@header@
 
 
matplotlib.numerix
index
/usr/local/lib/python2.3/site-packages/matplotlib/numerix.py

numerix  imports either Numeric or numarray based on various selectors.
 
0.  If the value "--numarray" or "--Numeric" is specified on the
command line, then numerix imports the specified array package.
 
1. The value of numerix in ~/.matplotlibrc: either Numeric or numarray
 
2. If none of the above is done, the default array package is Numeric.
Because the .matplotlibrc always provides *some* value for numerix (it
has it's own system of default values), this default is most likely
never used.
 
3. Whichever numerical package is selected, if the import fails, the
other is tried.
 
To summarize: the  commandline is examined first, the  rc file second,
and the default array package is Numeric.  If the selected package
fails to import, the other is tried.

 
Modules
       
numarray.linear_algebra
numarray.linear_algebra.mlab
numarray.random_array
numarray.arrayprint
copy
copy_reg
numarray.generic
numarray.libnumarray
numarray.libnumeric
numarray.linear_algebra
math
numarray.memory
numarray.numarrayall
numarray.numarraycore
numarray.numeric
numarray.numerictypes
numarray.numinclude
numarray.numtest
operator
os
numarray.safethread
sys
numarray.typeconv
types
numarray.ufunc

 
Functions
       
and_(...)
and_(a, b) -- Same as a & b.
cumproduct = accumulate(...)
accumulate   performs the operation along the dimension, accumulating subtotals
cumsum = accumulate(...)
accumulate   performs the operation along the dimension, accumulating subtotals
dot(...)
dot(a,b) computes the matrix multiplication of two arrays
histogram(...)
histogram(list, weights=None)
If weight is not present:
  histogram(list)[i] is the number of occurrences of i in list.
If weight is present:
  histogram(list, weight)[i] is the sum of all weight [j]
where list[j] == i.
Both list and weights must be 1D.
list must be non-negative.
weights must be the same length as lst.
innerproduct(...)
innerproduct(a,b) computes the inner product of two arrays
matrixmultiply = dot(...)
dot(a,b) computes the matrix multiplication of two arrays
product = reduce(...)
reduce  performs the operation along the specified dimension, eliminating it. Returns scalars rather than rank-0 numarray.
sum = reduce(...)
reduce  performs the operation along the specified dimension, eliminating it. Returns scalars rather than rank-0 numarray.

 
Data
        Any = Any
Bool = Bool
Byte = Int8
CLIP = 0
Complex = Complex64
Complex32 = Complex32
Complex64 = Complex64
Error = <numarray.ufunc.NumError instance>
Float = Float64
Float32 = Float32
Float64 = Float64
Infinity = inf
Int = Int32
Int16 = Int16
Int32 = Int32
Int64 = Int64
Int8 = Int8
Long = Int32
MAX_ALIGN = 8
MAX_INT_SIZE = 8
MAX_LINE_WIDTH = None
MaybeLong = Int32
NewAxis = None
Object = Object
PRECISION = None
Py2NumType = {<type 'float'>: Float64, <type 'int'>: Int32, <type 'long'>: Int32, <type 'bool'>: Bool, <type 'complex'>: Complex64}
PyINT_TYPES = {<type 'int'>: 1, <type 'long'>: 1, <type 'bool'>: 1}
PyLevel2Type = {0: <type 'bool'>, 1: <type 'int'>, 2: <type 'long'>, 3: <type 'float'>, 4: <type 'complex'>}
PyNUMERIC_TYPES = {<type 'float'>: 3, <type 'int'>: 1, <type 'long'>: 2, <type 'bool'>: 0, <type 'complex'>: 4}
PyREAL_TYPES = {<type 'float'>: 1, <type 'int'>: 1, <type 'long'>: 1, <type 'bool'>: 1}
RAISE = 2
SUPPRESS_SMALL = None
Short = Int16
UInt16 = UInt16
UInt32 = UInt32
UInt64 = UInt64
UInt8 = UInt8
WRAP = 1
a = 'matplotlib.numerix'
abs = <UFunc: 'abs'>
absolute = <UFunc: 'abs'>
add = <UFunc: 'add'>
arccos = <UFunc: 'arccos'>
arccosh = <UFunc: 'arccosh'>
arcsin = <UFunc: 'arcsin'>
arcsinh = <UFunc: 'arcsinh'>
arctan = <UFunc: 'arctan'>
arctan2 = <UFunc: 'arctan2'>
arctanh = <UFunc: 'arctanh'>
bitwise_and = <UFunc: 'bitwise_and'>
bitwise_not = <UFunc: 'bitwise_not'>
bitwise_or = <UFunc: 'bitwise_or'>
bitwise_xor = <UFunc: 'bitwise_xor'>
ceil = <UFunc: 'ceil'>
cos = <UFunc: 'cos'>
cosh = <UFunc: 'cosh'>
divide = <UFunc: 'divide'>
e = 2.7182818284590451
equal = <UFunc: 'equal'>
exp = <UFunc: 'exp'>
fabs = <UFunc: 'fabs'>
floor = <UFunc: 'floor'>
floor_divide = <UFunc: 'floor_divide'>
fmod = <UFunc: 'remainder'>
genericCoercions = {('Bool', 'Bool'): 'Bool', ('Bool', 'Complex32'): 'Complex32', ('Bool', 'Complex64'): 'Complex64', ('Bool', 'Float32'): 'Float32', ('Bool', 'Float64'): 'Float64', ('Bool', 'Int16'): 'Int16', ('Bool', 'Int32'): 'Int32', ('Bool', 'Int64'): 'Int64', ('Bool', 'Int8'): 'Int8', ('Bool', 'Object'): 'Object', ...}
genericPromotionExclusions = {'Bool': (), 'Complex32': (), 'Complex64': (), 'Float32': (), 'Float64': (11,), 'Int16': (), 'Int32': (), 'Int64': (9,), 'Int8': (), 'UInt16': (), ...}
genericTypeRank = ['Bool', 'Int8', 'UInt8', 'Int16', 'UInt16', 'Int32', 'UInt32', 'Int64', 'UInt64', 'Float32', 'Float64', 'Complex32', 'Complex64', 'Object']
greater = <UFunc: 'greater'>
greater_equal = <UFunc: 'greater_equal'>
hypot = <UFunc: 'hypot'>
ieeemask = <UFunc: 'ieeemask'>
inf = inf
infty = inf
isBigEndian = False
less = <UFunc: 'less'>
less_equal = <UFunc: 'less_equal'>
log = <UFunc: 'log'>
log10 = <UFunc: 'log10'>
logical_and = <UFunc: 'logical_and'>
logical_not = <UFunc: 'logical_not'>
logical_or = <UFunc: 'logical_or'>
logical_xor = <UFunc: 'logical_xor'>
lshift = <UFunc: 'lshift'>
maximum = <UFunc: 'maximum'>
minimum = <UFunc: 'minimum'>
minus = <UFunc: 'minus'>
multiply = <UFunc: 'multiply'>
negative = <UFunc: 'minus'>
not_equal = <UFunc: 'not_equal'>
numarray_nonzero = <numarray.ufunc._NonzeroUFunc instance>
nx = <matplotlib.na_imports._TypeNamespace instance>
pi = 3.1415926535897931
power = <UFunc: 'power'>
pythonTypeMap = {<type 'float'>: ('Float64', 'float'), <type 'int'>: ('Int32', 'int'), <type 'long'>: ('Int32', 'int'), <type 'complex'>: ('Complex64', 'complex')}
pythonTypeRank = [<type 'int'>, <type 'long'>, <type 'float'>, <type 'complex'>]
rcParams = {'axes.edgecolor': 'k', 'axes.facecolor': 'w', 'axes.grid': False, 'axes.hold': True, 'axes.labelcolor': 'k', 'axes.labelsize': 12.0, 'axes.linewidth': 1.0, 'axes.titlesize': 14.0, 'backend': 'GTKAgg', 'datapath': '/usr/local/share/matplotlib', ...}
remainder = <UFunc: 'remainder'>
rshift = <UFunc: 'rshift'>
scalarTypeMap = {<type 'float'>: 'Float64', <type 'int'>: 'Int32', <type 'long'>: 'Int32', <type 'complex'>: 'Complex64'}
sin = <UFunc: 'sin'>
sinh = <UFunc: 'sinh'>
sqrt = <UFunc: 'sqrt'>
subtract = <UFunc: 'subtract'>
tan = <UFunc: 'tan'>
tanh = <UFunc: 'tanh'>
true_divide = <UFunc: 'true_divide'>
typeDict = {'1': Int8, 'Any': Any, 'Bool': Bool, 'Byte': Int8, 'Complex': Complex64, 'Complex32': Complex32, 'Complex64': Complex64, 'D': Complex64, 'F': Complex32, 'Float': Float64, ...}
typecode = {Bool: '1', Int8: '1', UInt8: 'b', Int16: 's', UInt16: 'w', Int32: 'l', UInt32: 'u', Int64: 'N', UInt64: 'U', Float32: 'f', ...}
typecodes = {'Character': 'c', 'Complex': 'FD', 'Float': 'fd', 'Integer': '1silN', 'UnsignedInteger': 'bwuU'}
which = ('numarray', 'rc')
@footer@