Menu

[r6044]: / trunk / py4science / examples / trapezoid.py  Maximize  Restore  History

Download this file

81 lines (58 with data), 2.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python
"""Simple trapezoid-rule integrator."""
import numpy as np
def trapz(x, y):
"""Simple trapezoid integrator for sequence-based innput.
Inputs:
- x,y: arrays of the same length.
Output:
- The result of applying the trapezoid rule to the input, assuming that
y[i] = f(x[i]) for some function f to be integrated.
Minimally modified from matplotlib.mlab."""
# Sanity checks
if len(x)!=len(y):
raise ValueError('x and y must have the same length')
if len(x)<2:
raise ValueError('x and y must have > 1 element')
# Efficient application of trapezoid rule via numpy
return 0.5*((x[1:]-x[:-1])*(y[1:]+y[:-1])).sum()
def trapzf(f,a,b,npts=100):
"""Simple trapezoid-based integrator.
Inputs:
- f: function to be integrated.
- a,b: limits of integration.
Optional inputs:
- npts(100): the number of equally spaced points to sample f at, between
a and b.
Output:
- The value of the trapezoid-rule approximation to the integral."""
# Generate an equally spaced grid to sample the function at
x = np.linspace(a,b,npts)
# For an equispaced grid, the x spacing can just be read off from the first
# two points and factored out of the summation.
dx = x[1]-x[0]
# Sample the input function at all values of x
y = np.array(map(f,x))
# Compute the trapezoid rule sum for the final result
return 0.5*dx*(y[1:]+y[:-1]).sum()
#-----------------------------------------------------------------------------
# Tests
#-----------------------------------------------------------------------------
import nose, nose.tools as nt
import numpy.testing as nptest
def square(x): return x**2
def test_err():
nt.assert_raises(ValueError,trapz,range(2),range(3))
def test_call():
x = np.linspace(0,1,100)
y = np.array(map(square,x))
nptest.assert_almost_equal(trapz(x,y),1./3,4)
def test_square():
nptest.assert_almost_equal(trapzf(square,0,1),1./3,4)
def test_square2():
nptest.assert_almost_equal(trapzf(square,0,3,350),9.0,4)
# If called from the command line, run all the tests
if __name__ == '__main__':
# This call form is ipython-friendly
nose.runmodule(argv=['-s','--with-doctest'],
exit=False)
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.