#!/usr/bin/python
# 3dproj.py
#
"""
Various transforms used for by the 3D code
"""
from collections import LineCollection
from patches import Circle
import numpy as npy
import numpy.linalg as linalg
def _hide_cross(a,b):
"""
Cross product of two vectors
A x B = <Ay*Bz - Az*By, Az*Bx - Ax*Bz, Ax*By - Ay*Bx>
a x b = [a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1]
"""
return npy.array([a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1] - a[1]*b[0]])
cross = _hide_cross
def line2d(p0,p1):
"""
Return 2D equation of line in the form ax+by+c = 0
"""
# x + x1 = 0
x0,y0 = p0[:2]
x1,y1 = p1[:2]
#
if x0==x1:
a = -1
b = 0
c = x1
elif y0==y1:
a = 0
b = 1
c = -y1
else:
a = (y0-y1)
b = (x0-x1)
c = (x0*y1 - x1*y0)
return a,b,c
def line2d_dist(l, p):
"""
Distance from line to point
line is a tuple of coefficients a,b,c
"""
a,b,c = l
x0,y0 = p
return abs((a*x0 + b*y0 + c)/npy.sqrt(a**2+b**2))
def line2d_seg_dist(p1,p2, p0):
"""distance(s) from line defined by p1 - p2 to point(s) p0
p0[0] = x(s)
p0[1] = y(s)
intersection point p = p1 + u*(p2-p1)
and intersection point lies within segement if u is between 0 and 1
"""
x21 = p2[0] - p1[0]
y21 = p2[1] - p1[1]
x01 = npy.asarray(p0[0]) - p1[0]
y01 = npy.asarray(p0[1]) - p1[1]
u = (x01*x21 + y01*y21)/float(abs(x21**2 + y21**2))
u = npy.clip(u, 0, 1)
d = npy.sqrt((x01 - u*x21)**2 + (y01 - u*y21)**2)
return d
def test_lines_dists():
ax = pylab.gca()
xs,ys = (0,30),(20,150)
pylab.plot(xs,ys)
points = zip(xs,ys)
p0,p1 = points
xs,ys = (0,0,20,30),(100,150,30,200)
pylab.scatter(xs,ys)
#
dist = line2d_seg_dist(p0,p1,(xs[0],ys[0]))
dist = line2d_seg_dist(p0,p1,npy.array((xs,ys)))
for x,y,d in zip(xs,ys,dist):
c = Circle((x,y),d,fill=0)
ax.add_patch(c)
#
pylab.xlim(-200,200)
pylab.ylim(-200,200)
pylab.show()
def mod(v):
"""3d vector length"""
return npy.sqrt(v[0]**2+v[1]**2+v[2]**2)
def world_transformation(xmin,xmax,
ymin,ymax,
zmin,zmax):
dx,dy,dz = (xmax-xmin),(ymax-ymin),(zmax-zmin)
return npy.array([
[1.0/dx,0,0,-xmin/dx],
[0,1.0/dy,0,-ymin/dy],
[0,0,1.0/dz,-zmin/dz],
[0,0,0,1.0]])
def test_world():
xmin,xmax = 100,120
ymin,ymax = -100,100
zmin,zmax = 0.1,0.2
M = world_transformation(xmin,xmax,ymin,ymax,zmin,zmax)
print M
def view_transformation(E, R, V):
n = (E - R)
## new
# n /= mod(n)
# u = npy.cross(V,n)
# u /= mod(u)
# v = npy.cross(n,u)
# Mr = npy.diag([1.]*4)
# Mt = npy.diag([1.]*4)
# Mr[:3,:3] = u,v,n
# Mt[:3,-1] = -E
## end new
## old
n = n / mod(n)
u = cross(V,n)
u = u / mod(u)
v = cross(n,u)
Mr = [[u[0],u[1],u[2],0],
[v[0],v[1],v[2],0],
[n[0],n[1],n[2],0],
[0, 0, 0, 1],
]
#
Mt = [[1, 0, 0, -E[0]],
[0, 1, 0, -E[1]],
[0, 0, 1, -E[2]],
[0, 0, 0, 1]]
## end old
return npy.dot(Mr,Mt)
def persp_transformation(zfront,zback):
a = (zfront+zback)/(zfront-zback)
b = -2*(zfront*zback)/(zfront-zback)
return npy.array([[1,0,0,0],
[0,1,0,0],
[0,0,a,b],
[0,0,-1,0]
])
def proj_transform_vec(vec, M):
vecw = npy.dot(M,vec)
w = vecw[3]
# clip here..
txs,tys,tzs = vecw[0]/w,vecw[1]/w,vecw[2]/w
return txs,tys,tzs
def proj_transform_vec_clip(vec, M):
vecw = npy.dot(M,vec)
w = vecw[3]
# clip here..
txs,tys,tzs = vecw[0]/w,vecw[1]/w,vecw[2]/w
tis = (vecw[0] >= 0) * (vecw[0] <= 1) * (vecw[1] >= 0) * (vecw[1] <= 1)
if npy.sometrue( tis ):
tis = vecw[1]<1
return txs,tys,tzs,tis
def inv_transform(xs,ys,zs,M):
iM = linalg.inv(M)
vec = vec_pad_ones(xs,ys,zs)
vecr = npy.dot(iM,vec)
try:
vecr = vecr/vecr[3]
except OverflowError:
pass
return vecr[0],vecr[1],vecr[2]
def vec_pad_ones(xs,ys,zs):
try:
try:
vec = npy.array([xs,ys,zs,npy.ones(xs.shape)])
except (AttributeError,TypeError):
vec = npy.array([xs,ys,zs,npy.ones((len(xs)))])
except TypeError:
vec = npy.array([xs,ys,zs,1])
return vec
def proj_transform(xs,ys,zs, M):
"""
Transform the points by the projection matrix
"""
vec = vec_pad_ones(xs,ys,zs)
return proj_transform_vec(vec,M)
def proj_transform_clip(xs,ys,zs, M):
"""
Transform the points by the projection matrix
and return the clipping result
returns txs,tys,tzs,tis
"""
vec = vec_pad_ones(xs,ys,zs)
return proj_transform_vec_clip(vec,M)
transform = proj_transform
def proj_points(points, M):
return zip(*proj_trans_points(points,M))
def proj_trans_points(points, M):
xs,ys,zs = zip(*points)
return proj_transform(xs,ys,zs,M)
def proj_trans_clip_points(points, M):
xs,ys,zs = zip(*points)
return proj_transform_clip(xs,ys,zs,M)
def test_proj_draw_axes(M, s=1):
xs,ys,zs = [0,s,0,0],[0,0,s,0],[0,0,0,s]
txs,tys,tzs = proj_transform(xs,ys,zs,M)
o,ax,ay,az = (txs[0],tys[0]),(txs[1],tys[1]),(txs[2],tys[2]),(txs[3],tys[3])
lines = [(o,ax),(o,ay),(o,az)]
#
ax = pylab.gca()
linec = LineCollection(lines)
ax.add_collection(linec)
for x,y,t in zip(txs,tys,['o','x','y','z']):
pylab.text(x,y,t)
def test_proj_make_M(E=None):
# eye point
E = E or npy.array([1,-1,2])*1000
#E = npy.array([20,10,20])
R = npy.array([1,1,1])*100
V = npy.array([0,0,1])
viewM = view_transformation(E,R,V)
perspM = persp_transformation(100,-100)
M = npy.dot(perspM,viewM)
return M
def test_proj():
M = test_proj_make_M()
ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]]
#xs,ys,zs = [0,1,1,0,0,1,1,0],[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,1,1]
xs,ys,zs = [0,1,1,0,0, 0,1,1,0,0],[0,0,1,1,0, 0,0,1,1,0],[0,0,0,0,0, 1,1,1,1,1]
xs,ys,zs = [npy.array(v)*300 for v in (xs,ys,zs)]
#
test_proj_draw_axes(M,s=400)
txs,tys,tzs = proj_transform(xs,ys,zs,M)
ixs,iys,izs = inv_transform(txs,tys,tzs,M)
pylab.scatter(txs,tys,c=tzs)
pylab.plot(txs,tys,c='r')
for x,y,t in zip(txs,tys,ts):
pylab.text(x,y,t)
#
pylab.xlim(-0.2,0.2)
pylab.ylim(-0.2,0.2)
#
pylab.show()
def rot_x(V,alpha):
cosa,sina = npy.cos(alpha),npy.sin(alpha)
M1 = npy.array([[1,0,0,0],
[0,cosa,-sina,0],
[0,sina,cosa,0],
[0,0,0,0]])
#
return npy.dot(M1,V)
def test_rot():
V = [1,0,0,1]
print rot_x(V, npy.pi/6)
V = [0,1,0,1]
print rot_x(V, npy.pi/6)
if __name__ == "__main__":
test_proj()