Menu

[r4723]: / branches / transforms / lib / matplotlib / patches.py  Maximize  Restore  History

Download this file

1140 lines (921 with data), 34.8 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
from __future__ import division
import math
import matplotlib as mpl
import numpy as npy
import matplotlib.cbook as cbook
import matplotlib.artist as artist
import matplotlib.colors as colors
import matplotlib.transforms as transforms
import matplotlib.artist as artist
from matplotlib.path import Path
# these are not available for the object inspector until after the
# class is build so we define an initial set here for the init
# function and they will be overridden after object defn
artist.kwdocd['Patch'] = """\
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
clip_box: a matplotlib.transform.Bbox instance
clip_on: [True | False]
edgecolor or ec: any matplotlib color
facecolor or fc: any matplotlib color
figure: a matplotlib.figure.Figure instance
fill: [True | False]
hatch: unknown
label: any string
linewidth or lw: float
lod: [True | False]
transform: a matplotlib.transform transformation instance
visible: [True | False]
zorder: any number
"""
class Patch(artist.Artist):
"""
A patch is a 2D thingy with a face color and an edge color
If any of edgecolor, facecolor, linewidth, or antialiased are
None, they default to their rc params setting
"""
zorder = 1
def __str__(self):
return str(self.__class__).split('.')[-1]
def __init__(self,
edgecolor=None,
facecolor=None,
linewidth=None,
antialiased = None,
hatch = None,
fill=1,
**kwargs
):
"""
The following kwarg properties are supported
%(Patch)s
"""
artist.Artist.__init__(self)
if edgecolor is None: edgecolor = mpl.rcParams['patch.edgecolor']
if facecolor is None: facecolor = mpl.rcParams['patch.facecolor']
if linewidth is None: linewidth = mpl.rcParams['patch.linewidth']
if antialiased is None: antialiased = mpl.rcParams['patch.antialiased']
self._edgecolor = edgecolor
self._facecolor = facecolor
self._linewidth = linewidth
self._antialiased = antialiased
self._hatch = hatch
self._combined_transform = transforms.IdentityTransform()
self.fill = fill
if len(kwargs): artist.setp(self, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def contains(self, mouseevent):
"""Test whether the mouse event occurred in the patch.
Returns T/F, {}
"""
# This is a general version of contains that should work on any
# patch with a path. However, patches that have a faster
# algebraic solution to hit-testing should override this
# method.
if callable(self._contains): return self._contains(self,mouseevent)
inside = self.get_path().contains_point(
(mouseevent.x, mouseevent.y), self.get_transform())
return inside, {}
def update_from(self, other):
artist.Artist.update_from(self, other)
self.set_edgecolor(other.get_edgecolor())
self.set_facecolor(other.get_facecolor())
self.set_fill(other.get_fill())
self.set_hatch(other.get_hatch())
self.set_linewidth(other.get_linewidth())
self.set_transform(other.get_data_transform())
self.set_figure(other.get_figure())
self.set_alpha(other.get_alpha())
def get_extents(self):
return self.get_path().get_extents(self.get_transform())
def get_transform(self):
return self._combined_transform
def set_transform(self, t):
artist.Artist.set_transform(self, t)
self._combined_transform = self.get_patch_transform() + \
artist.Artist.get_transform(self)
def get_data_transform(self):
return artist.Artist.get_transform(self)
def get_patch_transform(self):
return transforms.IdentityTransform()
def get_antialiased(self):
return self._antialiased
def get_edgecolor(self):
return self._edgecolor
def get_facecolor(self):
return self._facecolor
def get_linewidth(self):
return self._linewidth
def set_antialiased(self, aa):
"""
Set whether to use antialiased rendering
ACCEPTS: [True | False]
"""
self._antialiased = aa
def set_edgecolor(self, color):
"""
Set the patch edge color
ACCEPTS: any matplotlib color
"""
self._edgecolor = color
def set_facecolor(self, color):
"""
Set the patch face color
ACCEPTS: any matplotlib color
"""
self._facecolor = color
def set_linewidth(self, w):
"""
Set the patch linewidth in points
ACCEPTS: float
"""
self._linewidth = w
def set_fill(self, b):
"""
Set whether to fill the patch
ACCEPTS: [True | False]
"""
self.fill = b
def get_fill(self):
'return whether fill is set'
return self.fill
def set_hatch(self, h):
"""
Set the hatching pattern
hatch can be one of:
/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
# - crossed
x - crossed diagonal
letters can be combined, in which case all the specified
hatchings are done
if same letter repeats, it increases the density of hatching
in that direction
CURRENT LIMITATIONS:
1. Hatching is supported in the PostScript
backend only.
2. Hatching is done with solid black lines of width 0.
"""
self._hatch = h
def get_hatch(self):
'return the current hatching pattern'
return self._hatch
def draw(self, renderer):
if not self.get_visible(): return
#renderer.open_group('patch')
gc = renderer.new_gc()
if cbook.is_string_like(self._edgecolor) and self._edgecolor.lower()=='none':
gc.set_linewidth(0)
else:
gc.set_foreground(self._edgecolor)
gc.set_linewidth(self._linewidth)
gc.set_alpha(self._alpha)
gc.set_antialiased(self._antialiased)
self._set_gc_clip(gc)
gc.set_capstyle('projecting')
if (not self.fill or self._facecolor is None or
(cbook.is_string_like(self._facecolor) and self._facecolor.lower()=='none')):
rgbFace = None
else:
rgbFace = colors.colorConverter.to_rgb(self._facecolor)
if self._hatch:
gc.set_hatch(self._hatch )
path = self.get_path()
transform = self.get_transform()
tpath = transform.transform_path_non_affine(path)
affine = transform.get_affine()
renderer.draw_path(gc, tpath, affine, rgbFace)
#renderer.close_group('patch')
def get_path(self):
"""
Return the path of this patch
"""
raise NotImplementedError('Derived must override')
def get_window_extent(self, renderer=None):
return self.get_path().get_extents(self.get_transform())
def set_lw(self, val):
'alias for set_linewidth'
self.set_linewidth(val)
def set_ec(self, val):
'alias for set_edgecolor'
self.set_edgecolor(val)
def set_fc(self, val):
'alias for set_facecolor'
self.set_facecolor(val)
def get_aa(self):
'alias for get_antialiased'
return self.get_antialiased()
def get_lw(self):
'alias for get_linewidth'
return self.get_linewidth()
def get_ec(self):
'alias for get_edgecolor'
return self.get_edgecolor()
def get_fc(self):
'alias for get_facecolor'
return self.get_facecolor()
class Shadow(Patch):
def __str__(self):
return "Shadow(%s)"%(str(self.patch))
def __init__(self, patch, ox, oy, props=None, **kwargs):
"""
Create a shadow of the patch offset by ox, oy. props, if not None is
a patch property update dictionary. If None, the shadow will have
have the same color as the face, but darkened
kwargs are
%(Patch)s
"""
Patch.__init__(self)
self.patch = patch
self.props = props
self._ox, self._oy = ox, oy
self._update_transform()
self._update()
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def _update(self):
self.update_from(self.patch)
if self.props is not None:
self.update(self.props)
else:
r,g,b,a = colors.colorConverter.to_rgba(self.patch.get_facecolor())
rho = 0.3
r = rho*r
g = rho*g
b = rho*b
self.set_facecolor((r,g,b,0.5))
self.set_edgecolor((r,g,b,0.5))
def _update_transform(self):
self._shadow_transform = transforms.Affine2D().translate(self._ox, self._oy)
def _get_ox(self):
return self._ox
def _set_ox(self, ox):
self._ox = ox
self._update_transform()
def _get_oy(self):
return self._oy
def _set_oy(self, oy):
self._oy = oy
self._update_transform()
def get_path(self):
return self.patch.get_path()
def get_patch_transform(self):
return self.patch.get_patch_transform() + self._shadow_transform
class Rectangle(Patch):
"""
Draw a rectangle with lower left at xy=(x,y) with specified
width and height
"""
def __str__(self):
return str(self.__class__).split('.')[-1] \
+ "(%g,%g;%gx%g)" % tuple(self._bbox.bounds)
def __init__(self, xy, width, height, **kwargs):
"""
xy is an x,y tuple lower, left
width and height are width and height of rectangle
fill is a boolean indicating whether to fill the rectangle
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
left, right = self.convert_xunits((xy[0], xy[0] + width))
bottom, top = self.convert_yunits((xy[1], xy[1] + height))
self._bbox = transforms.Bbox.from_extents(left, bottom, right, top)
self._rect_transform = transforms.BboxTransformTo(self._bbox)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_path(self):
"""
Return the vertices of the rectangle
"""
return Path.unit_rectangle()
def get_patch_transform(self):
return self._rect_transform
def contains(self, mouseevent):
x, y = self.get_transform().inverted().transform_point(
(mouseevent.x, mouseevent.y))
return (x >= 0.0 and x <= 1.0 and y >= 0.0 and y <= 1.0), {}
def get_x(self):
"Return the left coord of the rectangle"
return self._bbox.x0
def get_y(self):
"Return the bottom coord of the rectangle"
return self._bbox.y0
def get_width(self):
"Return the width of the rectangle"
return self._bbox.width
def get_height(self):
"Return the height of the rectangle"
return self._bbox.height
def set_x(self, x):
"""
Set the left coord of the rectangle
ACCEPTS: float
"""
w = self._bbox.width
x = self.convert_xunits(x)
self._bbox.intervalx = (x, x + w)
def set_y(self, y):
"""
Set the bottom coord of the rectangle
ACCEPTS: float
"""
h = self._bbox.height
y = self.convert_yunits(y)
self._bbox.intervaly = (y, y + h)
def set_width(self, w):
"""
Set the width rectangle
ACCEPTS: float
"""
w = self.convert_xunits(w)
self._bbox.x1 = self._bbox.x0 + w
def set_height(self, h):
"""
Set the width rectangle
ACCEPTS: float
"""
h = self.convert_yunits(h)
self._bbox.y1 = self._bbox.y0 + h
def set_bounds(self, *args):
"""
Set the bounds of the rectangle: l,b,w,h
ACCEPTS: (left, bottom, width, height)
"""
if len(args)==0:
l,b,w,h = args[0]
else:
l,b,w,h = args
l, w = self.convert_xunits((l, w))
b, h = self.convert_yunits((b, h))
self._bbox.bounds = l,b,w,h
class RegularPolygon(Patch):
"""
A regular polygon patch.
"""
def __str__(self):
return "Poly%d(%g,%g)"%(self._numVertices,self._xy[0],self._xy[1])
def __init__(self, xy, numVertices, radius=5, orientation=0,
**kwargs):
"""
xy is a length 2 tuple (the center)
numVertices is the number of vertices.
radius is the distance from the center to each of the vertices.
orientation is in radians and rotates the polygon.
Valid kwargs are:
%(Patch)s
"""
self._xy = xy
self._numVertices = numVertices
self._orientation = orientation
self._radius = radius
self._path = Path.unit_regular_polygon(numVertices)
self._poly_transform = transforms.Affine2D()
self._update_transform()
Patch.__init__(self, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def _update_transform(self):
self._poly_transform.clear() \
.scale(self.radius) \
.rotate(self.orientation) \
.translate(*self.xy)
def _get_xy(self):
return self._xy
def _set_xy(self, xy):
self._xy = xy
self._update_transform()
xy = property(_get_xy, _set_xy)
def _get_orientation(self):
return self._orientation
def _set_orientation(self, xy):
self._orientation = xy
self._update_transform()
orientation = property(_get_orientation, _set_orientation)
def _get_radius(self):
return self._radius
def _set_radius(self, xy):
self._radius = xy
self._update_transform()
radius = property(_get_radius, _set_radius)
def _get_numvertices(self):
return self._numVertices
def _set_numvertices(self, numVertices):
self._numVertices = numVertices
self._path = Path.unit_regular_polygon(numVertices)
numvertices = property(_get_numvertices, _set_numvertices)
def get_path(self):
return self._path
def get_patch_transform(self):
return self._poly_transform
class PathPatch(Patch):
"""
A general polycurve path patch.
"""
def __str__(self):
return "Poly((%g, %g) ...)" % tuple(self._path.vertices[0])
def __init__(self, path, **kwargs):
"""
path is a Path object
Valid kwargs are:
%(Patch)s
See Patch documentation for additional kwargs
"""
Patch.__init__(self, **kwargs)
self._path = path
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_path(self):
return self._path
class Polygon(Patch):
"""
A general polygon patch.
"""
def __str__(self):
return "Poly((%g, %g) ...)" % tuple(self._path.vertices[0])
def __init__(self, xy, **kwargs):
"""
xy is a numpy array with shape Nx2
Valid kwargs are:
%(Patch)s
See Patch documentation for additional kwargs
"""
Patch.__init__(self, **kwargs)
self._path = Path(xy)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_path(self):
return self._path
def _get_xy(self):
return self._path.vertices
def _set_xy(self, vertices):
self._path = Path(vertices)
xy = property(_get_xy, _set_xy)
class Wedge(Patch):
def __str__(self):
return "Wedge(%g,%g)"%self.xy[0]
def __init__(self, center, r, theta1, theta2, **kwargs):
"""
Draw a wedge centered at x,y tuple center with radius r that
sweeps theta1 to theta2 (angles)
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
self._path = Path.wedge(theta1, theta2)
self._patch_transform = transforms.Affine2D() \
.scale(r).translate(*center)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_path(self):
return self._path
def get_patch_transform(self):
return self._patch_transform
# COVERAGE NOTE: Not used internally or from examples
class Arrow(Polygon):
"""
An arrow patch
"""
def __str__(self):
return "Arrow()"
_path = Path( [
[ 0.0, 0.1 ], [ 0.0, -0.1],
[ 0.8, -0.1 ], [ 0.8, -0.3],
[ 1.0, 0.0 ], [ 0.8, 0.3],
[ 0.8, 0.1 ], [ 0.0, 0.1] ] )
def __init__( self, x, y, dx, dy, width=1.0, **kwargs ):
"""Draws an arrow, starting at (x,y), direction and length
given by (dx,dy) the width of the arrow is scaled by width
Valid kwargs are:
%(Patch)s
"""
L = npy.sqrt(dx**2+dy**2) or 1 # account for div by zero
cx = float(dx)/L
sx = float(dy)/L
trans1 = transforms.Affine2D().scale(L, width)
trans2 = transforms.Affine2D.from_values(cx, sx, -sx, cx, 0.0, 0.0)
trans3 = transforms.Affine2d().translate(x, y)
trans = trans1 + trans2 + trans3
self._patch_transform = trans.frozen()
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_path(self):
return self._path
def get_patch_transform(self):
return self._patch_transform
class FancyArrow(Polygon):
"""Like Arrow, but lets you set head width and head height independently."""
def __str__(self):
return "FancyArrow()"
def __init__(self, x, y, dx, dy, width=0.001, length_includes_head=False, \
head_width=None, head_length=None, shape='full', overhang=0, \
head_starts_at_zero=False,**kwargs):
"""Returns a new Arrow.
length_includes_head: True if head is counted in calculating the length.
shape: ['full', 'left', 'right']
overhang: distance that the arrow is swept back (0 overhang means
triangular shape).
head_starts_at_zero: if True, the head starts being drawn at coordinate
0 instead of ending at coordinate 0.
Valid kwargs are:
%(Patch)s
"""
if head_width is None:
head_width = 3 * width
if head_length is None:
head_length = 1.5 * head_width
distance = npy.sqrt(dx**2 + dy**2)
if length_includes_head:
length=distance
else:
length=distance+head_length
if not length:
verts = [] #display nothing if empty
else:
#start by drawing horizontal arrow, point at (0,0)
hw, hl, hs, lw = head_width, head_length, overhang, width
left_half_arrow = npy.array([
[0.0,0.0], #tip
[-hl, -hw/2.0], #leftmost
[-hl*(1-hs), -lw/2.0], #meets stem
[-length, -lw/2.0], #bottom left
[-length, 0],
])
#if we're not including the head, shift up by head length
if not length_includes_head:
left_half_arrow += [head_length, 0]
#if the head starts at 0, shift up by another head length
if head_starts_at_zero:
left_half_arrow += [head_length/2.0, 0]
#figure out the shape, and complete accordingly
if shape == 'left':
coords = left_half_arrow
else:
right_half_arrow = left_half_arrow*[1,-1]
if shape == 'right':
coords = right_half_arrow
elif shape == 'full':
coords=npy.concatenate([left_half_arrow,right_half_arrow[::-1]])
else:
raise ValueError, "Got unknown shape: %s" % shape
cx = float(dx)/distance
sx = float(dy)/distance
M = npy.array([[cx, sx],[-sx,cx]])
verts = npy.dot(coords, M) + (x+dx, y+dy)
Polygon.__init__(self, map(tuple, verts), **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
class YAArrow(Patch):
"""
Yet another arrow class
This is an arrow that is defined in display space and has a tip at
x1,y1 and a base at x2, y2.
"""
def __str__(self):
return "YAArrow()"
def __init__(self, dpi, xytip, xybase, width=4, frac=0.1, headwidth=12, **kwargs):
"""
xytip : (x,y) location of arrow tip
xybase : (x,y) location the arrow base mid point
dpi : the figure dpi instance (fig.dpi)
width : the width of the arrow in points
frac : the fraction of the arrow length occupied by the head
headwidth : the width of the base of the arrow head in points
Valid kwargs are:
%(Patch)s
"""
self.dpi = dpi
self.xytip = xytip
self.xybase = xybase
self.width = width
self.frac = frac
self.headwidth = headwidth
Patch.__init__(self, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_path(self):
# Since this is dpi dependent, we need to recompute the path
# every time.
# the base vertices
x1, y1 = self.xytip
x2, y2 = self.xybase
k1 = self.width*self.dpi/72./2.
k2 = self.headwidth*self.dpi/72./2.
xb1, yb1, xb2, yb2 = self.getpoints(x1, y1, x2, y2, k1)
# a point on the segment 20% of the distance from the tip to the base
theta = math.atan2(y2-y1, x2-x1)
r = math.sqrt((y2-y1)**2. + (x2-x1)**2.)
xm = x1 + self.frac * r * math.cos(theta)
ym = y1 + self.frac * r * math.sin(theta)
xc1, yc1, xc2, yc2 = self.getpoints(x1, y1, xm, ym, k1)
xd1, yd1, xd2, yd2 = self.getpoints(x1, y1, xm, ym, k2)
xs = self.convert_xunits([xb1, xb2, xc2, xd2, x1, xd1, xc1, xb1])
ys = self.convert_yunits([yb1, yb2, yc2, yd2, y1, yd1, yc1, yb1])
return Path(zip(xs, ys))
def get_patch_transform(self):
return transforms.IdentityTransform()
def getpoints(self, x1,y1,x2,y2, k):
"""
for line segment defined by x1,y1 and x2,y2, return the points on
the line that is perpendicular to the line and intersects x2,y2
and the distance from x2,y2 ot the returned points is k
"""
x1,y1,x2,y2,k = map(float, (x1,y1,x2,y2,k))
m = (y2-y1)/(x2-x1)
pm = -1./m
a = 1
b = -2*y2
c = y2**2. - k**2.*pm**2./(1. + pm**2.)
y3a = (-b + math.sqrt(b**2.-4*a*c))/(2.*a)
x3a = (y3a - y2)/pm + x2
y3b = (-b - math.sqrt(b**2.-4*a*c))/(2.*a)
x3b = (y3b - y2)/pm + x2
return x3a, y3a, x3b, y3b
class CirclePolygon(RegularPolygon):
"""
A circle patch
"""
def __str__(self):
return "CirclePolygon(%d,%d)"%self.center
def __init__(self, xy, radius=5,
resolution=20, # the number of vertices
**kwargs):
"""
Create a circle at xy=(x,y) with radius given by 'radius'
Valid kwargs are:
%(Patch)s
"""
self.center = xy
self.radius = radius
RegularPolygon.__init__(self, xy,
resolution,
radius,
orientation=0,
**kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
class Ellipse(Patch):
"""
A scale-free ellipse
"""
def __str__(self):
return "Ellipse(%d,%d;%dx%d)"%(self.center[0],self.center[1],self.width,self.height)
def __init__(self, xy, width, height, angle=0.0, **kwargs):
"""
xy - center of ellipse
width - length of horizontal axis
height - length of vertical axis
angle - rotation in degrees (anti-clockwise)
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
self._center = xy
self._width, self._height = width, height
self._angle = angle
self._recompute_transform()
self._path = Path.unit_circle()
def _recompute_transform(self):
self._patch_transform = transforms.Affine2D() \
.scale(self._width * 0.5, self._height * 0.5) \
.rotate_deg(self._angle) \
.translate(*self._center)
def get_path(self):
"""
Return the vertices of the rectangle
"""
return self._path
def get_patch_transform(self):
return self._patch_transform
def contains(self,ev):
if ev.x is None or ev.y is None: return False,{}
x, y = self.get_transform().inverted().transform_point((ev.x, ev.y))
return (x*x + y*y) <= 1.0, {}
def _get_center(self):
return self._center
def _set_center(self, center):
self._center = center
self._recompute_transform()
center = property(_get_center, _set_center)
def _get_xy(self):
return self._xy
def _set_xy(self, xy):
self._xy = xy
self._recompute_transform()
xy = property(_get_xy, _set_xy)
def _get_angle(self):
return self._angle
def _set_angle(self, angle):
self._angle = angle
self._recompute_transform()
angle = property(_get_angle, _set_angle)
class Circle(Ellipse):
"""
A circle patch
"""
def __str__(self):
return "Circle((%g,%g),r=%g)"%(self.center[0],self.center[1],self.radius)
def __init__(self, xy, radius=5, **kwargs):
"""
Create true circle at center xy=(x,y) with given radius;
unlike circle polygon which is a polygonal approcimation, this
uses splines and is much closer to a scale free circle
Valid kwargs are:
%(Patch)s
"""
if kwargs.has_key('resolution'):
import warnings
warnings.warn('Circle is now scale free. Use CirclePolygon instead!', DeprecationWarning)
kwargs.pop('resolution')
self.radius = radius
Ellipse.__init__(self, xy, radius*2, radius*2, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
class Arc(Ellipse):
"""
An elliptical arc. Because it performs various optimizations, it may not be
filled.
"""
def __str__(self):
return "Arc(%d,%d;%dx%d)"%(self.center[0],self.center[1],self.width,self.height)
def __init__(self, xy, width, height, angle=0.0, theta1=0.0, theta2=360.0, **kwargs):
"""
xy - center of ellipse
width - length of horizontal axis
height - length of vertical axis
angle - rotation in degrees (anti-clockwise)
theta1 - starting angle of the arc in degrees
theta2 - ending angle of the arc in degrees
If theta1 and theta2 are not provided, the arc will form a
complete ellipse.
Valid kwargs are:
%(Patch)s
"""
fill = kwargs.pop('fill')
if fill:
raise ValueError("Arc objects can not be filled")
kwargs['fill'] = False
Ellipse.__init__(self, xy, width, height, angle, **kwargs)
self._theta1 = theta1
self._theta2 = theta2
def draw(self, renderer):
"""
Ellipses are normally drawn using an approximation that uses
eight cubic bezier splines. The error of this approximation
is 1.89818e-6, according to this unverified source:
Lancaster, Don. Approximating a Circle or an Ellipse Using
Four Bezier Cubic Splines.
http://www.tinaja.com/glib/ellipse4.pdf
There is a use case where very large ellipses must be drawn
with very high accuracy, and it is too expensive to render the
entire ellipse with enough segments (either splines or line
segments). Therefore, in the case where either radius of the
ellipse is large enough that the error of the spline
approximation will be visible (greater than one pixel offset
from the ideal), a different technique is used.
In that case, only the visible parts of the ellipse are drawn,
with each visible arc using a fixed number of spline segments
(8). The algorithm proceeds as follows:
1. The points where the ellipse intersects the axes bounding
box are located. (This is done be performing an inverse
transformation on the axes bbox such that it is relative to
the unit circle -- this makes the intersection calculation
much easier than doing rotated ellipse intersection
directly).
This uses the "line intersecting a circle" algorithm from:
Vince, John. Geometry for Computer Graphics: Formulae,
Examples & Proofs. London: Springer-Verlag, 2005.
2. The angles of each of the intersection points are
calculated.
3. Proceeding counterclockwise starting in the positive
x-direction, each of the visible arc-segments between the
pairs of vertices are drawn using the bezier arc
approximation technique implemented in Path.arc().
"""
# Get the width and height in pixels
width, height = self.get_transform().transform_point(
(self._width, self._height))
inv_error = (1.0 / 1.89818e-6)
if width < inv_error and height < inv_error:
self._path = Path.arc(self._theta1, self._theta2)
return Patch.draw(self, renderer)
def iter_circle_intersect_on_line(x0, y0, x1, y1):
dx = x1 - x0
dy = y1 - y0
dr2 = dx*dx + dy*dy
D = x0*y1 - x1*y0
D2 = D*D
discrim = dr2 - D2
# Single (tangential) intersection
if discrim == 0.0:
x = (D*dy) / dr2
y = (-D*dx) / dr2
yield x, y
elif discrim > 0.0:
# The definition of "sign" here is different from
# npy.sign: we never want to get 0.0
if dy < 0.0:
sign_dy = -1.0
else:
sign_dy = 1.0
sqrt_discrim = npy.sqrt(discrim)
for sign in (1., -1.):
x = (D*dy + sign * sign_dy * dx * sqrt_discrim) / dr2
y = (-D*dx + sign * npy.abs(dy) * sqrt_discrim) / dr2
yield x, y
def iter_circle_intersect_on_line_seg(x0, y0, x1, y1):
epsilon = 1e-9
if x1 < x0:
x0e, x1e = x1, x0
else:
x0e, x1e = x0, x1
if y1 < y0:
y0e, y1e = y1, y0
else:
y0e, y1e = y0, y1
x0e -= epsilon
y0e -= epsilon
x1e += epsilon
y1e += epsilon
for x, y in iter_circle_intersect_on_line(x0, y0, x1, y1):
if x >= x0e and x <= x1e and y >= y0e and y <= y1e:
yield x, y
# Transforms the axes box_path so that it is relative to the unit
# circle in the same way that it is relative to the desired
# ellipse.
box_path = Path.unit_rectangle()
box_path_transform = transforms.BboxTransformTo(self.axes.bbox) + \
self.get_transform().inverted()
box_path = box_path.transformed(box_path_transform)
PI = npy.pi
TWOPI = PI * 2.0
RAD2DEG = 180.0 / PI
DEG2RAD = PI / 180.0
theta1 = self._theta1
theta2 = self._theta2
thetas = {}
# For each of the point pairs, there is a line segment
for p0, p1 in zip(box_path.vertices[:-1], box_path.vertices[1:]):
x0, y0 = p0
x1, y1 = p1
for x, y in iter_circle_intersect_on_line_seg(x0, y0, x1, y1):
theta = npy.arccos(x)
if y < 0:
theta = TWOPI - theta
# Convert radians to angles
theta *= RAD2DEG
if theta > theta1 and theta < theta2:
thetas[theta] = None
thetas = thetas.keys()
thetas.sort()
thetas.append(theta2)
last_theta = theta1
theta1_rad = theta1 * DEG2RAD
inside = box_path.contains_point((npy.cos(theta1_rad), npy.sin(theta1_rad)))
for theta in thetas:
if inside:
self._path = Path.arc(last_theta, theta, 8)
Patch.draw(self, renderer)
inside = False
else:
inside = True
last_theta = theta
def bbox_artist(artist, renderer, props=None, fill=True):
"""
This is a debug function to draw a rectangle around the bounding
box returned by get_window_extent of an artist, to test whether
the artist is returning the correct bbox
props is a dict of rectangle props with the additional property
'pad' that sets the padding around the bbox in points
"""
if props is None: props = {}
props = props.copy() # don't want to alter the pad externally
pad = props.pop('pad', 4)
pad = renderer.points_to_pixels(pad)
bbox = artist.get_window_extent(renderer)
l,b,w,h = bbox.bounds
l-=pad/2.
b-=pad/2.
w+=pad
h+=pad
r = Rectangle(xy=(l,b),
width=w,
height=h,
fill=fill,
)
r.set_transform(transforms.IdentityTransform())
r.set_clip_on( False )
r.update(props)
r.draw(renderer)
def draw_bbox(bbox, renderer, color='k', trans=None):
"""
This is a debug function to draw a rectangle around the bounding
box returned by get_window_extent of an artist, to test whether
the artist is returning the correct bbox
"""
l,b,w,h = bbox.get_bounds()
r = Rectangle(xy=(l,b),
width=w,
height=h,
edgecolor=color,
fill=False,
)
if trans is not None: r.set_transform(trans)
r.set_clip_on( False )
r.draw(renderer)
artist.kwdocd['Patch'] = patchdoc = artist.kwdoc(Patch)
for k in ('Rectangle', 'Circle', 'RegularPolygon', 'Polygon', 'Wedge', 'Arrow',
'FancyArrow', 'YAArrow', 'CirclePolygon', 'Ellipse'):
artist.kwdocd[k] = patchdoc