Menu

[r5855]: / trunk / matplotlib / unit / transforms_unit.py  Maximize  Restore  History

Download this file

306 lines (231 with data), 7.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#from __future__ import division
from matplotlib.numerix import array, asarray, alltrue, arange
from matplotlib.numerix.mlab import rand
from matplotlib.transforms import Point, Bbox, Value, Affine
from matplotlib.transforms import multiply_affines
from matplotlib.transforms import Func, IDENTITY, LOG10, POLAR, FuncXY
from matplotlib.transforms import SeparableTransformation
from matplotlib.transforms import identity_transform, unit_bbox
from matplotlib.transforms import get_bbox_transform
from matplotlib.transforms import transform_bbox, inverse_transform_bbox
from matplotlib.transforms import bbox_all
from matplotlib.transforms import copy_bbox_transform
def closeto(x,y):
return abs(asarray(x)-asarray(y))<1e-10
def closeto_seq(xs,ys):
return alltrue([closeto(x,y) for x,y in zip(xs, ys)])
def closeto_bbox(b1, b2):
xmin1, xmax1 = b1.intervalx().get_bounds()
ymin1, ymax1 = b1.intervaly().get_bounds()
xmin2, xmax2 = b2.intervalx().get_bounds()
ymin2, ymax2 = b2.intervaly().get_bounds()
pairs = ( (xmin1, xmin2), (xmax1, xmax2), (ymin1, ymin2), (ymax1, ymax2))
return alltrue([closeto(x,y) for x,y in pairs])
ll = Point( Value(10), Value(10) )
ur = Point( Value(200), Value(40) )
bbox = Bbox(ll, ur)
assert(bbox.xmin()==10)
assert(bbox.width()==190)
assert(bbox.height()==30)
ll.x().set(12.0)
assert(bbox.xmin()==12)
assert(bbox.width()==188)
assert(bbox.height()==30)
a = Value(10)
b = Value(0)
c = Value(0)
d = Value(20)
tx = Value(-10)
ty = Value(-20)
affine = Affine(a,b,c,d,tx,ty)
# test transformation of xy tuple
x, y = affine.xy_tup( (10,20) )
assert(x==90)
assert(y==380)
# test transformation of sequence of xy tuples
xy = affine.seq_xy_tups( ( (10,20), (20,30), ) )
assert(xy[0] == (90, 380))
assert(xy[1] == (190, 580))
# test transformation of x and y sequences
xy = affine.seq_x_y( (10,20), (20,30))
assert(xy[0] == (90, 190))
assert(xy[1] == (380, 580))
# test with numeric arrays
xy = affine.seq_x_y( array((10,20)), array((20,30)))
assert(xy[0] == (90, 190))
assert(xy[1] == (380, 580))
# now change the x scale factor and make sure the affine updated
# properly
a.set(20)
xy = affine.seq_xy_tups( ( (10,20), (20,30), ) )
assert(xy[0] == (190, 380))
assert(xy[1] == (390, 580))
# Test the aritmetic operations on lazy values
v1 = Value(10)
v2 = Value(20)
o1 = v1 + v2
assert( o1.get() == 30)
o2 = v1 * v2
assert( o2.get() == 200)
v3 = Value(2)
o3 = (v1+v2)*v3
assert( o3.get() == 60)
# test a composition of affines
zero = Value(0)
one = Value(1)
two = Value(2)
num = Value(2)
a1 = Affine(num, zero, zero, num, zero, zero)
a2 = Affine(one, zero, zero, num, num, one )
pnt = 3,4
a = multiply_affines(a1, a2)
assert( a2.xy_tup(pnt) == (5,9) )
assert( a.xy_tup(pnt) == (10,18) )
a = multiply_affines(a2, a1)
assert( a1.xy_tup(pnt) == (6,8) )
assert( a.xy_tup(pnt) == (8,17) )
# change num to 4 and make sure the affine product is still right
num.set(4)
assert( a1.xy_tup(pnt) == (12,16) )
assert( a.xy_tup(pnt) == (16,65) )
# test affines with arithemtic sums of lazy values
val = num*(one + two)
a1 = Affine(one, zero, zero, val, num, val)
assert(a1.xy_tup(pnt) == (7, 60))
x = rand(20)
y = rand(20)
transform = identity_transform()
xout, yout = transform.seq_x_y(x,y)
assert((x,y) == transform.seq_x_y(x,y))
# test bbox transforms; transform the unit coordinate system to
# "display coords"
bboxin = unit_bbox()
ll = Point( Value(10), Value(10) )
ur = Point( Value(200), Value(40) )
bboxout = Bbox(ll, ur)
transform = get_bbox_transform(bboxin, bboxout)
assert( transform.xy_tup( (0,0) )==(10, 10))
assert( transform.xy_tup( (1,1) )==(200, 40))
assert( transform.xy_tup( (0.5, 0.5) )==(105, 25))
# simulate a resize
ur.x().set(400)
ur.y().set(400)
assert( transform.xy_tup( (0,0) )==(10, 10))
assert( transform.xy_tup( (1,1) )==(400, 400))
assert( transform.xy_tup( (0.5, 0.5) )==(205, 205))
pairs = ( ( (0, 0 ), (10, 10 ) ),
( (1, 1 ), (400, 400) ),
( (0.5, 0.5), (205, 205) ) )
for p1, p2 in pairs:
assert( closeto_seq( transform.xy_tup(p1), p2 ) )
assert( closeto_seq( transform.inverse_xy_tup(p2), p1) )
# make some random bbox transforms and test inversion
def rand_point():
xy = rand(2)
return Point( Value(xy[0]), Value(xy[1]) )
def rand_bbox():
ll = rand_point()
ur = rand_point()
return Bbox(ll, ur)
def rand_transform():
b1 = rand_bbox()
b2 = rand_bbox()
return get_bbox_transform(b1, b2)
transform = rand_transform()
transform.set_funcx(Func(LOG10))
x = rand(100)
y = rand(100)
xys = zip(x,y)
for xy in xys:
xyt = transform.xy_tup(xy)
xyi = transform.inverse_xy_tup(xyt)
assert( closeto_seq(xy,xyi) )
ll = Point( Value(-10), Value(-10) )
ur = Point( Value(200), Value(40) )
bbox = Bbox(ll, ur)
assert(bbox.xmin()==-10)
assert(bbox.xmax()==200)
assert(bbox.ymin()==-10)
assert(bbox.ymax()==40)
bbox.update(xys, False) # don't ignore current lim
bbox.update(xys, True) #ignore current lim
assert(bbox.xmin()==min(x))
assert(bbox.xmax()==max(x))
assert(bbox.ymin()==min(y))
assert(bbox.ymax()==max(y))
ll = Point( Value(-10), Value(-10) )
ur = Point( Value(200), Value(40) )
bbox = Bbox(ll, ur)
ix = bbox.intervalx()
iy = bbox.intervaly()
assert(bbox.xmin()==-10)
assert(bbox.xmax()==200)
assert(bbox.ymin()==-10)
assert(bbox.ymax()==40)
ix.set_bounds(-30, 400)
assert(bbox.xmin()==-30)
assert(bbox.xmax()==400)
assert(bbox.ymin()==-10)
assert(bbox.ymax()==40)
num = Value(200.0)
den = Value(100.0)
div = num/den
assert(div.get()==2.0)
# test the inverse bbox functions
trans = rand_transform()
bbox1 = rand_bbox()
ibbox = inverse_transform_bbox(trans, bbox1)
bbox2 = transform_bbox(trans, ibbox)
assert(closeto_bbox(bbox1, bbox2))
ll = Point( Value(-10), Value(-10) )
ur = Point( Value(200), Value(40) )
bbox = Bbox(ll, ur)
transform = get_bbox_transform(unit_bbox(), bbox)
assert( closeto_seq( inverse_transform_bbox(transform, bbox).get_bounds(),
(0,0,1,1)))
assert( closeto_seq( transform_bbox(transform, unit_bbox()).get_bounds(),
(-10,-10,210,50)))
# test the bbox all bounding functions
boxes = [rand_bbox() for i in range(20)]
xmin = min([box.xmin() for box in boxes])
xmax = max([box.xmax() for box in boxes])
ymin = min([box.ymin() for box in boxes])
ymax = max([box.ymax() for box in boxes])
box = bbox_all(boxes)
assert( closeto_seq( box.get_bounds(), (xmin, ymin, xmax-xmin, ymax-ymin)))
t1 = rand_transform()
oboundsx = t1.get_bbox1().intervalx().get_bounds()
oboundsy = t1.get_bbox1().intervaly().get_bounds()
t2 = copy_bbox_transform(t1)
t1.get_bbox1().intervalx().set_bounds(1,2)
t2.get_bbox2().intervaly().set_bounds(-1,12)
newboundsx = t2.get_bbox1().intervalx().get_bounds()
newboundsy = t2.get_bbox1().intervaly().get_bounds()
assert(oboundsx==newboundsx)
assert(oboundsy==newboundsy)
import math
polar = FuncXY(POLAR)
assert( closeto_seq( polar.map(math.pi,1), (-1,0)) )
assert( closeto_seq( polar.inverse(1,1), ( (math.pi/4), math.sqrt(2))) )
# This unit test requires "nan", which numarray.ieeespecial
# exports. (But we can keep using the numerix module.)
try:
from numarray.ieeespecial import nan
have_nan = True
except ImportError:
have_nan = False
if have_nan:
y1=array([ 2,nan,1,2,3,4])
y2=array([nan,nan,1,2,3,4])
x1=arange(len(y1))
x2=arange(len(y2))
bbox1 = Bbox(Point(Value(0),Value(0)),
Point(Value(1),Value(1)))
bbox2 = Bbox(Point(Value(0),Value(0)),
Point(Value(1),Value(1)))
bbox1.update_numerix(x1,y1,1)
bbox2.update_numerix(x2,y2,1)
assert( closeto_seq( bbox1.get_bounds(), bbox2.get_bounds() ) )
else:
print 'nan could not be imported from numarray.ieeespecial, test skipped'
print 'all tests passed'