(self):
return self._paths
artist.kwdocd['Collection'] = patchstr = artist.kwdoc(Collection)
for k in ('QuadMesh', 'PolyCollection', 'BrokenBarHCollection', 'RegularPolyCollection',
'StarPolygonCollection', 'PatchCollection', 'CircleCollection'):
artist.kwdocd[k] = patchstr
artist.kwdocd['LineCollection'] = artist.kwdoc(LineCollection)
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.