Menu

[r5761]: / trunk / py4science / classes / pomona_agenda.txt  Maximize  Restore  History

Download this file

45 lines (25 with data), 1.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
DAY 1:
Introduction:
35 min : Scientific computing in python (standard overhead talk)
45 min: The core tools -- ipython, numpy, matplotlib and scipy. (type along)
Break: 15 min
Exercises session 1:
45 min: Working with data files, web based resources, date handling,
CSV files, and record arrays. Word counting exercise.
(urllib, csv, dateutils, matplotlib.mlab)
45 min: Numerical integration, trapz and Newton's quadrature (scipy.integrate)
Lunch Break: 45 min
Exercises session 2:
45 min: Linear algebra: Moire Glass patterns
45 min: Statisical distributions, random numbers, central limit theorem (scipy.stats)
45 min: Descriptive statistics and graphs: mean, variance, skew,
kurtosis, histograms, autocorrelation, power spectra,
spectrogram (scipy.stats, matplotlib.mlab and pylab)
Break: 15 min
Exercises session 3:
60 min: Interpolation, data modeling and optimization (scipy.interpolate and scipy.optimize)
45 min: Using code from other languages (FORTRAN, C, C++) --
Presentation (pyrex, weave, f2py, ctypes)
DAY 2:
Exercise Session 4:
45 minutes: screen scraping - extracting data from web pages (BeautifulSoup)
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.