Menu

[r4780]: / branches / transforms / lib / matplotlib / image.py  Maximize  Restore  History

Download this file

629 lines (514 with data), 20.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
"""
The image module supports basic image loading, rescaling and display
operations.
"""
from __future__ import division
import os, warnings
import numpy as npy
import matplotlib.numerix.npyma as ma
from matplotlib import rcParams
from matplotlib import artist as martist
from matplotlib import colors as mcolors
from matplotlib import cm
# For clarity, names from _image are given explicitly in this module:
from matplotlib import _image
# For user convenience, the names from _image are also imported into
# the image namespace:
from matplotlib._image import *
class AxesImage(martist.Artist, cm.ScalarMappable):
zorder = 1
def __init__(self, ax,
cmap = None,
norm = None,
interpolation=None,
origin=None,
extent=None,
filternorm=1,
filterrad=4.0,
**kwargs
):
"""
interpolation and cmap default to their rc settings
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
extent is data axes (left, right, bottom, top) for making image plots
registered with data plots. Default is to label the pixel
centers with the zero-based row and column indices.
Additional kwargs are matplotlib.artist properties
"""
martist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
if origin is None: origin = rcParams['image.origin']
self.origin = origin
self._extent = extent
self.set_filternorm(filternorm)
self.set_filterrad(filterrad)
# map interpolation strings to module constants
self._interpd = {
'nearest' : _image.NEAREST,
'bilinear' : _image.BILINEAR,
'bicubic' : _image.BICUBIC,
'spline16' : _image.SPLINE16,
'spline36' : _image.SPLINE36,
'hanning' : _image.HANNING,
'hamming' : _image.HAMMING,
'hermite' : _image.HERMITE,
'kaiser' : _image.KAISER,
'quadric' : _image.QUADRIC,
'catrom' : _image.CATROM,
'gaussian' : _image.GAUSSIAN,
'bessel' : _image.BESSEL,
'mitchell' : _image.MITCHELL,
'sinc' : _image.SINC,
'lanczos' : _image.LANCZOS,
'blackman' : _image.BLACKMAN,
}
# reverse interp dict
self._interpdr = dict([ (v,k) for k,v in self._interpd.items()])
self.set_interpolation(interpolation)
self.axes = ax
self._imcache = None
self.update(kwargs)
def get_size(self):
'Get the numrows, numcols of the input image'
if self._A is None:
raise RuntimeError('You must first set the image array')
return self._A.shape[:2]
def set_alpha(self, alpha):
"""
Set the alpha value used for blending - not supported on
all backends
ACCEPTS: float
"""
martist.Artist.set_alpha(self, alpha)
self._imcache = None
def changed(self):
"""
Call this whenever the mappable is changed so observers can
update state
"""
self._imcache = None
cm.ScalarMappable.changed(self)
def make_image(self, magnification=1.0):
if self._A is None:
raise RuntimeError('You must first set the image array or the image attribute')
if self._imcache is None:
if self._A.dtype == npy.uint8 and len(self._A.shape) == 3:
im = _image.frombyte(self._A, 0)
im.is_grayscale = False
else:
x = self.to_rgba(self._A, self._alpha)
im = _image.fromarray(x, 0)
if len(self._A.shape) == 2:
im.is_grayscale = self.cmap.is_gray()
else:
im.is_grayscale = False
self._imcache = im
if self.origin=='upper':
im.flipud_in()
else:
im = self._imcache
fc = self.axes.get_frame().get_facecolor()
bg = mcolors.colorConverter.to_rgba(fc, 0)
im.set_bg( *bg)
# image input dimensions
im.reset_matrix()
numrows, numcols = im.get_size()
im.set_interpolation(self._interpd[self._interpolation])
xmin, xmax, ymin, ymax = self.get_extent()
dxintv = xmax-xmin
dyintv = ymax-ymin
# the viewport scale factor
sx = dxintv/self.axes.viewLim.width
sy = dyintv/self.axes.viewLim.height
# the viewport translation
tx = (xmin-self.axes.viewLim.x0)/dxintv * numcols
ty = (ymin-self.axes.viewLim.y0)/dyintv * numrows
l, b, widthDisplay, heightDisplay = self.axes.bbox.bounds
widthDisplay *= magnification
heightDisplay *= magnification
im.apply_translation(tx, ty)
im.apply_scaling(sx, sy)
# resize viewport to display
rx = widthDisplay / numcols
ry = heightDisplay / numrows
im.apply_scaling(rx, ry)
im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5),
norm=self._filternorm, radius=self._filterrad)
return im
def draw(self, renderer, *args, **kwargs):
if not self.get_visible(): return
if (self.axes.get_xscale() != 'linear' or
self.axes.get_yscale() != 'linear'):
warnings.warn("Images are not supported on non-linear axes.")
im = self.make_image(renderer.get_image_magnification())
l, b, widthDisplay, heightDisplay = self.axes.bbox.bounds
renderer.draw_image(l, b, im, self.axes.bbox.frozen(),
*self.get_transformed_clip_path_and_affine())
def contains(self, mouseevent):
"""Test whether the mouse event occured within the image.
"""
if callable(self._contains): return self._contains(self,mouseevent)
# TODO: make sure this is consistent with patch and patch
# collection on nonlinear transformed coordinates.
# TODO: consider returning image coordinates (shouldn't
# be too difficult given that the image is rectilinear
xmin, xmax, ymin, ymax = self.get_extent()
xdata, ydata = mouseevent.xdata, mouseevent.ydata
#print xdata, ydata, xmin, xmax, ymin, ymax
if xdata is not None and ydata is not None:
inside = xdata>=xmin and xdata<=xmax and ydata>=ymin and ydata<=ymax
else:
inside = False
return inside,{}
def write_png(self, fname, noscale=False):
"""Write the image to png file with fname"""
im = self.make_image()
if noscale:
numrows,numcols = im.get_size()
im.reset_matrix()
im.set_interpolation(0)
im.resize(numcols, numrows)
im.flipud_out()
im.write_png(fname)
def set_data(self, A, shape=None):
"""
Set the image array
ACCEPTS: numpy/PIL Image A"""
# check if data is PIL Image without importing Image
if hasattr(A,'getpixel'):
X = pil_to_array(A)
else:
X = ma.asarray(A) # assume array
self._A = X
self._imcache =None
def set_array(self, A):
"""
retained for backwards compatibility - use set_data instead
ACCEPTS: numpy array A or PIL Image"""
# This also needs to be here to override the inherited
# cm.ScalarMappable.set_array method so it is not invoked
# by mistake.
self.set_data(A)
def set_extent(self, extent):
"""extent is data axes (left, right, bottom, top) for making image plots
"""
self._extent = extent
xmin, xmax, ymin, ymax = extent
corners = (xmin, ymin), (xmax, ymax)
self.axes.update_datalim(corners)
if self.axes._autoscaleon:
self.axes.set_xlim((xmin, xmax))
self.axes.set_ylim((ymin, ymax))
def get_interpolation(self):
"""
Return the interpolation method the image uses when resizing.
One of
'bicubic', 'bilinear', 'blackman100', 'blackman256', 'blackman64',
'nearest', 'sinc144', 'sinc256', 'sinc64', 'spline16', 'spline36'
"""
return self._interpolation
def set_interpolation(self, s):
"""
Set the interpolation method the image uses when resizing.
ACCEPTS: ['bicubic' | 'bilinear' | 'blackman100' | 'blackman256' | 'blackman64', 'nearest' | 'sinc144' | 'sinc256' | 'sinc64' | 'spline16' | 'spline36']
"""
if s is None: s = rcParams['image.interpolation']
s = s.lower()
if not self._interpd.has_key(s):
raise ValueError('Illegal interpolation string')
self._interpolation = s
def get_extent(self):
'get the image extent: left, right, bottom, top'
if self._extent is not None:
return self._extent
else:
sz = self.get_size()
#print 'sz', sz
numrows, numcols = sz
if self.origin == 'upper':
return (-0.5, numcols-0.5, numrows-0.5, -0.5)
else:
return (-0.5, numcols-0.5, -0.5, numrows-0.5)
def set_filternorm(self, filternorm):
"""Set whether the resize filter norms the weights -- see
help for imshow
ACCEPTS: 0 or 1
"""
if filternorm:
self._filternorm = 1
else:
self._filternorm = 0
def get_filternorm(self):
'return the filternorm setting'
return self._filternorm
def set_filterrad(self, filterrad):
"""Set the resize filter radius only applicable to some
interpolation schemes -- see help for imshow
ACCEPTS: positive float
"""
r = float(filterrad)
assert(r>0)
self._filterrad = r
def get_filterrad(self):
'return the filterrad setting'
class NonUniformImage(AxesImage):
def __init__(self, ax,
**kwargs
):
AxesImage.__init__(self, ax,
**kwargs)
def make_image(self, magnification=1.0):
if self._A is None:
raise RuntimeError('You must first set the image array')
x0, y0, v_width, v_height = self.axes.viewLim.bounds
l, b, width, height = self.axes.bbox.bounds
width *= magnification
height *= magnification
im = _image.pcolor(self._Ax, self._Ay, self._A,
height, width,
(x0, x0+v_width, y0, y0+v_height))
fc = self.axes.get_frame().get_facecolor()
bg = mcolors.colorConverter.to_rgba(fc, 0)
im.set_bg(*bg)
return im
def set_data(self, x, y, A):
x = npy.asarray(x,npy.float32)
y = npy.asarray(y,npy.float32)
A = npy.asarray(A)
if len(x.shape) != 1 or len(y.shape) != 1\
or A.shape[0:2] != (y.shape[0], x.shape[0]):
raise TypeError("Axes don't match array shape")
if len(A.shape) not in [2, 3]:
raise TypeError("Can only plot 2D or 3D data")
if len(A.shape) == 3 and A.shape[2] not in [1, 3, 4]:
raise TypeError("3D arrays must have three (RGB) or four (RGBA) color components")
if len(A.shape) == 3 and A.shape[2] == 1:
A.shape = A.shape[0:2]
if len(A.shape) == 2:
if A.dtype != npy.uint8:
A = (self.cmap(self.norm(A))*255).astype(npy.uint8)
else:
A = npy.repeat(A[:,:,npy.newaxis], 4, 2)
A[:,:,3] = 255
else:
if A.dtype != npy.uint8:
A = (255*A).astype(npy.uint8)
if A.shape[2] == 3:
B = zeros(tuple(list(A.shape[0:2]) + [4]), npy.uint8)
B[:,:,0:3] = A
B[:,:,3] = 255
A = B
self._A = A
self._Ax = x
self._Ay = y
self._imcache = None
def set_array(self, *args):
raise NotImplementedError('Method not supported')
def set_interpolation(self, s):
print s
if s != None and s != 'nearest':
raise NotImplementedError('Only nearest neighbor supported')
AxesImage.set_interpolation(self, s)
def get_extent(self):
if self._A is None:
raise RuntimeError('Must set data first')
return self._Ax[0], self._Ax[-1], self._Ay[0], self._Ay[-1]
def set_filternorm(self, s):
pass
def set_filterrad(self, s):
pass
def set_norm(self, norm):
if self._A is not None:
raise RuntimeError('Cannot change colors after loading data')
cm.ScalarMappable.set_norm(self, norm)
def set_cmap(self, cmap):
if self._A is not None:
raise RuntimeError('Cannot change colors after loading data')
cm.ScalarMappable.set_cmap(self, norm)
class PcolorImage(martist.Artist, cm.ScalarMappable):
def __init__(self, ax,
x=None,
y=None,
A=None,
cmap = None,
norm = None,
**kwargs
):
"""
cmap defaults to its rc setting
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
Additional kwargs are matplotlib.artist properties
"""
martist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
self.axes = ax
self._rgbacache = None
self.update(kwargs)
self.set_data(x, y, A)
def make_image(self, magnification=1.0):
if self._A is None:
raise RuntimeError('You must first set the image array')
fc = self.axes.get_frame().get_facecolor()
bg = mcolors.colorConverter.to_rgba(fc, 0)
bg = (npy.array(bg)*255).astype(npy.uint8)
x0, y0, v_width, v_height = self.axes.viewLim.get_bounds()
l, b, width, height = self.axes.bbox.get_bounds()
width *= magnification
height *= magnification
if self.check_update('array'):
A = self.to_rgba(self._A, alpha=self._alpha, bytes=True)
self._rgbacache = A
if self._A.ndim == 2:
self.is_grayscale = self.cmap.is_gray()
else:
A = self._rgbacache
im = _image.pcolor2(self._Ax, self._Ay, A,
height, width,
(x0, x0+v_width, y0, y0+v_height),
bg)
im.is_grayscale = self.is_grayscale
return im
def draw(self, renderer, *args, **kwargs):
if not self.get_visible(): return
im = self.make_image(renderer.get_image_magnification())
l, b, widthDisplay, heightDisplay = self.axes.bbox.get_bounds()
renderer.draw_image(l, b, im, self.axes.bbox)
def set_data(self, x, y, A):
A = ma.asarray(A)
if x is None:
x = npy.arange(0, A.shape[1]+1, dtype=npy.float64)
else:
x = npy.asarray(x, npy.float64).ravel()
if y is None:
y = npy.arange(0, A.shape[0]+1, dtype=npy.float64)
else:
y = npy.asarray(y, npy.float64).ravel()
if A.shape[:2] != (y.size-1, x.size-1):
print A.shape
print y.size
print x.size
raise ValueError("Axes don't match array shape")
if A.ndim not in [2, 3]:
raise ValueError("A must be 2D or 3D")
if A.ndim == 3 and A.shape[2] == 1:
A.shape = A.shape[:2]
self.is_grayscale = False
if A.ndim == 3:
if A.shape[2] in [3, 4]:
if (A[:,:,0] == A[:,:,1]).all() and (A[:,:,0] == A[:,:,2]).all():
self.is_grayscale = True
else:
raise ValueError("3D arrays must have RGB or RGBA as last dim")
self._A = A
self._Ax = x
self._Ay = y
self.update_dict['array'] = True
def set_array(self, *args):
raise NotImplementedError('Method not supported')
def set_alpha(self, alpha):
"""
Set the alpha value used for blending - not supported on
all backends
ACCEPTS: float
"""
martist.Artist.set_alpha(self, alpha)
self.update_dict['array'] = True
class FigureImage(martist.Artist, cm.ScalarMappable):
zorder = 1
def __init__(self, fig,
cmap = None,
norm = None,
offsetx = 0,
offsety = 0,
origin=None,
**kwargs
):
"""
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
kwargs are an optional list of Artist keyword args
"""
martist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
if origin is None: origin = rcParams['image.origin']
self.origin = origin
self.figure = fig
self.ox = offsetx
self.oy = offsety
self.update(kwargs)
def contains(self, mouseevent):
"""Test whether the mouse event occured within the image.
"""
if callable(self._contains): return self._contains(self,mouseevent)
xmin, xmax, ymin, ymax = self.get_extent()
xdata, ydata = mouseevent.x, mouseevent.y
#print xdata, ydata, xmin, xmax, ymin, ymax
if xdata is not None and ydata is not None:
inside = xdata>=xmin and xdata<=xmax and ydata>=ymin and ydata<=ymax
else:
inside = False
return inside,{}
def get_size(self):
'Get the numrows, numcols of the input image'
if self._A is None:
raise RuntimeError('You must first set the image array')
return self._A.shape[:2]
def get_extent(self):
'get the image extent: left, right, bottom, top'
numrows, numcols = self.get_size()
return (-0.5+self.ox, numcols-0.5+self.ox,
-0.5+self.oy, numrows-0.5+self.oy)
def make_image(self, magnification=1.0):
# had to introduce argument magnification to satisfy the unit test
# figimage_demo.py. I have no idea, how magnification should be used
# within the function. It should be !=1.0 only for non-default DPI
# settings in the PS backend, as introduced by patch #1562394
# Probably Nicholas Young should look over this code and see, how
# magnification should be handled correctly.
if self._A is None:
raise RuntimeError('You must first set the image array')
x = self.to_rgba(self._A, self._alpha)
im = _image.fromarray(x, 1)
fc = self.figure.get_facecolor()
im.set_bg( *mcolors.colorConverter.to_rgba(fc, 0) )
im.is_grayscale = (self.cmap.name == "gray" and
len(self._A.shape) == 2)
if self.origin=='upper':
im.flipud_out()
return im
def draw(self, renderer, *args, **kwargs):
if not self.get_visible(): return
im = self.make_image()
renderer.draw_image(self.ox, self.oy, im, self.figure.bbox,
*self.get_transformed_clip_path_and_affine())
def write_png(self, fname):
"""Write the image to png file with fname"""
im = self.make_image()
im.write_png(fname)
def imread(fname):
"""
return image file in fname as numpy array
Return value is a MxNx4 array of 0-1 normalized floats
"""
handlers = {'png' :_image.readpng,
}
basename, ext = os.path.splitext(fname)
ext = ext.lower()[1:]
if ext not in handlers.keys():
raise ValueError('Only know how to handled extensions: %s' % handlers.keys())
handler = handlers[ext]
return handler(fname)
def pil_to_array( pilImage ):
if pilImage.mode in ('RGBA', 'RGBX'):
im = pilImage # no need to convert images in rgba format
else: # try to convert to an rgba image
try:
im = pilImage.convert('RGBA')
except ValueError:
raise RuntimeError('Unknown image mode')
x_str = im.tostring('raw',im.mode,0,-1)
x = npy.fromstring(x_str,npy.uint8)
x.shape = im.size[1], im.size[0], 4
return x