Menu

[r6270]: / trunk / htdocs / matplotlib.cm.html.template  Maximize  Restore  History

Download this file

225 lines (205 with data), 35.6 kB

@header@
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading">
<tr bgcolor="#7799ee">
<td valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial">&nbsp;<br><big><big><strong><a href="matplotlib.html"><font color="#ffffff">matplotlib</font></a>.cm</strong></big></big></font></td
><td align=right valign=bottom
><font color="#ffffff" face="helvetica, arial"><a href=".">index</a><br><a href="file:/home/jdhunter/dev/lib64/python2.5/site-packages/matplotlib/cm.py">/home/jdhunter/dev/lib64/python2.5/site-packages/matplotlib/cm.py</a></font></td></tr></table>
    <p><tt>This&nbsp;module&nbsp;contains&nbsp;the&nbsp;instantiations&nbsp;of&nbsp;color&nbsp;mapping&nbsp;classes</tt></p>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#aa55cc">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#fffff" face="helvetica, arial"><big><strong>Modules</strong></big></font></td></tr>
    
<tr><td bgcolor="#aa55cc"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><table width="100%" summary="list"><tr><td width="25%" valign=top><a href="matplotlib.cbook.html">matplotlib.cbook</a><br>
<a href="matplotlib.colors.html">matplotlib.colors</a><br>
</td><td width="25%" valign=top><a href="numpy.ma.html">numpy.ma</a><br>
<a href="matplotlib.html">matplotlib</a><br>
</td><td width="25%" valign=top><a href="numpy.html">numpy</a><br>
</td><td width="25%" valign=top></td></tr></table></td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#ee77aa">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Classes</strong></big></font></td></tr>
    
<tr><td bgcolor="#ee77aa"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><dl>
<dt><font face="helvetica, arial"><a href="matplotlib.cm.html#ScalarMappable">ScalarMappable</a>
</font></dt></dl>
 <p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#ffc8d8">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#000000" face="helvetica, arial"><a name="ScalarMappable">class <strong>ScalarMappable</strong></a></font></td></tr>
    
<tr bgcolor="#ffc8d8"><td rowspan=2><tt>&nbsp;&nbsp;&nbsp;</tt></td>
<td colspan=2><tt>This&nbsp;is&nbsp;a&nbsp;mixin&nbsp;class&nbsp;to&nbsp;support&nbsp;scalar&nbsp;-&gt;&nbsp;RGBA&nbsp;mapping.&nbsp;&nbsp;Handles<br>
normalization&nbsp;and&nbsp;colormapping<br>&nbsp;</tt></td></tr>
<tr><td>&nbsp;</td>
<td width="100%">Methods defined here:<br>
<dl><dt><a name="ScalarMappable-__init__"><strong>__init__</strong></a>(self, norm<font color="#909090">=None</font>, cmap<font color="#909090">=None</font>)</dt><dd><tt>*norm*&nbsp;is&nbsp;an&nbsp;instance&nbsp;of&nbsp;:class:`colors.Normalize`&nbsp;or&nbsp;one&nbsp;of<br>
its&nbsp;subclasses,&nbsp;used&nbsp;to&nbsp;map&nbsp;luminance&nbsp;to&nbsp;0-1.&nbsp;*cmap*&nbsp;is&nbsp;a<br>
:mod:`cm`&nbsp;colormap&nbsp;instance,&nbsp;for&nbsp;example&nbsp;:data:`cm.jet`</tt></dd></dl>

<dl><dt><a name="ScalarMappable-add_checker"><strong>add_checker</strong></a>(self, checker)</dt><dd><tt>Add&nbsp;an&nbsp;entry&nbsp;to&nbsp;a&nbsp;dictionary&nbsp;of&nbsp;boolean&nbsp;flags<br>
that&nbsp;are&nbsp;set&nbsp;to&nbsp;True&nbsp;when&nbsp;the&nbsp;mappable&nbsp;is&nbsp;changed.</tt></dd></dl>

<dl><dt><a name="ScalarMappable-autoscale"><strong>autoscale</strong></a>(self)</dt><dd><tt>Autoscale&nbsp;the&nbsp;scalar&nbsp;limits&nbsp;on&nbsp;the&nbsp;norm&nbsp;instance&nbsp;using&nbsp;the<br>
current&nbsp;array</tt></dd></dl>

<dl><dt><a name="ScalarMappable-autoscale_None"><strong>autoscale_None</strong></a>(self)</dt><dd><tt>Autoscale&nbsp;the&nbsp;scalar&nbsp;limits&nbsp;on&nbsp;the&nbsp;norm&nbsp;instance&nbsp;using&nbsp;the<br>
current&nbsp;array,&nbsp;changing&nbsp;only&nbsp;limits&nbsp;that&nbsp;are&nbsp;None</tt></dd></dl>

<dl><dt><a name="ScalarMappable-changed"><strong>changed</strong></a>(self)</dt><dd><tt>Call&nbsp;this&nbsp;whenever&nbsp;the&nbsp;mappable&nbsp;is&nbsp;changed&nbsp;to&nbsp;notify&nbsp;all&nbsp;the<br>
callbackSM&nbsp;listeners&nbsp;to&nbsp;the&nbsp;'changed'&nbsp;signal</tt></dd></dl>

<dl><dt><a name="ScalarMappable-check_update"><strong>check_update</strong></a>(self, checker)</dt><dd><tt>If&nbsp;mappable&nbsp;has&nbsp;changed&nbsp;since&nbsp;the&nbsp;last&nbsp;check,<br>
return&nbsp;True;&nbsp;else&nbsp;return&nbsp;False</tt></dd></dl>

<dl><dt><a name="ScalarMappable-get_array"><strong>get_array</strong></a>(self)</dt><dd><tt>Return&nbsp;the&nbsp;array</tt></dd></dl>

<dl><dt><a name="ScalarMappable-get_clim"><strong>get_clim</strong></a>(self)</dt><dd><tt>return&nbsp;the&nbsp;min,&nbsp;max&nbsp;of&nbsp;the&nbsp;color&nbsp;limits&nbsp;for&nbsp;image&nbsp;scaling</tt></dd></dl>

<dl><dt><a name="ScalarMappable-get_cmap"><strong>get_cmap</strong></a>(self)</dt><dd><tt>return&nbsp;the&nbsp;colormap</tt></dd></dl>

<dl><dt><a name="ScalarMappable-set_array"><strong>set_array</strong></a>(self, A)</dt><dd><tt>Set&nbsp;the&nbsp;image&nbsp;array&nbsp;from&nbsp;numpy&nbsp;array&nbsp;*A*</tt></dd></dl>

<dl><dt><a name="ScalarMappable-set_clim"><strong>set_clim</strong></a>(self, vmin<font color="#909090">=None</font>, vmax<font color="#909090">=None</font>)</dt><dd><tt>set&nbsp;the&nbsp;norm&nbsp;limits&nbsp;for&nbsp;image&nbsp;scaling;&nbsp;if&nbsp;*vmin*&nbsp;is&nbsp;a&nbsp;length2<br>
sequence,&nbsp;interpret&nbsp;it&nbsp;as&nbsp;``(vmin,&nbsp;vmax)``&nbsp;which&nbsp;is&nbsp;used&nbsp;to<br>
support&nbsp;setp<br>
&nbsp;<br>
ACCEPTS:&nbsp;a&nbsp;length&nbsp;2&nbsp;sequence&nbsp;of&nbsp;floats</tt></dd></dl>

<dl><dt><a name="ScalarMappable-set_cmap"><strong>set_cmap</strong></a>(self, cmap)</dt><dd><tt>set&nbsp;the&nbsp;colormap&nbsp;for&nbsp;luminance&nbsp;data<br>
&nbsp;<br>
ACCEPTS:&nbsp;a&nbsp;colormap</tt></dd></dl>

<dl><dt><a name="ScalarMappable-set_colorbar"><strong>set_colorbar</strong></a>(self, im, ax)</dt><dd><tt>set&nbsp;the&nbsp;colorbar&nbsp;image&nbsp;and&nbsp;axes&nbsp;associated&nbsp;with&nbsp;mappable</tt></dd></dl>

<dl><dt><a name="ScalarMappable-set_norm"><strong>set_norm</strong></a>(self, norm)</dt><dd><tt>set&nbsp;the&nbsp;normalization&nbsp;instance</tt></dd></dl>

<dl><dt><a name="ScalarMappable-to_rgba"><strong>to_rgba</strong></a>(self, x, alpha<font color="#909090">=1.0</font>, bytes<font color="#909090">=False</font>)</dt><dd><tt>Return&nbsp;a&nbsp;normalized&nbsp;rgba&nbsp;array&nbsp;corresponding&nbsp;to&nbsp;*x*.&nbsp;If&nbsp;*x*<br>
is&nbsp;already&nbsp;an&nbsp;rgb&nbsp;array,&nbsp;insert&nbsp;*alpha*;&nbsp;if&nbsp;it&nbsp;is&nbsp;already<br>
rgba,&nbsp;return&nbsp;it&nbsp;unchanged.&nbsp;If&nbsp;*bytes*&nbsp;is&nbsp;True,&nbsp;return&nbsp;rgba&nbsp;as<br>
4&nbsp;uint8s&nbsp;instead&nbsp;of&nbsp;4&nbsp;floats.</tt></dd></dl>

</td></tr></table></td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#eeaa77">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Functions</strong></big></font></td></tr>
    
<tr><td bgcolor="#eeaa77"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><dl><dt><a name="-get_cmap"><strong>get_cmap</strong></a>(name<font color="#909090">=None</font>, lut<font color="#909090">=None</font>)</dt><dd><tt>Get&nbsp;a&nbsp;colormap&nbsp;instance,&nbsp;defaulting&nbsp;to&nbsp;rc&nbsp;values&nbsp;if&nbsp;*name*&nbsp;is&nbsp;None</tt></dd></dl>
</td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#55aa55">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Data</strong></big></font></td></tr>
    
<tr><td bgcolor="#55aa55"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><strong>Accent</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c248&gt;<br>
<strong>Accent_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b638&gt;<br>
<strong>Blues</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c290&gt;<br>
<strong>Blues_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5cf8&gt;<br>
<strong>BrBG</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c2d8&gt;<br>
<strong>BrBG_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1bd8&gt;<br>
<strong>BuGn</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c320&gt;<br>
<strong>BuGn_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364998&gt;<br>
<strong>BuPu</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c368&gt;<br>
<strong>BuPu_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13643f8&gt;<br>
<strong>Dark2</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c3b0&gt;<br>
<strong>Dark2_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364518&gt;<br>
<strong>GnBu</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c3f8&gt;<br>
<strong>GnBu_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c53f8&gt;<br>
<strong>Greens</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c440&gt;<br>
<strong>Greens_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a11b8&gt;<br>
<strong>Greys</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c488&gt;<br>
<strong>Greys_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5638&gt;<br>
<strong>LUTSIZE</strong> = 256<br>
<strong>OrRd</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c518&gt;<br>
<strong>OrRd_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b758&gt;<br>
<strong>Oranges</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c4d0&gt;<br>
<strong>Oranges_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364758&gt;<br>
<strong>PRGn</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c680&gt;<br>
<strong>PRGn_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a13f8&gt;<br>
<strong>Paired</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c560&gt;<br>
<strong>Paired_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1878&gt;<br>
<strong>Pastel1</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c5a8&gt;<br>
<strong>Pastel1_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c51b8&gt;<br>
<strong>Pastel2</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c5f0&gt;<br>
<strong>Pastel2_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1f38&gt;<br>
<strong>PiYG</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c638&gt;<br>
<strong>PiYG_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364bd8&gt;<br>
<strong>PuBu</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c6c8&gt;<br>
<strong>PuBuGn</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c710&gt;<br>
<strong>PuBuGn_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5e18&gt;<br>
<strong>PuBu_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134bbd8&gt;<br>
<strong>PuOr</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c758&gt;<br>
<strong>PuOr_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5998&gt;<br>
<strong>PuRd</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c7a0&gt;<br>
<strong>PuRd_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5ab8&gt;<br>
<strong>Purples</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c7e8&gt;<br>
<strong>Purples_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1cf8&gt;<br>
<strong>RdBu</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c830&gt;<br>
<strong>RdBu_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b878&gt;<br>
<strong>RdGy</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c878&gt;<br>
<strong>RdGy_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5758&gt;<br>
<strong>RdPu</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c8c0&gt;<br>
<strong>RdPu_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1098&gt;<br>
<strong>RdYlBu</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c908&gt;<br>
<strong>RdYlBu_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1758&gt;<br>
<strong>RdYlGn</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c950&gt;<br>
<strong>RdYlGn_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b1b8&gt;<br>
<strong>Reds</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c998&gt;<br>
<strong>Reds_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364e18&gt;<br>
<strong>Set1</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132c9e0&gt;<br>
<strong>Set1_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134bab8&gt;<br>
<strong>Set2</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132ca28&gt;<br>
<strong>Set2_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b2d8&gt;<br>
<strong>Set3</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132ca70&gt;<br>
<strong>Set3_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134bcf8&gt;<br>
<strong>Spectral</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cab8&gt;<br>
<strong>Spectral_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cf38&gt;<br>
<strong>YlGn</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cb00&gt;<br>
<strong>YlGnBu</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cb48&gt;<br>
<strong>YlGnBu_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1638&gt;<br>
<strong>YlGn_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5518&gt;<br>
<strong>YlOrBr</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cb90&gt;<br>
<strong>YlOrBr_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364cf8&gt;<br>
<strong>YlOrRd</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cbd8&gt;<br>
<strong>YlOrRd_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5878&gt;<br>
<strong>autumn</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270998&gt;<br>
<strong>autumn_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b998&gt;<br>
<strong>binary</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270a28&gt;<br>
<strong>binary_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364098&gt;<br>
<strong>bone</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x12709e0&gt;<br>
<strong>bone_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x141e098&gt;<br>
<strong>cmapdat_r</strong> = {'blue': [(0.0, 1.0, 1.0), (0.63492100000000007, 0.44444400000000001, 0.44444400000000001), (1.0, 0.0, 0.0)], 'green': [(0.0, 1.0, 1.0), (0.25396799999999997, 0.77777799999999997, 0.77777799999999997), (0.63492100000000007, 0.31944400000000001, 0.31944400000000001), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.25396799999999997, 0.65277799999999997, 0.65277799999999997), (1.0, 0.0, 0.0)]}<br>
<strong>cmapname</strong> = 'bone'<br>
<strong>cmapname_r</strong> = 'bone_r'<br>
<strong>cmapnames</strong> = ['Spectral', 'copper', 'RdYlGn', 'Set2', 'summer', 'spring', 'Accent', 'OrRd', 'RdBu', 'autumn', 'Set1', 'PuBu', 'Set3', 'gist_rainbow', 'pink', 'binary', 'winter', 'jet', 'BuPu', 'Dark2', ...]<br>
<strong>cool</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270a70&gt;<br>
<strong>cool_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1e18&gt;<br>
<strong>copper</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270ab8&gt;<br>
<strong>copper_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b098&gt;<br>
<strong>datad</strong> = {'Accent': {'blue': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.83137255907058716, 0.83137255907058716), (0.2857142857142857, 0.52549022436141968, 0.52549022436141968), (0.42857142857142855, 0.60000002384185791, 0.60000002384185791), (0.5714285714285714, 0.69019609689712524, 0.69019609689712524), (0.7142857142857143, 0.49803921580314636, 0.49803921580314636), (0.8571428571428571, 0.090196080505847931, 0.090196080505847931), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.78823530673980713, 0.78823530673980713), (0.14285714285714285, 0.68235296010971069, 0.68235296010971069), (0.2857142857142857, 0.75294119119644165, 0.75294119119644165), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.42352941632270813, 0.42352941632270813), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.35686275362968445, 0.35686275362968445), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.7450980544090271, 0.7450980544090271), (0.2857142857142857, 0.99215686321258545, 0.99215686321258545), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.21960784494876862, 0.21960784494876862), (0.7142857142857143, 0.94117647409439087, 0.94117647409439087), (0.8571428571428571, 0.74901962280273438, 0.74901962280273438), (1.0, 0.40000000596046448, 0.40000000596046448)]}, 'Accent_r': {'blue': [(0.0, 0.40000000596046448, 0.40000000596046448), (0.1428571428571429, 0.090196080505847931, 0.090196080505847931), (0.2857142857142857, 0.49803921580314636, 0.49803921580314636), (0.4285714285714286, 0.69019609689712524, 0.69019609689712524), (0.5714285714285714, 0.60000002384185791, 0.60000002384185791), (0.7142857142857143, 0.52549022436141968, 0.52549022436141968), (0.85714285714285721, 0.83137255907058716, 0.83137255907058716), (1.0, 0.49803921580314636, 0.49803921580314636)], 'green': [(0.0, 0.40000000596046448, 0.40000000596046448), (0.1428571428571429, 0.35686275362968445, 0.35686275362968445), (0.2857142857142857, 0.0078431377187371254, 0.0078431377187371254), (0.4285714285714286, 0.42352941632270813, 0.42352941632270813), (0.5714285714285714, 1.0, 1.0), (0.7142857142857143, 0.75294119119644165, 0.75294119119644165), (0.85714285714285721, 0.68235296010971069, 0.68235296010971069), (1.0, 0.78823530673980713, 0.78823530673980713)], 'red': [(0.0, 0.40000000596046448, 0.40000000596046448), (0.1428571428571429, 0.74901962280273438, 0.74901962280273438), (0.2857142857142857, 0.94117647409439087, 0.94117647409439087), (0.4285714285714286, 0.21960784494876862, 0.21960784494876862), (0.5714285714285714, 1.0, 1.0), (0.7142857142857143, 0.99215686321258545, 0.99215686321258545), (0.85714285714285721, 0.7450980544090271, 0.7450980544090271), (1.0, 0.49803921580314636, 0.49803921580314636)]}, 'Blues': {'blue': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.93725490570068359, 0.93725490570068359), (0.375, 0.88235294818878174, 0.88235294818878174), (0.5, 0.83921569585800171, 0.83921569585800171), (0.625, 0.7764706015586853, 0.7764706015586853), (0.75, 0.70980393886566162, 0.70980393886566162), (0.875, 0.61176472902297974, 0.61176472902297974), (1.0, 0.41960784792900085, 0.41960784792900085)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92156863212585449, 0.92156863212585449), (0.25, 0.85882353782653809, 0.85882353782653809), (0.375, 0.7921568751335144, 0.7921568751335144), (0.5, 0.68235296010971069, 0.68235296010971069), (0.625, 0.57254904508590698, 0.57254904508590698), (0.75, 0.44313725829124451, 0.44313725829124451), (0.875, 0.31764706969261169, 0.31764706969261169), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87058824300765991, 0.87058824300765991), (0.25, 0.7764706015586853, 0.7764706015586853), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.41960784792900085, 0.41960784792900085), (0.625, 0.25882354378700256, 0.25882354378700256), (0.75, 0.12941177189350128, 0.12941177189350128), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]}, 'Blues_r': {'blue': [(0.0, 0.41960784792900085, 0.41960784792900085), (0.125, 0.61176472902297974, 0.61176472902297974), (0.25, 0.70980393886566162, 0.70980393886566162), (0.375, 0.7764706015586853, 0.7764706015586853), (0.5, 0.83921569585800171, 0.83921569585800171), (0.625, 0.88235294818878174, 0.88235294818878174), (0.75, 0.93725490570068359, 0.93725490570068359), (0.875, 0.9686274528503418, 0.9686274528503418), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.18823529779911041, 0.18823529779911041), (0.125, 0.31764706969261169, 0.31764706969261169), (0.25, 0.44313725829124451, 0.44313725829124451), (0.375, 0.57254904508590698, 0.57254904508590698), (0.5, 0.68235296010971069, 0.68235296010971069), (0.625, 0.7921568751335144, 0.7921568751335144), (0.75, 0.85882353782653809, 0.85882353782653809), (0.875, 0.92156863212585449, 0.92156863212585449), (1.0, 0.9843137264251709, 0.9843137264251709)], 'red': [(0.0, 0.031372550874948502, 0.031372550874948502), (0.125, 0.031372550874948502, 0.031372550874948502), (0.25, 0.12941177189350128, 0.12941177189350128), (0.375, 0.25882354378700256, 0.25882354378700256), (0.5, 0.41960784792900085, 0.41960784792900085), (0.625, 0.61960786581039429, 0.61960786581039429), (0.75, 0.7764706015586853, 0.7764706015586853), (0.875, 0.87058824300765991, 0.87058824300765991), (1.0, 0.9686274528503418, 0.9686274528503418)]}, 'BrBG': {'blue': [(0.0, 0.019607843831181526, 0.019607843831181526), (0.10000000000000001, 0.039215687662363052, 0.039215687662363052), (0.20000000000000001, 0.17647059261798859, 0.17647059261798859), (0.29999999999999999, 0.49019607901573181, 0.49019607901573181), (0.40000000000000002, 0.76470589637756348, 0.76470589637756348), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.75686275959014893, 0.75686275959014893), (0.80000000000000004, 0.56078433990478516, 0.56078433990478516), (0.90000000000000002, 0.36862745881080627, 0.36862745881080627), (1.0, 0.18823529779911041, 0.18823529779911041)], 'green': [(0.0, 0.18823529779911041, 0.18823529779911041), (0.10000000000000001, 0.31764706969261169, 0.31764706969261169), (0.20000000000000001, 0.5058823823928833, 0.5058823823928833), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.91764706373214722, 0.91764706373214722), (0.69999999999999996, 0.80392158031463623, 0.80392158031463623), (0.80000000000000004, 0.59215688705444336, 0.59215688705444336), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.23529411852359772, 0.23529411852359772)], 'red': [(0.0, 0.32941177487373352, 0.32941177487373352), (0.10000000000000001, 0.54901963472366333, 0.54901963472366333), (0.20000000000000001, 0.74901962280273438, 0.74901962280273438), (0.29999999999999999, 0.87450981140136719, 0.87450981140136719), (0.40000000000000002, 0.96470588445663452, 0.96470588445663452), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.78039216995239258, 0.78039216995239258), (0.69999999999999996, 0.50196081399917603, 0.50196081399917603), (0.80000000000000004, 0.20784313976764679, 0.20784313976764679), (0.90000000000000002, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)]}, 'BrBG_r': {'blue': [(0.0, 0.18823529779911041, 0.18823529779911041), (0.099999999999999978, 0.36862745881080627, 0.36862745881080627), (0.19999999999999996, 0.56078433990478516, 0.56078433990478516), (0.30000000000000004, 0.75686275959014893, 0.75686275959014893), (0.40000000000000002, 0.89803922176361084, 0.89803922176361084), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.76470589637756348, 0.76470589637756348), (0.69999999999999996, 0.49019607901573181, 0.49019607901573181), (0.80000000000000004, 0.17647059261798859, 0.17647059261798859), (0.90000000000000002, 0.039215687662363052, 0.039215687662363052), (1.0, 0.019607843831181526, 0.019607843831181526)], 'green': [(0.0, 0.23529411852359772, 0.23529411852359772), (0.099999999999999978, 0.40000000596046448, 0.40000000596046448), (0.19999999999999996, 0.59215688705444336, 0.59215688705444336), (0.30000000000000004, 0.80392158031463623, 0.80392158031463623), (0.40000000000000002, 0.91764706373214722, 0.91764706373214722), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.90980392694473267, 0.90980392694473267), (0.69999999999999996, 0.7607843279838562, 0.7607843279838562), (0.80000000000000004, 0.5058823823928833, 0.5058823823928833), (0.90000000000000002, 0.31764706969261169, 0.31764706969261169), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.0, 0.0), (0.099999999999999978, 0.0039215688593685627, 0.0039215688593685627), (0.19999999999999996, 0.20784313976764679, 0.20784313976764679), (0.30000000000000004, 0.50196081399917603, 0.50196081399917603), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.96470588445663452, 0.96470588445663452), (0.69999999999999996, 0.87450981140136719, 0.87450981140136719), (0.80000000000000004, 0.74901962280273438, 0.74901962280273438), (0.90000000000000002, 0.54901963472366333, 0.54901963472366333), (1.0, 0.32941177487373352, 0.32941177487373352)]}, 'BuGn': {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.97647058963775635, 0.97647058963775635), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.64313727617263794, 0.64313727617263794), (0.625, 0.46274510025978088, 0.46274510025978088), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92549020051956177, 0.92549020051956177), (0.375, 0.84705883264541626, 0.84705883264541626), (0.5, 0.7607843279838562, 0.7607843279838562), (0.625, 0.68235296010971069, 0.68235296010971069), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.60000002384185791, 0.60000002384185791), (0.5, 0.40000000596046448, 0.40000000596046448), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]}, 'BuGn_r': {'blue': [(0.0, 0.10588235408067703, 0.10588235408067703), (0.125, 0.17254902422428131, 0.17254902422428131), (0.25, 0.27058824896812439, 0.27058824896812439), (0.375, 0.46274510025978088, 0.46274510025978088), (0.5, 0.64313727617263794, 0.64313727617263794), (0.625, 0.78823530673980713, 0.78823530673980713), (0.75, 0.90196079015731812, 0.90196079015731812), (0.875, 0.97647058963775635, 0.97647058963775635), (1.0, 0.99215686321258545, 0.99215686321258545)], 'green': [(0.0, 0.26666668057441711, 0.26666668057441711), (0.125, 0.42745098471641541, 0.42745098471641541), (0.25, 0.54509806632995605, 0.54509806632995605), (0.375, 0.68235296010971069, 0.68235296010971069), (0.5, 0.7607843279838562, 0.7607843279838562), (0.625, 0.84705883264541626, 0.84705883264541626), (0.75, 0.92549020051956177, 0.92549020051956177), (0.875, 0.96078431606292725, 0.96078431606292725), (1.0, 0.98823529481887817, 0.98823529481887817)], 'red': [(0.0, 0.0, 0.0), (0.125, 0.0, 0.0), (0.25, 0.13725490868091583, 0.13725490868091583), (0.375, 0.25490197539329529, 0.25490197539329529), (0.5, 0.40000000596046448, 0.40000000596046448), (0.625, 0.60000002384185791, 0.60000002384185791), (0.75, 0.80000001192092896, 0.80000001192092896), (0.875, 0.89803922176361084, 0.89803922176361084), (1.0, 0.9686274528503418, 0.9686274528503418)]}, 'BuPu': {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.95686274766921997, 0.95686274766921997), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85490196943283081, 0.85490196943283081), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.69411766529083252, 0.69411766529083252), (0.75, 0.61568629741668701, 0.61568629741668701), (0.875, 0.48627451062202454, 0.48627451062202454), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.82745099067687988, 0.82745099067687988), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.41960784792900085, 0.41960784792900085), (0.75, 0.25490197539329529, 0.25490197539329529), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.74901962280273438, 0.74901962280273438), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.54901963472366333, 0.54901963472366333), (0.625, 0.54901963472366333, 0.54901963472366333), (0.75, 0.53333336114883423, 0.53333336114883423), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.30196079611778259, 0.30196079611778259)]}, 'BuPu_r': {'blue': [(0.0, 0.29411765933036804, 0.29411765933036804), (0.125, 0.48627451062202454, 0.48627451062202454), (0.25, 0.61568629741668701, 0.61568629741668701), (0.375, 0.69411766529083252, 0.69411766529083252), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.85490196943283081, 0.85490196943283081), (0.75, 0.90196079015731812, 0.90196079015731812), (0.875, 0.95686274766921997, 0.95686274766921997), (1.0, 0.99215686321258545, 0.99215686321258545)], 'green': [(0.0, 0.0, 0.0), (0.125, 0.058823529630899429, 0.058823529630899429), (0.25, 0.25490197539329529, 0.25490197539329529), (0.375, 0.41960784792900085, 0.41960784792900085), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.73725491762161255, 0.73725491762161255), (0.75, 0.82745099067687988, 0.82745099067687988), (0.875, 0.92549020051956177, 0.92549020051956177), (1.0, 0.98823529481887817, 0.98823529481887817)], 'red': [(0.0, 0.30196079611778259, 0.30196079611778259), (0.125, 0.5058823823928833, 0.5058823823928833), (0.25, 0.53333336114883423, 0.53333336114883423), (0.375, 0.54901963472366333, 0.54901963472366333), (0.5, 0.54901963472366333, 0.54901963472366333), (0.625, 0.61960786581039429, 0.61960786581039429), (0.75, 0.74901962280273438, 0.74901962280273438), (0.875, 0.87843137979507446, 0.87843137979507446), (1.0, 0.9686274528503418, 0.9686274528503418)]}, ...}<br>
<strong>flag</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270b00&gt;<br>
<strong>flag_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1998&gt;<br>
<strong>gist_earth</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cc20&gt;<br>
<strong>gist_earth_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5f38&gt;<br>
<strong>gist_gray</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cc68&gt;<br>
<strong>gist_gray_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5bd8&gt;<br>
<strong>gist_heat</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132ccb0&gt;<br>
<strong>gist_heat_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1518&gt;<br>
<strong>gist_ncar</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132ccf8&gt;<br>
<strong>gist_ncar_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a12d8&gt;<br>
<strong>gist_rainbow</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cd40&gt;<br>
<strong>gist_rainbow_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134be18&gt;<br>
<strong>gist_stern</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cd88&gt;<br>
<strong>gist_stern_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c52d8&gt;<br>
<strong>gist_yarg</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x132cdd0&gt;<br>
<strong>gist_yarg_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364878&gt;<br>
<strong>gray</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270b48&gt;<br>
<strong>gray_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13c5098&gt;<br>
<strong>hot</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270b90&gt;<br>
<strong>hot_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364ab8&gt;<br>
<strong>hsv</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270bd8&gt;<br>
<strong>hsv_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13a1ab8&gt;<br>
<strong>jet</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270c20&gt;<br>
<strong>jet_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13642d8&gt;<br>
<strong>pink</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270c68&gt;<br>
<strong>pink_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134bf38&gt;<br>
<strong>prism</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270cb0&gt;<br>
<strong>prism_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364638&gt;<br>
<strong>spectral</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270dd0&gt;<br>
<strong>spectral_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1364f38&gt;<br>
<strong>spring</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270cf8&gt;<br>
<strong>spring_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b518&gt;<br>
<strong>summer</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270d40&gt;<br>
<strong>summer_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x134b3f8&gt;<br>
<strong>winter</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x1270d88&gt;<br>
<strong>winter_r</strong> = &lt;matplotlib.colors.LinearSegmentedColormap instance at 0x13641b8&gt;</td></tr></table>
@footer@
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.