Menu

[r6044]: / trunk / toolkits / basemap / examples / test.py  Maximize  Restore  History

Download this file

622 lines (595 with data), 22.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# make plots of etopo bathymetry/topography data on
# various map projections, drawing coastlines, state and
# country boundaries, filling continents and drawing
# parallels/meridians
from mpl_toolkits.basemap import Basemap, shiftgrid
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.colors as colors
# read in topo data (on a regular lat/lon grid)
# longitudes go from 20 to 380.
topodatin = mlab.load('etopo20data.gz')
lonsin = mlab.load('etopo20lons.gz')
latsin = mlab.load('etopo20lats.gz')
# shift data so lons go from -180 to 180 instead of 20 to 380.
topoin,lons = shiftgrid(180.,topodatin,lonsin,start=False)
lats = latsin
print 'min/max etopo20 data:'
print topoin.min(),topoin.max()
# create new figure
fig=plt.figure()
# setup cylindrical equidistant map projection (global domain).
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
resolution='c',area_thresh=10000.,projection='cyl')
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topoin,plt.cm.jet)
# get axes position, add colorbar axes to right of this.
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
#m.drawcountries()
#m.drawstates()
#m.fillcontinents()
# draw parallels
delat = 30.
circles = np.arange(0.,90.+delat,delat).tolist()+\
np.arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,0,0,1])
# draw meridians
delon = 60.
meridians = np.arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,1])
plt.title('Cylindrical Equidistant')
print 'plotting Cylindrical Equidistant example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup miller cylindrical map projection.
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
resolution='c',area_thresh=10000.,projection='mill')
# transform to nx x ny regularly spaced native projection grid
nx = len(lons); ny = len(lats)
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
fig.add_axes([0.1,0.1,0.75,0.75])
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
m.drawcoastlines()
# draw parallels
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Miller Cylindrical',y=1.1)
print 'plotting Miller Cylindrical example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup mercator map projection (-80 to +80).
m = Basemap(llcrnrlon=-180.,llcrnrlat=-80,urcrnrlon=180.,urcrnrlat=80.,\
resolution='c',area_thresh=10000.,projection='merc',\
lon_0=0.5*(lons[0]+lons[-1]),lat_ts=20.)
# transform to nx x ny regularly spaced native projection grid
nx = len(lons); ny = int(80.*len(lats)/90.)
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
fig.add_axes([0.1,0.1,0.75,0.75])
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
m.drawcoastlines()
m.drawcountries()
m.drawstates()
m.fillcontinents()
# draw parallels
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Mercator',y=1.1)
print 'plotting Mercator example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup cassini-soldner basemap.
m = Basemap(llcrnrlon=-6,llcrnrlat=49,urcrnrlon=4,urcrnrlat=59,\
resolution='l',area_thresh=1000.,projection='cass',\
lat_0=54.,lon_0=-2.)
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/20000.)+1; ny = int((m.ymax-m.ymin)/20000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
# get current axis instance.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
# draw parallels
delat = 2.
circles = np.arange(40.,70.,delat)
m.drawparallels(circles,labels=[1,0,0,1],fontsize=10)
# draw meridians
delon = 2.
meridians = np.arange(-10,10,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
plt.title('Cassini-Soldner Projection')
print 'plotting Cassini-Soldner example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup gnomonic basemap.
m = Basemap(llcrnrlon=-95.,llcrnrlat=-52,urcrnrlon=-35.,urcrnrlat=15.,\
resolution='c',area_thresh=10000.,projection='gnom',\
lat_0=-10.,lon_0=-60.)
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
# get current axis instance.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = np.arange(-80.,100.,delat)
m.drawparallels(circles,labels=[1,0,0,1],fontsize=10)
# draw meridians
delon = 20.
meridians = np.arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
plt.title('Gnomonic Projection')
print 'plotting Gnomonic example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup transverse mercator basemap.
m = Basemap(width=2*6370997,height=3.1*6370997,\
resolution='c',area_thresh=10000.,projection='cass',\
lat_0=0.,lon_0=-90.)
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
# get current axis instance.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
# draw parallels
delat = 20.
circles = np.arange(-80.,100.,delat)
m.drawparallels(circles,labels=[1,0,0,0],fontsize=10)
# draw meridians
delon = 20.
meridians = np.arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,0],fontsize=10)
plt.title('Transverse Mercator Projection')
print 'plotting Transverse Mercator example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup oblique mercator basemap.
m = Basemap(height=16700000,width=12000000,
resolution='l',area_thresh=1000.,projection='omerc',\
lon_0=-100,lat_0=15,lon_2=-120,lat_2=65,lon_1=-50,lat_1=-55)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/20000.)+1; ny = int((m.ymax-m.ymin)/20000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
# get current axis instance.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
# draw parallels
m.drawparallels(np.arange(-80,81,20),labels=[1,0,0,0],fontsize=10)
# draw meridians
m.drawmeridians(np.arange(-180,181,30),labels=[0,0,0,1],fontsize=10)
plt.title('Oblique Mercator Projection')
print 'plotting Oblique Mercator example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup polyconic basemap.
m = Basemap(llcrnrlon=-35.,llcrnrlat=-30,urcrnrlon=80.,urcrnrlat=50.,\
resolution='c',area_thresh=1000.,projection='poly',\
lat_0=0.,lon_0=20.)
fig.add_axes([0.125,0.2,0.6,0.6])
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
# get current axis instance.
ax = plt.gca()
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = np.arange(-80.,100.,delat)
m.drawparallels(circles,labels=[1,0,0,0],fontsize=10)
# draw meridians
delon = 20.
meridians = np.arange(-180,180,delon)
m.drawmeridians(meridians,labels=[1,0,0,1],fontsize=10)
plt.title('Polyconic Projection')
print 'plotting Polyconic example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup equidistant conic
m = Basemap(llcrnrlon=-90.,llcrnrlat=18,urcrnrlon=-70.,urcrnrlat=26.,\
resolution='l',area_thresh=1000.,projection='eqdc',\
lat_1=21.,lat_2=23.,lon_0=-80.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
m.fillcontinents(color='olive')
# draw parallels
delat = 2.
circles = np.arange(17,27,delat)
m.drawparallels(circles,labels=[1,0,0,0])
# draw meridians
delon = 5.
meridians = np.arange(-100,-60,delon)
m.drawmeridians(meridians,labels=[0,0,0,1])
plt.title('Equidistant Conic')
print 'plotting Equidistant Conic example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup lambert conformal map projection (North America).
m = Basemap(llcrnrlon=-145.5,llcrnrlat=1,urcrnrlon=-2.566,urcrnrlat=46.352,\
resolution='c',area_thresh=10000.,projection='lcc',\
lat_1=50.,lon_0=-107.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.075, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
delat = 20.
circles = np.arange(0.,90.+delat,delat).tolist()+\
np.arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,0,1])
# draw meridians
delon = 30.
meridians = np.arange(10.,360.,delon)
m.drawmeridians(meridians,labels=[1,1,0,1])
plt.title('Lambert Conformal Conic')
print 'plotting Lambert Conformal example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup albers equal area map projection (Europe).
m = Basemap(llcrnrlon=-10.,llcrnrlat=20,urcrnrlon=55.,urcrnrlat=75,\
resolution='l',projection='aea',\
lat_1=40.,lat_2=60,lon_0=35.)
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
im.set_clim(-4000.,3000.) # adjust range of colors.
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.075, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = np.arange(0.,90.+delat,delat).tolist()+\
np.arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
delon = 30.
meridians = np.arange(10.,360.,delon)
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Albers Equal Area Conic',y=1.075)
print 'plotting Albers Equal Area example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup stereographic map projection (Southern Hemisphere).
#m = Basemap(llcrnrlon=120.,llcrnrlat=0.,urcrnrlon=-60.,urcrnrlat=0.,\
# resolution='c',area_thresh=10000.,projection='stere',\
# lat_0=-90.,lon_0=75.,lat_ts=-90.)
# this is equivalent, but simpler.
m = Basemap(lon_0=75.,boundinglat=-20,
resolution='c',area_thresh=10000.,projection='spstere')
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.075, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Polar Stereographic',y=1.075)
print 'plotting Stereographic example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup lambert azimuthal map projection (Northern Hemisphere).
#m = Basemap(llcrnrlon=-150.,llcrnrlat=-18.,urcrnrlon=30.,urcrnrlat=--18.,\
# resolution='c',area_thresh=10000.,projection='laea',\
# lat_0=90.,lon_0=-105.)
# this is equivalent, but simpler.
m = Basemap(lon_0=-105,boundinglat=20.,
resolution='c',area_thresh=10000.,projection='nplaea')
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.075, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Lambert Azimuthal Equal Area',y=1.075)
print 'plotting Lambert Azimuthal example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup azimuthal equidistant map projection (Northern Hemisphere).
#m = Basemap(llcrnrlon=-150.,llcrnrlat=40.,urcrnrlon=30.,urcrnrlat=40.,\
# resolution='c',area_thresh=10000.,projection='aeqd',\
# lat_0=90.,lon_0=-105.)
# this is equivalent, but simpler.
m = Basemap(lon_0=-105,boundinglat=55.,
resolution='c',area_thresh=10000.,projection='npaeqd')
# transform to nx x ny regularly spaced native projection grid
nx = int((m.xmax-m.xmin)/40000.)+1; ny = int((m.ymax-m.ymin)/40000.)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map.
im = m.imshow(topodat,plt.cm.jet)
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.075, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
m.drawcoastlines()
m.drawcountries()
m.drawstates()
#m.fillcontinents()
# draw parallels
m.drawparallels(circles)
# draw meridians
m.drawmeridians(meridians,labels=[1,1,1,1])
plt.title('Azimuthal Equidistant',y=1.075)
print 'plotting Azimuthal Equidistant example ...'
print m.proj4string
# projections with elliptical boundaries (orthographic, sinusoidal,
# mollweide and robinson)
# create new figure
fig=plt.figure()
# setup of basemap ('ortho' = orthographic projection)
m = Basemap(projection='ortho',
resolution='c',area_thresh=10000.,lat_0=30,lon_0=-60)
# transform to nx x ny regularly spaced native projection grid
# nx and ny chosen to have roughly the same horizontal res as original image.
dx = 2.*np.pi*m.rmajor/len(lons)
nx = int((m.xmax-m.xmin)/dx)+1; ny = int((m.ymax-m.ymin)/dx)+1
# interpolate to native projection grid.
# values outside of projection limb will be masked.
topo = m.transform_scalar(topoin,lons,lats,nx,ny,masked=True)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# set missing value in color pallette.
palette = plt.cm.jet
palette.set_bad(ax.get_axis_bgcolor(), 0.0)
# plot image over map with imshow.
# (if contourf were used, no interpolation would be necessary
# and values outside projection limb would be handled transparently
# - see contour_demo.py)
im = m.imshow(topo,palette,norm=colors.normalize(clip=False))
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.075, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians (labelling is
# not implemented for orthographic).
parallels = np.arange(-80.,90,20.)
m.drawparallels(parallels)
meridians = np.arange(0.,360.,20.)
m.drawmeridians(meridians)
# draw boundary around map region.
m.drawmapboundary()
plt.title('Orthographic')
print 'plotting Orthographic example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup of basemap ('geos' = geostationary projection)
m = Basemap(projection='geos',
rsphere=(6378137.00,6356752.3142),\
resolution='c',area_thresh=10000.,lon_0=0,satellite_height=35785831)
# transform to nx x ny regularly spaced native projection grid
# nx and ny chosen to have roughly the same horizontal res as original image.
dx = 2.*np.pi*m.rmajor/len(lons)
nx = int((m.xmax-m.xmin)/dx)+1; ny = int((m.ymax-m.ymin)/dx)+1
# interpolate to native projection grid.
# values outside of projection limb will be masked.
topo = m.transform_scalar(topoin,lons,lats,nx,ny,masked=True)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# set missing value in color pallette.
palette = plt.cm.jet
palette.set_bad(ax.get_axis_bgcolor(), 0.0)
# plot image over map with imshow.
# (if contourf were used, no interpolation would be necessary
# and values outside projection limb would be handled transparently
# - see contour_demo.py)
im = m.imshow(topo,palette,norm=colors.normalize(clip=False))
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.075, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians (labelling is
# not implemented for geostationary).
parallels = np.arange(-80.,90,20.)
m.drawparallels(parallels)
meridians = np.arange(0.,360.,20.)
m.drawmeridians(meridians)
# draw boundary around map region.
m.drawmapboundary()
plt.title('Geostationary')
print 'plotting Geostationary example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup of sinusoidal ('sinu' = sinusioidal projection)
m = Basemap(projection='sinu',
resolution='c',area_thresh=10000.,lon_0=0.5*(lonsin[0]+lonsin[-1]))
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map with pcolormesh.
x,y = m(*np.meshgrid(lonsin,latsin))
p = m.pcolormesh(x,y,topodatin,shading='flat')
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,30.)
m.drawmeridians(meridians)
# draw boundary around map region.
m.drawmapboundary()
plt.title('Sinusoidal')
print 'plotting Sinusoidal example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup of basemap ('moll' = mollweide projection)
m = Basemap(projection='moll',
resolution='c',area_thresh=10000.,lon_0=0.5*(lonsin[0]+lonsin[-1]))
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map with pcolormesh.
x,y = m(*np.meshgrid(lonsin,latsin))
p = m.pcolormesh(x,y,topodatin,shading='flat')
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,30.)
m.drawmeridians(meridians)
# draw boundary around map region.
m.drawmapboundary()
plt.title('Mollweide')
print 'plotting Mollweide example ...'
print m.proj4string
# create new figure
fig=plt.figure()
# setup of basemap ('robin' = robinson projection)
m = Basemap(projection='robin',
resolution='c',area_thresh=10000.,lon_0=0.5*(lonsin[0]+lonsin[-1]))
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot image over map with pcolormesh.
x,y = m(*np.meshgrid(lonsin,latsin))
p = m.pcolormesh(x,y,topodatin,shading='flat')
pos = ax.get_position()
l, b, w, h = pos.bounds
cax = plt.axes([l+w+0.05, b, 0.05, h]) # setup colorbar axes.
plt.colorbar(cax=cax) # draw colorbar
plt.axes(ax) # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians
parallels = np.arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = np.arange(0.,360.,60.)
m.drawmeridians(meridians,labels=[0,0,0,1])
# draw boundary around map region.
m.drawmapboundary()
plt.title('Robinson')
print 'plotting Robinson example ...'
print m.proj4string
plt.show()
print 'done'
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.