Menu

[r4717]: / branches / transforms / lib / matplotlib / axes.py  Maximize  Restore  History

Download this file

5699 lines (4535 with data), 203.2 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
from __future__ import division, generators
import math, warnings, new
import numpy as npy
import matplotlib.numerix.npyma as ma
import matplotlib
rcParams = matplotlib.rcParams
from matplotlib import artist as martist
from matplotlib import axis as maxis
from matplotlib import cbook
from matplotlib import collections as mcoll
from matplotlib import colors as mcolors
from matplotlib import contour as mcontour
from matplotlib import dates as mdates
from matplotlib import font_manager
from matplotlib import image as mimage
from matplotlib import legend as mlegend
from matplotlib import lines as mlines
from matplotlib import mlab
from matplotlib import patches as mpatches
from matplotlib import quiver as mquiver
from matplotlib import scale as mscale
from matplotlib import table as mtable
from matplotlib import text as mtext
from matplotlib import ticker as mticker
from matplotlib import transforms as mtransforms
iterable = cbook.iterable
is_string_like = cbook.is_string_like
def delete_masked_points(*args):
"""
Find all masked points in a set of arguments, and return
the arguments with only the unmasked points remaining.
The overall mask is calculated from any masks that are present.
If a mask is found, any argument that does not have the same
dimensions is left unchanged; therefore the argument list may
include arguments that can take string or array values, for
example.
Array arguments must have the same length; masked arguments must
be one-dimensional.
Written as a helper for scatter, but may be more generally
useful.
"""
masks = [ma.getmaskarray(x) for x in args if hasattr(x, 'mask')]
if len(masks) == 0:
return args
mask = reduce(ma.mask_or, masks)
margs = []
for x in args:
if (not is_string_like(x)
and iterable(x)
and len(x) == len(mask)):
if (hasattr(x, 'get_compressed_copy')):
compressed_x = x.get_compressed_copy(mask)
else:
compressed_x = ma.masked_array(x, mask=mask).compressed()
margs.append(compressed_x)
else:
margs.append(x)
return margs
def _process_plot_format(fmt):
"""
Process a matlab(TM) style color/line style format string. Return a
linestyle, color tuple as a result of the processing. Default
values are ('-', 'b'). Example format strings include
'ko' : black circles
'.b' : blue dots
'r--' : red dashed lines
See Line2D.lineStyles and GraphicsContext.colors for all possible
styles and color format string.
"""
linestyle = None
marker = None
color = None
# Is fmt just a colorspec?
try:
color = mcolors.colorConverter.to_rgb(fmt)
return linestyle, marker, color # Yes.
except ValueError:
pass # No, not just a color.
# handle the multi char special cases and strip them from the
# string
if fmt.find('--')>=0:
linestyle = '--'
fmt = fmt.replace('--', '')
if fmt.find('-.')>=0:
linestyle = '-.'
fmt = fmt.replace('-.', '')
if fmt.find(' ')>=0:
linestyle = 'None'
fmt = fmt.replace(' ', '')
chars = [c for c in fmt]
for c in chars:
if mlines.lineStyles.has_key(c):
if linestyle is not None:
raise ValueError(
'Illegal format string "%s"; two linestyle symbols' % fmt)
linestyle = c
elif mlines.lineMarkers.has_key(c):
if marker is not None:
raise ValueError(
'Illegal format string "%s"; two marker symbols' % fmt)
marker = c
elif mcolors.colorConverter.colors.has_key(c):
if color is not None:
raise ValueError(
'Illegal format string "%s"; two color symbols' % fmt)
color = c
else:
raise ValueError(
'Unrecognized character %c in format string' % c)
if linestyle is None and marker is None:
linestyle = rcParams['lines.linestyle']
if linestyle is None:
linestyle = 'None'
if marker is None:
marker = 'None'
return linestyle, marker, color
class _process_plot_var_args:
"""
Process variable length arguments to the plot command, so that
plot commands like the following are supported
plot(t, s)
plot(t1, s1, t2, s2)
plot(t1, s1, 'ko', t2, s2)
plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3)
an arbitrary number of x, y, fmt are allowed
"""
defaultColors = ['b','g','r','c','m','y','k']
def __init__(self, axes, command='plot'):
self.axes = axes
self.command = command
self._clear_color_cycle()
def _clear_color_cycle(self):
self.colors = _process_plot_var_args.defaultColors[:]
# if the default line color is a color format string, move it up
# in the que
try: ind = self.colors.index(rcParams['lines.color'])
except ValueError:
self.firstColor = rcParams['lines.color']
else:
self.colors[0], self.colors[ind] = self.colors[ind], self.colors[0]
self.firstColor = self.colors[0]
self.Ncolors = len(self.colors)
self.count = 0
def _get_next_cycle_color(self):
if self.count==0:
color = self.firstColor
else:
color = self.colors[int(self.count % self.Ncolors)]
self.count += 1
return color
def __call__(self, *args, **kwargs):
if self.axes.xaxis is not None and self.axes.yaxis is not None:
xunits = kwargs.pop( 'xunits', self.axes.xaxis.units)
yunits = kwargs.pop( 'yunits', self.axes.yaxis.units)
if xunits!=self.axes.xaxis.units:
self.axes.xaxis.set_units(xunits)
if yunits!=self.axes.yaxis.units:
self.axes.yaxis.set_units(yunits)
ret = self._grab_next_args(*args, **kwargs)
return ret
def set_lineprops(self, line, **kwargs):
assert self.command == 'plot', 'set_lineprops only works with "plot"'
for key, val in kwargs.items():
funcName = "set_%s"%key
if not hasattr(line,funcName):
raise TypeError, 'There is no line property "%s"'%key
func = getattr(line,funcName)
func(val)
def set_patchprops(self, fill_poly, **kwargs):
assert self.command == 'fill', 'set_patchprops only works with "fill"'
for key, val in kwargs.items():
funcName = "set_%s"%key
if not hasattr(fill_poly,funcName):
raise TypeError, 'There is no patch property "%s"'%key
func = getattr(fill_poly,funcName)
func(val)
def _xy_from_y(self, y):
if self.axes.yaxis is not None:
b = self.axes.yaxis.update_units(y)
if b: return npy.arange(len(y)), y, False
y = ma.asarray(y)
if len(y.shape) == 1:
y = y[:,npy.newaxis]
nr, nc = y.shape
x = npy.arange(nr)
if len(x.shape) == 1:
x = x[:,npy.newaxis]
return x,y, True
def _xy_from_xy(self, x, y):
if self.axes.xaxis is not None and self.axes.yaxis is not None:
bx = self.axes.xaxis.update_units(x)
by = self.axes.yaxis.update_units(y)
# right now multicol is not supported if either x or y are
# unit enabled but this can be fixed..
if bx or by: return x, y, False
x = ma.asarray(x)
y = ma.asarray(y)
if len(x.shape) == 1:
x = x[:,npy.newaxis]
if len(y.shape) == 1:
y = y[:,npy.newaxis]
nrx, ncx = x.shape
nry, ncy = y.shape
assert nrx == nry, 'Dimensions of x and y are incompatible'
if ncx == ncy:
return x, y, True
if ncx == 1:
x = npy.repeat(x, ncy, axis=1)
if ncy == 1:
y = npy.repeat(y, ncx, axis=1)
assert x.shape == y.shape, 'Dimensions of x and y are incompatible'
return x, y, True
def _plot_1_arg(self, y, **kwargs):
assert self.command == 'plot', 'fill needs at least 2 arguments'
ret = []
x, y, multicol = self._xy_from_y(y)
if multicol:
for j in range(y.shape[1]):
color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y[:,j],
color = color,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
else:
color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y,
color = color,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
return ret
def _plot_2_args(self, tup2, **kwargs):
ret = []
if is_string_like(tup2[1]):
assert self.command == 'plot', 'fill needs at least 2 non-string arguments'
y, fmt = tup2
x, y, multicol = self._xy_from_y(y)
linestyle, marker, color = _process_plot_format(fmt)
def makeline(x, y):
_color = color
if _color is None:
_color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y,
color=_color,
linestyle=linestyle, marker=marker,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
if multicol:
for j in range(y.shape[1]):
makeline(x[:,j], y[:,j])
else:
makeline(x, y)
return ret
else:
x, y = tup2
x, y, multicol = self._xy_from_xy(x, y)
def makeline(x, y):
color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y,
color=color,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
def makefill(x, y):
facecolor = self._get_next_cycle_color()
seg = mpatches.Polygon(zip(x, y),
facecolor = facecolor,
fill=True,
)
self.set_patchprops(seg, **kwargs)
ret.append(seg)
if self.command == 'plot': func = makeline
else: func = makefill
if multicol:
for j in range(y.shape[1]):
func(x[:,j], y[:,j])
else:
func(x, y)
return ret
def _plot_3_args(self, tup3, **kwargs):
ret = []
x, y, fmt = tup3
x, y, multicol = self._xy_from_xy(x, y)
linestyle, marker, color = _process_plot_format(fmt)
def makeline(x, y):
_color = color
if _color is None:
_color = self._get_next_cycle_color()
seg = mlines.Line2D(x, y,
color=_color,
linestyle=linestyle, marker=marker,
axes=self.axes,
)
self.set_lineprops(seg, **kwargs)
ret.append(seg)
def makefill(x, y):
facecolor = color
seg = mpatches.Polygon(zip(x, y),
facecolor = facecolor,
fill=True,
)
self.set_patchprops(seg, **kwargs)
ret.append(seg)
if self.command == 'plot': func = makeline
else: func = makefill
if multicol:
for j in range(y.shape[1]):
func(x[:,j], y[:,j])
else:
func(x, y)
return ret
def _grab_next_args(self, *args, **kwargs):
remaining = args
while 1:
if len(remaining)==0: return
if len(remaining)==1:
for seg in self._plot_1_arg(remaining[0], **kwargs):
yield seg
remaining = []
continue
if len(remaining)==2:
for seg in self._plot_2_args(remaining, **kwargs):
yield seg
remaining = []
continue
if len(remaining)==3:
if not is_string_like(remaining[2]):
raise ValueError, 'third arg must be a format string'
for seg in self._plot_3_args(remaining, **kwargs):
yield seg
remaining=[]
continue
if is_string_like(remaining[2]):
for seg in self._plot_3_args(remaining[:3], **kwargs):
yield seg
remaining=remaining[3:]
else:
for seg in self._plot_2_args(remaining[:2], **kwargs):
yield seg
remaining=remaining[2:]
class Axes(martist.Artist):
"""
The Axes contains most of the figure elements: Axis, Tick, Line2D,
Text, Polygon etc, and sets the coordinate system
The Axes instance supports callbacks through a callbacks attribute
which is a cbook.CallbackRegistry instance. The events you can
connect to are 'xlim_changed' and 'ylim_changed' and the callback
will be called with func(ax) where ax is the Axes instance
"""
name = "rectilinear"
_shared_x_axes = cbook.Grouper()
_shared_y_axes = cbook.Grouper()
def __str__(self):
return "Axes(%g,%g;%gx%g)" % tuple(self._position.bounds)
def __init__(self, fig, rect,
axisbg = None, # defaults to rc axes.facecolor
frameon = True,
sharex=None, # use Axes instance's xaxis info
sharey=None, # use Axes instance's yaxis info
label='',
**kwargs
):
"""
Build an Axes instance in Figure with
rect=[left, bottom, width,height in Figure coords
adjustable: ['box' | 'datalim']
alpha: the alpha transparency
anchor: ['C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W']
aspect: ['auto' | 'equal' | aspect_ratio]
autoscale_on: boolean - whether or not to autoscale the viewlim
axis_bgcolor: any matplotlib color - see help(colors)
axisbelow: draw the grids and ticks below the other artists
cursor_props: a (float, color) tuple
figure: a Figure instance
frame_on: a boolean - draw the axes frame
label: the axes label
navigate: True|False
navigate_mode: the navigation toolbar button status: 'PAN', 'ZOOM', or None
position: [left, bottom, width,height in Figure coords
sharex: an Axes instance to share the x-axis with
sharey: an Axes instance to share the y-axis with
title: the title string
visible: a boolean - whether the axes is visible
xlabel: the xlabel
xlim: (xmin, xmax) view limits
xscale: [%(scale)s]
xticklabels: sequence of strings
xticks: sequence of floats
ylabel: the ylabel strings
ylim: (ymin, ymax) view limits
yscale: [%(scale)s]
yticklabels: sequence of strings
yticks: sequence of floats
""" % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])}
martist.Artist.__init__(self)
if isinstance(rect, mtransforms.Bbox):
self._position = rect
else:
self._position = mtransforms.Bbox.from_bounds(*rect)
self._originalPosition = self._position.frozen()
self.set_axes(self)
self.set_aspect('auto')
self.set_adjustable('box')
self.set_anchor('C')
self._sharex = sharex
self._sharey = sharey
if sharex is not None:
self._shared_x_axes.join(self, sharex)
if sharey is not None:
self._shared_y_axes.join(self, sharey)
self.set_label(label)
self.set_figure(fig)
# this call may differ for non-sep axes, eg polar
self._init_axis()
if axisbg is None: axisbg = rcParams['axes.facecolor']
self._axisbg = axisbg
self._frameon = frameon
self._axisbelow = rcParams['axes.axisbelow']
self._hold = rcParams['axes.hold']
self._connected = {} # a dict from events to (id, func)
self.cla()
# funcs used to format x and y - fall back on major formatters
self.fmt_xdata = None
self.fmt_ydata = None
self.set_cursor_props((1,'k')) # set the cursor properties for axes
self._cachedRenderer = None
self.set_navigate(True)
self.set_navigate_mode(None)
if len(kwargs): martist.setp(self, **kwargs)
if self.xaxis is not None:
self._xcid = self.xaxis.callbacks.connect('units finalize', self.relim)
if self.yaxis is not None:
self._ycid = self.yaxis.callbacks.connect('units finalize', self.relim)
def get_window_extent(self, *args, **kwargs):
'get the axes bounding box in display space; args and kwargs are empty'
return self.bbox
def _init_axis(self):
"move this out of __init__ because non-separable axes don't use it"
self.xaxis = maxis.XAxis(self)
self.yaxis = maxis.YAxis(self)
self._update_transScale()
def set_figure(self, fig):
"""
Set the Axes figure
ACCEPTS: a Figure instance
"""
martist.Artist.set_figure(self, fig)
self.bbox = mtransforms.TransformedBbox(self._position, fig.transFigure)
#these will be updated later as data is added
self._set_lim_and_transforms()
def _set_lim_and_transforms(self):
"""
set the dataLim and viewLim BBox attributes and the
transScale, transData, transLimits and transAxes
transformations.
"""
self.dataLim = mtransforms.Bbox.unit()
self.viewLim = mtransforms.Bbox.unit()
self.transAxes = mtransforms.BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor
# It is assumed that this part will have non-linear components
self.transScale = mtransforms.TransformWrapper(mtransforms.IdentityTransform())
# An affine transformation on the data, generally to limit the
# range of the axes
self.transLimits = mtransforms.BboxTransformFrom(
mtransforms.TransformedBbox(self.viewLim, self.transScale))
# The parentheses are important for efficiency here -- they
# group the last two (which are usually affines) separately
# from the first (which, with log-scaling can be non-affine).
self.transData = self.transScale + (self.transLimits + self.transAxes)
self._xaxis_transform = mtransforms.blended_transform_factory(
self.axes.transData, self.axes.transAxes)
self._yaxis_transform = mtransforms.blended_transform_factory(
self.axes.transAxes, self.axes.transData)
def get_xaxis_transform(self):
"""
Get the transformation used for drawing x-axis labels, ticks
and gridlines. The x-direction is in data coordinates and the
y-direction is in axis coordinates.
This transformation is primarily used by the Axis class, and
is meant to be overridden by new kinds of projections that may
need to place axis elements in different locations.
"""
return self._xaxis_transform
def get_xaxis_text1_transform(self, pad_pixels):
"""
Get the transformation used for drawing x-axis labels, which
will add the given number of pad_pixels between the axes and
the label. The x-direction is in data coordinates and the
y-direction is in axis coordinates. Returns a 3-tuple of the
form:
(transform, valign, halign)
where valign and halign are requested alignments for the text.
This transformation is primarily used by the Axis class, and
is meant to be overridden by new kinds of projections that may
need to place axis elements in different locations.
"""
return (self._xaxis_transform +
mtransforms.Affine2D().translate(0, -1 * pad_pixels),
"top", "center")
def get_xaxis_text2_transform(self, pad_pixels):
"""
Get the transformation used for drawing the secondary x-axis
labels, which will add the given number of pad_pixels between
the axes and the label. The x-direction is in data
coordinates and the y-direction is in axis coordinates.
Returns a 3-tuple of the form:
(transform, valign, halign)
where valign and halign are requested alignments for the text.
This transformation is primarily used by the Axis class, and
is meant to be overridden by new kinds of projections that may
need to place axis elements in different locations.
"""
return (self._xaxis_transform +
mtransforms.Affine2D().translate(0, pad_pixels),
"bottom", "center")
def get_yaxis_transform(self):
"""
Get the transformation used for drawing y-axis labels, ticks
and gridlines. The x-direction is in axis coordinates and the
y-direction is in data coordinates.
This transformation is primarily used by the Axis class, and
is meant to be overridden by new kinds of projections that may
need to place axis elements in different locations.
"""
return self._yaxis_transform
def get_yaxis_text1_transform(self, pad_pixels):
"""
Get the transformation used for drawing y-axis labels, which
will add the given number of pad_pixels between the axes and
the label. The x-direction is in axis coordinates and the
y-direction is in data coordinates. Returns a 3-tuple of the
form:
(transform, valign, halign)
where valign and halign are requested alignments for the text.
This transformation is primarily used by the Axis class, and
is meant to be overridden by new kinds of projections that may
need to place axis elements in different locations.
"""
return (self._yaxis_transform +
mtransforms.Affine2D().translate(-1 * pad_pixels, 0),
"center", "right")
def get_yaxis_text2_transform(self, pad_pixels):
"""
Get the transformation used for drawing the secondary y-axis
labels, which will add the given number of pad_pixels between
the axes and the label. The x-direction is in axis
coordinates and the y-direction is in data coordinates.
Returns a 3-tuple of the form:
(transform, valign, halign)
where valign and halign are requested alignments for the text.
This transformation is primarily used by the Axis class, and
is meant to be overridden by new kinds of projections that may
need to place axis elements in different locations.
"""
return (self._yaxis_transform +
mtransforms.Affine2D().translate(pad_pixels, 0),
"center", "left")
def _update_transScale(self):
self.transScale.set(
mtransforms.blended_transform_factory(
self.xaxis.get_transform(), self.yaxis.get_transform()))
def get_position(self, original=False):
'Return the a copy of the axes rectangle as a Bbox'
if original:
return self._originalPosition.frozen()
else:
return self._position.frozen()
def set_position(self, pos, which='both'):
"""
Set the axes position with pos = [left, bottom, width, height]
in relative 0,1 coords
There are two position variables: one which is ultimately
used, but which may be modified by apply_aspect, and a second
which is the starting point for apply_aspect.
which = 'active' to change the first;
'original' to change the second;
'both' to change both
ACCEPTS: len(4) sequence of floats, or a Bbox object
"""
if not isinstance(pos, mtransforms.BboxBase):
pos = mtransforms.Bbox.from_bounds(*pos)
if which in ('both', 'active'):
self._position.set(pos)
if which in ('both', 'original'):
self._originalPosition.set(pos)
def _set_artist_props(self, a):
'set the boilerplate props for artists added to axes'
a.set_figure(self.figure)
if not a.is_transform_set():
a.set_transform(self.transData)
a.axes = self
def get_axes_patch(self):
"""
Returns the patch used to draw the background of the axes. It
is also used as the clipping path for any data elements on the
axes.
In the standard axes, this is a rectangle, but in other
projections it may not be.
Intended to be overridden by new projection types.
"""
return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0)
def cla(self):
'Clear the current axes'
self.xaxis.cla()
self.yaxis.cla()
self.set_xscale('linear')
self.set_yscale('linear')
self.ignore_existing_data_limits = True
self.callbacks = cbook.CallbackRegistry(('xlim_changed', 'ylim_changed'))
if self._sharex is not None:
self.xaxis.major = self._sharex.xaxis.major
self.xaxis.minor = self._sharex.xaxis.minor
if self._sharey is not None:
self.yaxis.major = self._sharey.yaxis.major
self.yaxis.minor = self._sharey.yaxis.minor
self._get_lines = _process_plot_var_args(self)
self._get_patches_for_fill = _process_plot_var_args(self, 'fill')
self._gridOn = rcParams['axes.grid']
self.lines = []
self.patches = []
self.texts = []
self.tables = []
self.artists = []
self.images = []
self.legend_ = None
self.collections = [] # collection.Collection instances
self._autoscaleon = True
self.grid(self._gridOn)
props = font_manager.FontProperties(size=rcParams['axes.titlesize'])
self.titleOffsetTrans = mtransforms.Affine2D().translate(0.0, 10.0)
self.title = mtext.Text(
x=0.5, y=1.0, text='',
fontproperties=props,
verticalalignment='bottom',
horizontalalignment='center',
)
self.title.set_transform(self.transAxes + self.titleOffsetTrans)
self.title.set_clip_box(None)
self._set_artist_props(self.title)
self.axesPatch = self.get_axes_patch()
self.axesPatch.set_figure(self.figure)
self.axesPatch.set_facecolor(self._axisbg)
self.axesPatch.set_edgecolor(rcParams['axes.edgecolor'])
self.axesPatch.set_linewidth(rcParams['axes.linewidth'])
self.axesPatch.set_transform(self.transAxes)
self.axesFrame = self.get_axes_patch()
self.axesFrame.set_figure(self.figure)
self.axesFrame.set_facecolor(None)
self.axesFrame.set_edgecolor(rcParams['axes.edgecolor'])
self.axesFrame.set_linewidth(rcParams['axes.linewidth'])
self.axesFrame.set_transform(self.transAxes)
self.axesFrame.set_zorder(2.5)
self.axison = True
self.xaxis.set_clip_path(self.axesPatch)
self.yaxis.set_clip_path(self.axesPatch)
self.titleOffsetTrans.clear().translate(0.0, 10.0)
def clear(self):
'clear the axes'
self.cla()
def ishold(self):
'return the HOLD status of the axes'
return self._hold
def hold(self, b=None):
"""
HOLD(b=None)
Set the hold state. If hold is None (default), toggle the
hold state. Else set the hold state to boolean value b.
Eg
hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off
When hold is True, subsequent plot commands will be added to
the current axes. When hold is False, the current axes and
figure will be cleared on the next plot command
"""
if b is None: self._hold = not self._hold
else: self._hold = b
def get_aspect(self):
return self._aspect
def set_aspect(self, aspect, adjustable=None, anchor=None):
"""
aspect:
'auto' - automatic; fill position rectangle with data
'normal' - same as 'auto'; deprecated
'equal' - same scaling from data to plot units for x and y
num - a circle will be stretched such that the height
is num times the width. aspect=1 is the same as
aspect='equal'.
adjustable:
'box' - change physical size of axes
'datalim' - change xlim or ylim
anchor:
'C' - centered
'SW' - lower left corner
'S' - middle of bottom edge
'SE' - lower right corner
etc.
ACCEPTS: ['auto' | 'equal' | aspect_ratio]
"""
if aspect in ('normal', 'auto'):
self._aspect = 'auto'
elif aspect == 'equal':
self._aspect = 'equal'
else:
self._aspect = float(aspect) # raise ValueError if necessary
if adjustable is not None:
self.set_adjustable(adjustable)
if anchor is not None:
self.set_anchor(anchor)
def get_adjustable(self):
return self._adjustable
def set_adjustable(self, adjustable):
"""
ACCEPTS: ['box' | 'datalim']
"""
if adjustable in ('box', 'datalim'):
self._adjustable = adjustable
else:
raise ValueError('argument must be "box", or "datalim"')
def get_anchor(self):
return self._anchor
def set_anchor(self, anchor):
"""
ACCEPTS: ['C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W']
"""
if anchor in mtransforms.Bbox.coefs.keys() or len(anchor) == 2:
self._anchor = anchor
else:
raise ValueError('argument must be among %s' %
', '.join(mtransforms.BBox.coefs.keys()))
def get_data_ratio(self):
"""
Returns the aspect ratio of the raw data.
This method is intended to be overridden by new projection
types.
"""
xmin,xmax = self.get_xbound()
xsize = max(math.fabs(xmax-xmin), 1e-30)
ymin,ymax = self.get_ybound()
ysize = max(math.fabs(ymax-ymin), 1e-30)
return ysize/xsize
def apply_aspect(self, position=None):
'''
Use self._aspect and self._adjustable to modify the
axes box or the view limits.
'''
if position is None:
position = self.get_position(True)
aspect = self.get_aspect()
if aspect == 'auto':
self.set_position( position , 'active')
return
if aspect == 'equal':
A = 1
else:
A = aspect
#Ensure at drawing time that any Axes involved in axis-sharing
# does not have its position changed.
if self in self._shared_x_axes or self in self._shared_y_axes:
self._adjustable = 'datalim'
figW,figH = self.get_figure().get_size_inches()
fig_aspect = figH/figW
if self._adjustable == 'box':
box_aspect = A * self.get_data_ratio()
pb = position.frozen()
pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect)
self.set_position(pb1.anchored(self.get_anchor(), pb), 'active')
return
xmin,xmax = self.get_xbound()
xsize = max(math.fabs(xmax-xmin), 1e-30)
ymin,ymax = self.get_ybound()
ysize = max(math.fabs(ymax-ymin), 1e-30)
l,b,w,h = position.bounds
box_aspect = fig_aspect * (h/w)
data_ratio = box_aspect / A
y_expander = (data_ratio*xsize/ysize - 1.0)
#print 'y_expander', y_expander
# If y_expander > 0, the dy/dx viewLim ratio needs to increase
if abs(y_expander) < 0.005:
#print 'good enough already'
return
dL = self.dataLim
xr = 1.05 * dL.width
yr = 1.05 * dL.height
xmarg = xsize - xr
ymarg = ysize - yr
Ysize = data_ratio * xsize
Xsize = ysize / data_ratio
Xmarg = Xsize - xr
Ymarg = Ysize - yr
xm = 0 # Setting these targets to, e.g., 0.05*xr does not seem to help.
ym = 0
#print 'xmin, xmax, ymin, ymax', xmin, xmax, ymin, ymax
#print 'xsize, Xsize, ysize, Ysize', xsize, Xsize, ysize, Ysize
changex = (self in self._shared_y_axes
and self not in self._shared_x_axes)
changey = (self in self._shared_x_axes
and self not in self._shared_y_axes)
if changex and changey:
warnings.warn("adjustable='datalim' cannot work with shared x and y axes")
return
if changex:
adjust_y = False
else:
#print 'xmarg, ymarg, Xmarg, Ymarg', xmarg, ymarg, Xmarg, Ymarg
if xmarg > xm and ymarg > ym:
adjy = ((Ymarg > 0 and y_expander < 0)
or (Xmarg < 0 and y_expander > 0))
else:
adjy = y_expander > 0
#print 'y_expander, adjy', y_expander, adjy
adjust_y = changey or adjy #(Ymarg > xmarg)
if adjust_y:
yc = 0.5*(ymin+ymax)
y0 = yc - Ysize/2.0
y1 = yc + Ysize/2.0
self.set_ybound((y0, y1))
#print 'New y0, y1:', y0, y1
#print 'New ysize, ysize/xsize', y1-y0, (y1-y0)/xsize
else:
xc = 0.5*(xmin+xmax)
x0 = xc - Xsize/2.0
x1 = xc + Xsize/2.0
self.set_xbound((x0, x1))
#print 'New x0, x1:', x0, x1
#print 'New xsize, ysize/xsize', x1-x0, ysize/(x1-x0)
def axis(self, *v, **kwargs):
'''
Convenience method for manipulating the x and y view limits
and the aspect ratio of the plot.
kwargs are passed on to set_xlim and set_ylim -- see their
docstrings for details
'''
if len(v)==1 and is_string_like(v[0]):
s = v[0].lower()
if s=='on': self.set_axis_on()
elif s=='off': self.set_axis_off()
elif s in ('equal', 'tight', 'scaled', 'normal', 'auto', 'image'):
self.set_autoscale_on(True)
self.set_aspect('auto')
self.autoscale_view()
# self.apply_aspect()
if s=='equal':
self.set_aspect('equal', adjustable='datalim')
elif s == 'scaled':
self.set_aspect('equal', adjustable='box', anchor='C')
self.set_autoscale_on(False) # Req. by Mark Bakker
elif s=='tight':
self.autoscale_view(tight=True)
self.set_autoscale_on(False)
elif s == 'image':
self.autoscale_view(tight=True)
self.set_autoscale_on(False)
self.set_aspect('equal', adjustable='box', anchor='C')
else:
raise ValueError('Unrecognized string %s to axis; try on or off' % s)
xmin, xmax = self.get_xlim()
ymin, ymax = self.get_ylim()
return xmin, xmax, ymin, ymax
try: v[0]
except IndexError:
emit = kwargs.get('emit', False)
xmin = kwargs.get('xmin', None)
xmax = kwargs.get('xmax', None)
xmin, xmax = self.set_xlim(xmin, xmax, emit)
ymin = kwargs.get('ymin', None)
ymax = kwargs.get('ymax', None)
ymin, ymax = self.set_ylim(ymin, ymax, emit)
return xmin, xmax, ymin, ymax
v = v[0]
if len(v) != 4:
raise ValueError('v must contain [xmin xmax ymin ymax]')
self.set_xlim([v[0], v[1]])
self.set_ylim([v[2], v[3]])
return v
def get_child_artists(self):
"""
Return a list of artists the axes contains. Deprecated
"""
raise DeprecationWarning('Use get_children instead')
def get_frame(self):
'Return the axes Rectangle frame'
return self.axesPatch
def get_legend(self):
'Return the legend.Legend instance, or None if no legend is defined'
return self.legend_
def get_images(self):
'return a list of Axes images contained by the Axes'
return cbook.silent_list('AxesImage', self.images)
def get_lines(self):
'Return a list of lines contained by the Axes'
return cbook.silent_list('Line2D', self.lines)
def get_xaxis(self):
'Return the XAxis instance'
return self.xaxis
def get_xgridlines(self):
'Get the x grid lines as a list of Line2D instances'
return cbook.silent_list('Line2D xgridline', self.xaxis.get_gridlines())
def get_xticklines(self):
'Get the xtick lines as a list of Line2D instances'
return cbook.silent_list('Text xtickline', self.xaxis.get_ticklines())
def get_yaxis(self):
'Return the YAxis instance'
return self.yaxis
def get_ygridlines(self):
'Get the y grid lines as a list of Line2D instances'
return cbook.silent_list('Line2D ygridline', self.yaxis.get_gridlines())
def get_yticklines(self):
'Get the ytick lines as a list of Line2D instances'
return cbook.silent_list('Line2D ytickline', self.yaxis.get_ticklines())
#### Adding and tracking artists
def has_data(self):
'''Return true if any artists have been added to axes.
This should not be used to determine whether the dataLim
need to be updated, and may not actually be useful for
anything.
'''
return (
len(self.collections) +
len(self.images) +
len(self.lines) +
len(self.patches))>0
def add_artist(self, a):
'Add any artist to the axes'
a.set_axes(self)
self.artists.append(a)
self._set_artist_props(a)
a.set_clip_path(self.axesPatch)
a._remove_method = lambda h: self.artists.remove(h)
def add_collection(self, collection, autolim=True):
'add a Collection instance to Axes'
label = collection.get_label()
if not label:
collection.set_label('collection%d'%len(self.collections))
self.collections.append(collection)
self._set_artist_props(collection)
collection.set_clip_path(self.axesPatch)
if autolim:
if collection._paths and len(collection._paths):
self.update_datalim(collection.get_datalim(self.transData))
collection._remove_method = lambda h: self.collections.remove(h)
def add_line(self, line):
'Add a line to the list of plot lines'
self._set_artist_props(line)
line.set_clip_path(self.axesPatch)
self._update_line_limits(line)
if not line.get_label():
line.set_label('_line%d'%len(self.lines))
self.lines.append(line)
line._remove_method = lambda h: self.lines.remove(h)
def _update_line_limits(self, line):
xydata = line.get_xydata()
self.update_datalim( xydata )
def add_patch(self, p):
"""
Add a patch to the list of Axes patches; the clipbox will be
set to the Axes clipping box. If the transform is not set, it
wil be set to self.transData.
"""
self._set_artist_props(p)
p.set_clip_path(self.axesPatch)
self._update_patch_limits(p)
self.patches.append(p)
p._remove_method = lambda h: self.patches.remove(h)
def _update_patch_limits(self, p):
'update the datalimits for patch p'
vertices = p.get_patch_transform().transform(p.get_path().vertices)
if p.get_data_transform() != self.transData:
transform = p.get_data_transform() + self.transData.inverted()
xys = transform.transform(vertices)
self.update_datalim(vertices)
def add_table(self, tab):
'Add a table instance to the list of axes tables'
self._set_artist_props(tab)
self.tables.append(tab)
tab.set_clip_path(self.axesPatch)
tab._remove_method = lambda h: self.tables.remove(h)
def relim(self):
'recompute the datalimits based on current artists'
self.dataLim.ignore(True)
for line in self.lines:
self._update_line_limits(line)
for p in self.patches:
self._update_patch_limits(p)
def update_datalim(self, xys):
'Update the data lim bbox with seq of xy tups or equiv. 2-D array'
# if no data is set currently, the bbox will ignore its
# limits and set the bound to be the bounds of the xydata.
# Otherwise, it will compute the bounds of it's current data
# and the data in xydata
if not ma.isMaskedArray(xys):
xys = npy.asarray(xys)
self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits)
self.ignore_existing_data_limits = False
def update_datalim_numerix(self, x, y):
'Update the data lim bbox with seq of xy tups'
# if no data is set currently, the bbox will ignore it's
# limits and set the bound to be the bounds of the xydata.
# Otherwise, it will compute the bounds of it's current data
# and the data in xydata
self.dataLim.update_from_data(x, y, self.ignore_existing_data_limits)
self.ignore_existing_data_limits = False
def update_datalim_bounds(self, bounds):
'Update the datalim to include the given Bbox'
self.dataLim.set(Bbox.union([self.dataLim, bounds]))
def _process_unit_info(self, xdata=None, ydata=None, kwargs=None):
'look for unit kwargs and update the axis instances as necessary'
if self.xaxis is None or self.yaxis is None: return
#print 'processing', self.get_geometry()
if xdata is not None:
self.xaxis.update_units(xdata)
#print '\tset from xdata', self.xaxis.units
if ydata is not None:
self.yaxis.update_units(ydata)
#print '\tset from ydata', self.yaxis.units
# process kwargs 2nd since these will override default units
if kwargs is not None:
xunits = kwargs.pop( 'xunits', self.xaxis.units)
if xunits!=self.xaxis.units:
#print '\tkw setting xunits', xunits
self.xaxis.set_units(xunits)
yunits = kwargs.pop('yunits', self.yaxis.units)
if yunits!=self.yaxis.units:
#print '\tkw setting yunits', yunits
self.yaxis.set_units(yunits)
def in_axes(self, mouseevent):
'return True if the given mouseevent (in display coords) is in the Axes'
return self.axesPatch.contains(mouseevent)[0]
def get_autoscale_on(self):
"""
Get whether autoscaling is applied on plot commands
"""
return self._autoscaleon
def set_autoscale_on(self, b):
"""
Set whether autoscaling is applied on plot commands
ACCEPTS: True|False
"""
self._autoscaleon = b
def autoscale_view(self, tight=False, scalex=True, scaley=True):
"""
autoscale the view limits using the data limits. You can
selectively autoscale only a single axis, eg, the xaxis by
setting scaley to False. The autoscaling preserves any
axis direction reversal that has already been done.
"""
# if image data only just use the datalim
if not self._autoscaleon: return
if (tight or (len(self.images)>0 and
len(self.lines)==0 and
len(self.patches)==0)):
if scalex: self.set_xbound(self.dataLim.intervalx)
if scaley: self.set_ybound(self.dataLim.intervaly)
return
if scalex:
xl = self.get_xbound()
XL = self.xaxis.get_major_locator().autoscale()
self.set_xbound(XL)
if scaley:
ylocator = self.yaxis.get_major_locator()
yl = self.get_ybound()
YL = ylocator.autoscale()
self.set_ybound(YL)
def update_layout(self, renderer):
pad_pixels = rcParams['xtick.major.pad'] * self.figure.dpi / 72.0
inverse_transFigure = self.figure.transFigure.inverted()
t_text, b_text = self.xaxis.get_text_heights(renderer)
l_text, r_text = self.yaxis.get_text_widths(renderer)
title_height = self.title.get_window_extent(renderer).height
title_height += pad_pixels * 2.0
original_t_text = t_text
((l_text, t_text),
(r_text, b_text),
(dummy, title_height)) = inverse_transFigure.transform(
((l_text, t_text),
(r_text, b_text),
(0.0, title_height)))
x0, y0, x1, y1 = self.get_position(True).extents
# Adjust the title
self.titleOffsetTrans.clear().translate(
0, original_t_text + pad_pixels * 2.0)
new_position = mtransforms.Bbox.from_extents(
x0 + l_text, y0 + b_text,
x1 - r_text, y1 - t_text - title_height)
self.set_position(new_position, 'active')
#### Drawing
def draw(self, renderer=None, inframe=False):
"Draw everything (plot lines, axes, labels)"
if renderer is None:
renderer = self._cachedRenderer
if renderer is None:
raise RuntimeError('No renderer defined')
if not self.get_visible(): return
renderer.open_group('axes')
self.apply_aspect(self.get_position())
if self.axison and self._frameon:
self.axesPatch.draw(renderer)
artists = []
if len(self.images)<=1 or renderer.option_image_nocomposite():
for im in self.images:
im.draw(renderer)
else:
# make a composite image blending alpha
# list of (mimage.Image, ox, oy)
mag = renderer.get_image_magnification()
ims = [(im.make_image(mag),0,0)
for im in self.images if im.get_visible()]
im = mimage.from_images(self.bbox.height*mag,
self.bbox.width*mag,
ims)
im.is_grayscale = False
l, b, w, h = self.bbox.bounds
# composite images need special args so they will not
# respect z-order for now
renderer.draw_image(
l, b, im, self.bbox,
self.axesPatch.get_path(),
self.axesPatch.get_transform())
artists.extend(self.collections)
artists.extend(self.patches)
artists.extend(self.lines)
artists.extend(self.texts)
artists.extend(self.artists)
if self.axison and not inframe:
if self._axisbelow:
self.xaxis.set_zorder(0.5)
self.yaxis.set_zorder(0.5)
else:
self.xaxis.set_zorder(2.5)
self.yaxis.set_zorder(2.5)
artists.extend([self.xaxis, self.yaxis])
if not inframe: artists.append(self.title)
artists.extend(self.tables)
if self.legend_ is not None:
artists.append(self.legend_)
if self.axison and self._frameon:
artists.append(self.axesFrame)
dsu = [ (a.zorder, i, a) for i, a in enumerate(artists)
if not a.get_animated() ]
dsu.sort()
for zorder, i, a in dsu:
a.draw(renderer)
renderer.close_group('axes')
self._cachedRenderer = renderer
def draw_artist(self, a):
"""
This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
"""
assert self._cachedRenderer is not None
a.draw(self._cachedRenderer)
def redraw_in_frame(self):
"""
This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
"""
assert self._cachedRenderer is not None
self.draw(self._cachedRenderer, inframe=True)
def get_renderer_cache(self):
return self._cachedRenderer
def __draw_animate(self):
# ignore for now; broken
if self._lastRenderer is None:
raise RuntimeError('You must first call ax.draw()')
dsu = [(a.zorder, a) for a in self.animated.keys()]
dsu.sort()
renderer = self._lastRenderer
renderer.blit()
for tmp, a in dsu:
a.draw(renderer)
#### Axes rectangle characteristics
def get_frame_on(self):
"""
Get whether the axes rectangle patch is drawn
"""
return self._frameon
def set_frame_on(self, b):
"""
Set whether the axes rectangle patch is drawn
ACCEPTS: True|False
"""
self._frameon = b
def get_axisbelow(self):
"""
Get whether axist below is true or not
"""
return self._axisbelow
def set_axisbelow(self, b):
"""
Set whether the axis ticks and gridlines are above or below most artists
ACCEPTS: True|False
"""
self._axisbelow = b
def grid(self, b=None, **kwargs):
"""
GRID(self, b=None, **kwargs)
Set the axes grids on or off; b is a boolean
if b is None and len(kwargs)==0, toggle the grid state. if
kwargs are supplied, it is assumed that you want a grid and b
is thus set to True
kawrgs are used to set the grid line properties, eg
ax.grid(color='r', linestyle='-', linewidth=2)
Valid Line2D kwargs are
%(Line2D)s
"""
if len(kwargs): b = True
self.xaxis.grid(b, **kwargs)
self.yaxis.grid(b, **kwargs)
grid.__doc__ = cbook.dedent(grid.__doc__) % martist.kwdocd
def ticklabel_format(self, **kwargs):
"""
Convenience method for manipulating the ScalarFormatter
used by default for linear axes.
kwargs:
style = 'sci' (or 'scientific') or 'plain';
plain turns off scientific notation
axis = 'x', 'y', or 'both'
Only the major ticks are affected.
If the method is called when the ScalarFormatter is not
the one being used, an AttributeError will be raised with
no additional error message.
Additional capabilities and/or friendlier error checking may be added.
"""
style = kwargs.pop('style', '').lower()
axis = kwargs.pop('axis', 'both').lower()
if style[:3] == 'sci':
sb = True
elif style in ['plain', 'comma']:
sb = False
if style == 'plain':
cb = False
else:
cb = True
raise NotImplementedError, "comma style remains to be added"
elif style == '':
sb = None
else:
raise ValueError, "%s is not a valid style value"
if sb is not None:
if axis == 'both' or axis == 'x':
self.xaxis.major.formatter.set_scientific(sb)
if axis == 'both' or axis == 'y':
self.yaxis.major.formatter.set_scientific(sb)
def set_axis_off(self):
"""
turn off the axis
ACCEPTS: void
"""
self.axison = False
def set_axis_on(self):
"""
turn on the axis
ACCEPTS: void
"""
self.axison = True
def get_axis_bgcolor(self):
'Return the axis background color'
return self._axisbg
def set_axis_bgcolor(self, color):
"""
set the axes background color
ACCEPTS: any matplotlib color - see help(colors)
"""
self._axisbg = color
self.axesPatch.set_facecolor(color)
### data limits, ticks, tick labels, and formatting
def invert_xaxis(self):
"Invert the x-axis."
left, right = self.get_xlim()
self.set_xlim(right, left)
def xaxis_inverted(self):
'Returns True if the x-axis is inverted.'
left, right = self.get_xlim()
return right < left
def get_xbound(self):
"Returns the x-axis numerical bounds in the form of lowerBound < upperBound"
left, right = self.get_xlim()
if left < right:
return left, right
else:
return right, left
def set_xbound(self, lower=None, upper=None):
"""Set the lower and upper numerical bounds of the x-axis.
This method will honor axes inversion regardless of parameter order.
"""
if upper is None and iterable(lower):
lower,upper = lower
old_lower,old_upper = self.get_xbound()
if lower is None: lower = old_lower
if upper is None: upper = old_upper
if self.xaxis_inverted():
if lower < upper:
self.set_xlim(upper, lower)
else:
self.set_xlim(lower, upper)
else:
if lower < upper:
self.set_xlim(lower, upper)
else:
self.set_xlim(upper, lower)
def get_xlim(self):
"""
Get the x-axis range [xmin, xmax]
"""
return self.viewLim.intervalx
def set_xlim(self, xmin=None, xmax=None, emit=True, **kwargs):
"""
set_xlim(self, *args, **kwargs):
Set the limits for the xaxis; v = [xmin, xmax]
set_xlim((valmin, valmax))
set_xlim(valmin, valmax)
set_xlim(xmin=1) # xmax unchanged
set_xlim(xmax=1) # xmin unchanged
Valid kwargs:
xmin : the min of the xlim
xmax : the max of the xlim
emit : notify observers of lim change
Returns the current xlimits as a length 2 tuple
ACCEPTS: len(2) sequence of floats
"""
if xmax is None and iterable(xmin):
xmin,xmax = xmin
self._process_unit_info(xdata=(xmin, xmax))
if xmin is not None:
xmin = self.convert_xunits(xmin)
if xmax is not None:
xmax = self.convert_xunits(xmax)
old_xmin,old_xmax = self.get_xlim()
if xmin is None: xmin = old_xmin
if xmax is None: xmax = old_xmax
xmin, xmax = mtransforms.nonsingular(xmin, xmax, increasing=False)
xmin, xmax = self.xaxis.limit_range_for_scale(xmin, xmax)
self.viewLim.intervalx = (xmin, xmax)
if emit:
self.callbacks.process('xlim_changed', self)
# Call all of the other x-axes that are shared with this one
for other in self._shared_x_axes.get_siblings(self):
if other is not self:
other.set_xlim(self.viewLim.intervalx, emit=False)
if other.figure != self.figure and other.figure.canvas is not None:
other.figure.canvas.draw_idle()
return xmin, xmax
def get_xscale(self):
'return the xaxis scale string: %s' % (
", ".join(mscale.get_scale_names()))
return self.xaxis.get_scale()
def set_xscale(self, value, **kwargs):
"""
SET_XSCALE(value)
Set the xscaling: %(scale)s
If value is 'log', the additional kwargs have the following meaning
* basex: base of the logarithm
* subsx: a sequence of the location of the minor ticks;
None defaults to autosubs, which depend on the number of
decades in the plot. Eg for base 10, subsx=(1,2,5) will
put minor ticks on 1,2,5,11,12,15,21, ....To turn off
minor ticking, set subsx=[]
ACCEPTS: [%(scale)s]
""" % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])}
self.xaxis.set_scale(value, **kwargs)
self._update_transScale()
def get_xticks(self, minor=False):
'Return the x ticks as a list of locations'
return self.xaxis.get_ticklocs(minor=minor)
def set_xticks(self, ticks, minor=False):
"""
Set the x ticks with list of ticks
ACCEPTS: sequence of floats
"""
return self.xaxis.set_ticks(ticks, minor=minor)
def get_xmajorticklabels(self):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text xticklabel', self.xaxis.get_majorticklabels())
def get_xminorticklabels(self):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text xticklabel', self.xaxis.get_minorticklabels())
def get_xticklabels(self, minor=False):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text xticklabel', self.xaxis.get_ticklabels(minor=minor))
def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs):
"""
set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the xtick labels with list of strings labels Return a list of axis
text instances.
kwargs set the Text properties. Valid properties are
%(Text)s
ACCEPTS: sequence of strings
"""
return self.xaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs)
set_xticklabels.__doc__ = cbook.dedent(set_xticklabels.__doc__) % martist.kwdocd
def invert_yaxis(self):
"Invert the y-axis."
left, right = self.get_ylim()
self.set_ylim(right, left)
def yaxis_inverted(self):
'Returns True if the y-axis is inverted.'
left, right = self.get_ylim()
return right < left
def get_ybound(self):
"Returns the y-axis numerical bounds in the form of lowerBound < upperBound"
left, right = self.get_ylim()
if left < right:
return left, right
else:
return right, left
def set_ybound(self, lower=None, upper=None):
"""Set the lower and upper numerical bounds of the y-axis.
This method will honor axes inversion regardless of parameter order.
"""
if upper is None and iterable(lower):
lower,upper = lower
old_lower,old_upper = self.get_ybound()
if lower is None: lower = old_lower
if upper is None: upper = old_upper
if self.yaxis_inverted():
if lower < upper:
self.set_ylim(upper, lower)
else:
self.set_ylim(lower, upper)
else:
if lower < upper:
self.set_ylim(lower, upper)
else:
self.set_ylim(upper, lower)
def get_ylim(self):
"""
Get the y-axis range [xmin, xmax]
"""
return self.viewLim.intervaly
def set_ylim(self, ymin=None, ymax=None, emit=True, **kwargs):
"""
set_ylim(self, *args, **kwargs):
Set the limits for the yaxis; v = [ymin, ymax]
set_ylim((valmin, valmax))
set_ylim(valmin, valmax)
set_ylim(ymin=1) # ymax unchanged
set_ylim(ymax=1) # ymin unchanged
Valid kwargs:
ymin : the min of the ylim
ymax : the max of the ylim
emit : notify observers of lim change
Returns the current ylimits as a length 2 tuple
ACCEPTS: len(2) sequence of floats
"""
if ymax is None and iterable(ymin):
ymin,ymax = ymin
if ymin is not None:
ymin = self.convert_yunits(ymin)
if ymax is not None:
ymax = self.convert_yunits(ymax)
old_ymin,old_ymax = self.get_ylim()
if ymin is None: ymin = old_ymin
if ymax is None: ymax = old_ymax
ymin, ymax = mtransforms.nonsingular(ymin, ymax, increasing=False)
ymin, ymax = self.yaxis.limit_range_for_scale(ymin, ymax)
self.viewLim.intervaly = (ymin, ymax)
if emit:
self.callbacks.process('ylim_changed', self)
# Call all of the other y-axes that are shared with this one
for other in self._shared_y_axes.get_siblings(self):
if other is not self:
other.set_ylim(self.viewLim.intervaly, emit=False)
if other.figure != self.figure and other.figure.canvas is not None:
other.figure.canvas.draw_idle()
return ymin, ymax
def get_yscale(self):
'return the xaxis scale string: %s' % (
", ".join(mscale.get_scale_names()))
return self.yaxis.get_scale()
def set_yscale(self, value, **kwargs):
"""
SET_YSCALE(value, basey=10, subsy=None)
Set the yscaling: %(scale)s
If value is 'log', the additional kwargs have the following meaning
* basey: base of the logarithm
* subsy: a sequence of the location of the minor ticks;
None defaults to autosubs, which depend on the number of
decades in the plot. Eg for base 10, subsy=(1,2,5) will
put minor ticks on 1,2,5,11,12,15, 21, ....To turn off
minor ticking, set subsy=[]
ACCEPTS: %(scale)s
""" % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])}
self.yaxis.set_scale(value, **kwargs)
self._update_transScale()
def get_yticks(self, minor=False):
'Return the y ticks as a list of locations'
return self.yaxis.get_ticklocs(minor=minor)
def set_yticks(self, ticks, minor=False):
"""
Set the y ticks with list of ticks
ACCEPTS: sequence of floats
"""
return self.yaxis.set_ticks(ticks, minor=minor)
def get_ymajorticklabels(self):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text yticklabel', self.yaxis.get_majorticklabels())
def get_yminorticklabels(self):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text yticklabel', self.yaxis.get_minorticklabels())
def get_yticklabels(self, minor=False):
'Get the xtick labels as a list of Text instances'
return cbook.silent_list('Text yticklabel', self.yaxis.get_ticklabels(minor=minor))
def set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs):
"""
set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the ytick labels with list of strings labels. Return a list of
Text instances.
kwargs set Text properties for the labels. Valid properties are
%(Text)s
ACCEPTS: sequence of strings
"""
return self.yaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs)
set_yticklabels.__doc__ = cbook.dedent(set_yticklabels.__doc__) % martist.kwdocd
def xaxis_date(self, tz=None):
"""Sets up x-axis ticks and labels that treat the x data as dates.
tz is the time zone to use in labeling dates. Defaults to rc value.
"""
locator = self.xaxis.get_major_locator()
if not isinstance(locator, mdates.DateLocator):
locator = mdates.AutoDateLocator(tz)
self.xaxis.set_major_locator(locator)
formatter = self.xaxis.get_major_formatter()
if not isinstance(formatter, mdates.DateFormatter):
formatter = mdates.AutoDateFormatter(locator)
self.xaxis.set_major_formatter(formatter)
def yaxis_date(self, tz=None):
"""Sets up y-axis ticks and labels that treat the y data as dates.
tz is the time zone to use in labeling dates. Defaults to rc value.
"""
locator = self.yaxis.get_major_locator()
if not isinstance(locator, mdates.DateLocator):
locator = mdates.AutoDateLocator(tz)
self.yaxis.set_major_locator(locator)
formatter = self.xaxis.get_major_formatter()
if not isinstance(formatter, mdates.DateFormatter):
formatter = mdates.AutoDateFormatter(locator)
self.yaxis.set_major_formatter(formatter)
def format_xdata(self, x):
"""
Return x string formatted. This function will use the attribute
self.fmt_xdata if it is callable, else will fall back on the xaxis
major formatter
"""
try: return self.fmt_xdata(x)
except TypeError:
func = self.xaxis.get_major_formatter().format_data_short
val = func(x)
return val
def format_ydata(self, y):
"""
Return y string formatted. This function will use the attribute
self.fmt_ydata if it is callable, else will fall back on the yaxis
major formatter
"""
try: return self.fmt_ydata(y)
except TypeError:
func = self.yaxis.get_major_formatter().format_data_short
val = func(y)
return val
def format_coord(self, x, y):
'return a format string formatting the x, y coord'
if x is None:
x = '???'
if y is None:
y = '???'
xs = self.format_xdata(x)
ys = self.format_ydata(y)
return 'x=%s, y=%s'%(xs,ys)
#### Interactive manipulation
def can_zoom(self):
"""
Return True if this axes support the zoom box
"""
return True
def get_navigate(self):
"""
Get whether the axes responds to navigation commands
"""
return self._navigate
def set_navigate(self, b):
"""
Set whether the axes responds to navigation toolbar commands
ACCEPTS: True|False
"""
self._navigate = b
def get_navigate_mode(self):
"""
Get the navigation toolbar button status: 'PAN', 'ZOOM', or None
"""
return self._navigate_mode
def set_navigate_mode(self, b):
"""
Set the navigation toolbar button status;
this is not a user-API function.
"""
self._navigate_mode = b
def start_pan(self, x, y, button):
"""
Called when a pan operation has started.
x, y are the mouse coordinates in display coords.
button is the mouse button number:
1: LEFT
2: MIDDLE
3: RIGHT
Intended to be overridden by new projection types.
"""
self._pan_start = cbook.Bunch(
lim = self.viewLim.frozen(),
trans = self.transData.frozen(),
trans_inverse = self.transData.inverted().frozen(),
x = x,
y = y
)
def end_pan(self):
"""
Called when a pan operation completes (when the mouse button
is up.)
Intended to be overridden by new projection types.
"""
del self._pan_start
def drag_pan(self, button, key, x, y):
"""
Called when the mouse moves during a pan operation.
button is the mouse button number:
1: LEFT
2: MIDDLE
3: RIGHT
key is a "shift" key
x, y are the mouse coordinates in display coords.
Intended to be overridden by new projection types.
"""
def format_deltas(key, dx, dy):
if key=='control':
if(abs(dx)>abs(dy)):
dy = dx
else:
dx = dy
elif key=='x':
dy = 0
elif key=='y':
dx = 0
elif key=='shift':
if 2*abs(dx) < abs(dy):
dx=0
elif 2*abs(dy) < abs(dx):
dy=0
elif(abs(dx)>abs(dy)):
dy=dy/abs(dy)*abs(dx)
else:
dx=dx/abs(dx)*abs(dy)
return (dx,dy)
p = self._pan_start
dx = x - p.x
dy = y - p.y
if button == 1:
dx, dy = format_deltas(key, dx, dy)
result = self.bbox.frozen().translated(-dx, -dy) \
.transformed(p.trans_inverse)
elif button == 3:
try:
dx = -dx / float(self.bbox.width)
dy = -dy / float(self.bbox.height)
dx, dy = format_deltas(key, dx, dy)
if self.get_aspect() != 'auto':
dx = 0.5 * (dx + dy)
dy = dx
alpha = npy.power(10.0, (dx, dy))
start = p.trans_inverse.transform_point((p.x, p.y))
lim_points = p.lim.get_points()
result = start + alpha * (lim_points - start)
result = mtransforms.Bbox(result)
except OverflowError:
warnings.warn('Overflow while panning')
return
self.set_xlim(*result.intervalx)
self.set_ylim(*result.intervaly)
def get_cursor_props(self):
"""return the cursor props as a linewidth, color tuple where
linewidth is a float and color is an RGBA tuple"""
return self._cursorProps
def set_cursor_props(self, *args):
"""
Set the cursor property as
ax.set_cursor_props(linewidth, color) OR
ax.set_cursor_props((linewidth, color))
ACCEPTS: a (float, color) tuple
"""
if len(args)==1:
lw, c = args[0]
elif len(args)==2:
lw, c = args
else:
raise ValueError('args must be a (linewidth, color) tuple')
c =mcolors.colorConverter.to_rgba(c)
self._cursorProps = lw, c
def connect(self, s, func):
"""
Register observers to be notified when certain events occur. Register
with callback functions with the following signatures. The function
has the following signature
func(ax) # where ax is the instance making the callback.
The following events can be connected to:
'xlim_changed','ylim_changed'
The connection id is is returned - you can use this with
disconnect to disconnect from the axes event
"""
raise DeprecationWarning('use the callbacks CallbackRegistry instance instead')
def disconnect(self, cid):
'disconnect from the Axes event.'
raise DeprecationWarning('use the callbacks CallbackRegistry instance instead')
def get_children(self):
'return a list of child artists'
children = []
children.append(self.xaxis)
children.append(self.yaxis)
children.extend(self.lines)
children.extend(self.patches)
children.extend(self.texts)
children.extend(self.tables)
children.extend(self.artists)
children.extend(self.images)
if self.legend_ is not None:
children.append(self.legend_)
children.extend(self.collections)
children.append(self.title)
children.append(self.axesPatch)
children.append(self.axesFrame)
return children
def contains(self,mouseevent):
"""Test whether the mouse event occured in the axes.
Returns T/F, {}
"""
if callable(self._contains): return self._contains(self,mouseevent)
inside = self.axesPatch.contains(mouseevent.x, mouseevent.y)
return inside,{}
def pick(self,*args):
"""
pick(mouseevent)
each child artist will fire a pick event if mouseevent is over
the artist and the artist has picker set
"""
if len(args)>1:
raise DeprecationWarning(
'New pick API implemented -- see API_CHANGES in the src distribution')
martist.Artist.pick(self,args[0])
def __pick(self, x, y, trans=None, among=None):
"""
Return the artist under point that is closest to the x, y. if trans
is None, x, and y are in window coords, 0,0 = lower left. Otherwise,
trans is a matplotlib transform that specifies the coordinate system
of x, y.
The selection of artists from amongst which the pick function
finds an artist can be narrowed using the optional keyword
argument among. If provided, this should be either a sequence
of permitted artists or a function taking an artist as its
argument and returning a true value if and only if that artist
can be selected.
Note this algorithm calculates distance to the vertices of the
polygon, so if you want to pick a patch, click on the edge!
"""
# MGDTODO: Needs updating
if trans is not None:
xywin = trans.transform_point((x,y))
else:
xywin = x,y
def dist_points(p1, p2):
'return the distance between two points'
x1, y1 = p1
x2, y2 = p2
return math.sqrt((x1-x2)**2+(y1-y2)**2)
def dist_x_y(p1, x, y):
'x and y are arrays; return the distance to the closest point'
x1, y1 = p1
return min(npy.sqrt((x-x1)**2+(y-y1)**2))
def dist(a):
if isinstance(a, Text):
bbox = a.get_window_extent()
l,b,w,h = bbox.bounds
verts = (l,b), (l,b+h), (l+w,b+h), (l+w, b)
xt, yt = zip(*verts)
elif isinstance(a, Patch):
path = a.get_path()
tverts = a.get_transform().transform_path(path)
xt, yt = zip(*tverts)
elif isinstance(a, mlines.Line2D):
xdata = a.get_xdata(orig=False)
ydata = a.get_ydata(orig=False)
xt, yt = a.get_transform().numerix_x_y(xdata, ydata)
return dist_x_y(xywin, npy.asarray(xt), npy.asarray(yt))
artists = self.lines + self.patches + self.texts
if callable(among):
artists = filter(test, artists)
elif iterable(among):
amongd = dict([(k,1) for k in among])
artists = [a for a in artists if a in amongd]
elif among is None:
pass
else:
raise ValueError('among must be callable or iterable')
if not len(artists): return None
ds = [ (dist(a),a) for a in artists]
ds.sort()
return ds[0][1]
#### Labelling
def set_title(self, label, fontdict=None, **kwargs):
"""
SET_TITLE(label, fontdict=None, **kwargs):
Set the title for the axes. See the text docstring for information
of how override and the optional args work
kwargs are Text properties:
%(Text)s
ACCEPTS: str
"""
default = {
'fontsize':rcParams['axes.titlesize'],
'verticalalignment' : 'bottom',
'horizontalalignment' : 'center'
}
self.title.set_text(label)
self.title.update(default)
if fontdict is not None: self.title.update(fontdict)
self.title.update(kwargs)
return self.title
set_title.__doc__ = cbook.dedent(set_title.__doc__) % martist.kwdocd
def set_xlabel(self, xlabel, fontdict=None, **kwargs):
"""
SET_XLABEL(xlabel, fontdict=None, **kwargs)
Set the label for the xaxis. See the text docstring for information
of how override and the optional args work.
Valid kwargs are Text properties:
%(Text)s
ACCEPTS: str
"""
label = self.xaxis.get_label()
label.set_text(xlabel)
if fontdict is not None: label.update(fontdict)
label.update(kwargs)
return label
set_xlabel.__doc__ = cbook.dedent(set_xlabel.__doc__) % martist.kwdocd
def set_ylabel(self, ylabel, fontdict=None, **kwargs):
"""
SET_YLABEL(ylabel, fontdict=None, **kwargs)
Set the label for the yaxis
See the text doctstring for information of how override and
the optional args work
Valid kwargs are Text properties:
%(Text)s
ACCEPTS: str
"""
label = self.yaxis.get_label()
label.set_text(ylabel)
if fontdict is not None: label.update(fontdict)
label.update(kwargs)
return label
set_ylabel.__doc__ = cbook.dedent(set_ylabel.__doc__) % martist.kwdocd
def text(self, x, y, s, fontdict=None,
withdash=False, **kwargs):
"""
TEXT(x, y, s, fontdict=None, **kwargs)
Add text in string s to axis at location x,y (data coords)
fontdict is a dictionary to override the default text properties.
If fontdict is None, the defaults are determined by your rc
parameters.
withdash=True will create a TextWithDash instance instead
of a Text instance.
Individual keyword arguments can be used to override any given
parameter
text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords (0,0 lower left and
1,1 upper right). The example below places text in the center of the
axes
text(0.5, 0.5,'matplotlib',
horizontalalignment='center',
verticalalignment='center',
transform = ax.transAxes,
)
You can put a rectangular box around the text instance (eg to
set a background color) by using the keyword bbox. bbox is a
dictionary of patches.Rectangle properties (see help
for Rectangle for a list of these). For example
text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
Valid kwargs are Text properties
%(Text)s
"""
default = {
'verticalalignment' : 'bottom',
'horizontalalignment' : 'left',
#'verticalalignment' : 'top',
'transform' : self.transData,
}
# At some point if we feel confident that TextWithDash
# is robust as a drop-in replacement for Text and that
# the performance impact of the heavier-weight class
# isn't too significant, it may make sense to eliminate
# the withdash kwarg and simply delegate whether there's
# a dash to TextWithDash and dashlength.
if withdash:
t = mtext.TextWithDash(
x=x, y=y, text=s,
)
else:
t = mtext.Text(
x=x, y=y, text=s,
)
self._set_artist_props(t)
t.update(default)
if fontdict is not None: t.update(fontdict)
t.update(kwargs)
self.texts.append(t)
t._remove_method = lambda h: self.texts.remove(h)
#if t.get_clip_on(): t.set_clip_box(self.bbox)
if kwargs.has_key('clip_on'): t.set_clip_path(self.axesPatch)
return t
text.__doc__ = cbook.dedent(text.__doc__) % martist.kwdocd
def annotate(self, *args, **kwargs):
"""
annotate(s, xy,
xytext=None,
xycoords='data',
textcoords='data',
arrowprops=None,
**props)
%(Annotation)s
"""
a = mtext.Annotation(*args, **kwargs)
a.set_transform(mtransforms.IdentityTransform())
self._set_artist_props(a)
if kwargs.has_key('clip_on'): a.set_clip_path(self.axesPatch)
self.texts.append(a)
return a
annotate.__doc__ = cbook.dedent(annotate.__doc__) % martist.kwdocd
#### Lines and spans
def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
"""
AXHLINE(y=0, xmin=0, xmax=1, **kwargs)
Axis Horizontal Line
Draw a horizontal line at y from xmin to xmax. With the default
values of xmin=0 and xmax=1, this line will always span the horizontal
extent of the axes, regardless of the xlim settings, even if you
change them, eg with the xlim command. That is, the horizontal extent
is in axes coords: 0=left, 0.5=middle, 1.0=right but the y location is
in data coordinates.
Return value is the Line2D instance. kwargs are the same as kwargs to
plot, and can be used to control the line properties. Eg
# draw a thick red hline at y=0 that spans the xrange
axhline(linewidth=4, color='r')
# draw a default hline at y=1 that spans the xrange
axhline(y=1)
# draw a default hline at y=.5 that spans the the middle half of
# the xrange
axhline(y=.5, xmin=0.25, xmax=0.75)
Valid kwargs are Line2D properties
%(Line2D)s
"""
trans = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
l, = self.plot([xmin,xmax], [y,y], transform=trans, scalex=False, **kwargs)
return l
axhline.__doc__ = cbook.dedent(axhline.__doc__) % martist.kwdocd
def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
"""
AXVLINE(x=0, ymin=0, ymax=1, **kwargs)
Axis Vertical Line
Draw a vertical line at x from ymin to ymax. With the default values
of ymin=0 and ymax=1, this line will always span the vertical extent
of the axes, regardless of the xlim settings, even if you change them,
eg with the xlim command. That is, the vertical extent is in axes
coords: 0=bottom, 0.5=middle, 1.0=top but the x location is in data
coordinates.
Return value is the Line2D instance. kwargs are the same as
kwargs to plot, and can be used to control the line properties. Eg
# draw a thick red vline at x=0 that spans the yrange
l = axvline(linewidth=4, color='r')
# draw a default vline at x=1 that spans the yrange
l = axvline(x=1)
# draw a default vline at x=.5 that spans the the middle half of
# the yrange
axvline(x=.5, ymin=0.25, ymax=0.75)
Valid kwargs are Line2D properties
%(Line2D)s
"""
trans = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
l, = self.plot([x,x], [ymin,ymax] , transform=trans, scaley=False, **kwargs)
return l
axvline.__doc__ = cbook.dedent(axvline.__doc__) % martist.kwdocd
def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
"""
AXHSPAN(ymin, ymax, xmin=0, xmax=1, **kwargs)
Axis Horizontal Span. ycoords are in data units and x
coords are in axes (relative 0-1) units
Draw a horizontal span (regtangle) from ymin to ymax. With the
default values of xmin=0 and xmax=1, this always span the xrange,
regardless of the xlim settings, even if you change them, eg with the
xlim command. That is, the horizontal extent is in axes coords:
0=left, 0.5=middle, 1.0=right but the y location is in data
coordinates.
kwargs are the kwargs to Patch, eg
antialiased, aa
linewidth, lw
edgecolor, ec
facecolor, fc
the terms on the right are aliases
Return value is the patches.Polygon instance.
#draws a gray rectangle from y=0.25-0.75 that spans the horizontal
#extent of the axes
axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
Valid kwargs are Polygon properties
%(Polygon)s
"""
# convert y axis units
trans = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
self.add_patch(p)
return p
axhspan.__doc__ = cbook.dedent(axhspan.__doc__) % martist.kwdocd
def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
"""
AXVSPAN(xmin, xmax, ymin=0, ymax=1, **kwargs)
axvspan : Axis Vertical Span. xcoords are in data units and y coords
are in axes (relative 0-1) units
Draw a vertical span (regtangle) from xmin to xmax. With the default
values of ymin=0 and ymax=1, this always span the yrange, regardless
of the ylim settings, even if you change them, eg with the ylim
command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the y location is in data coordinates.
kwargs are the kwargs to Patch, eg
antialiased, aa
linewidth, lw
edgecolor, ec
facecolor, fc
the terms on the right are aliases
return value is the patches.Polygon instance.
# draw a vertical green translucent rectangle from x=1.25 to 1.55 that
# spans the yrange of the axes
axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
Valid kwargs are Polygon properties
%(Polygon)s
"""
# convert x axis units
trans = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
self.add_patch(p)
return p
axvspan.__doc__ = cbook.dedent(axvspan.__doc__) % martist.kwdocd
def hlines(self, y, xmin, xmax, colors='k', linestyles='solid',
label='', **kwargs):
"""
HLINES(y, xmin, xmax, colors='k', linestyle='solid', **kwargs)
plot horizontal lines at each y from xmin to xmax. xmin or xmax can
be scalars or len(x) numpy arrays. If they are scalars, then the
respective values are constant, else the widths of the lines are
determined by xmin and xmax
colors is a line collections color args, either a single color
or a len(x) list of colors
linestyle is one of solid|dashed|dashdot|dotted
Returns the LineCollection that was added
"""
if kwargs.get('fmt') is not None:
raise DeprecationWarning(
'hlines now uses a collections.LineCollection and not a list of Line2D to draw; see API_CHANGES')
if not iterable(y): y = [y]
if not iterable(xmin): xmin = [xmin]
if not iterable(xmax): xmax = [xmax]
y = npy.asarray(y)
if len(xmin)==1:
xmin = xmin*npy.ones(y.shape, y.dtype)
if len(xmax)==1:
xmax = xmax*npy.ones(y.shape, y.dtype)
xmin = npy.asarray(xmin)
xmax = npy.asarray(xmax)
if len(xmin)!=len(y):
raise ValueError, 'xmin and y are unequal sized sequences'
if len(xmax)!=len(y):
raise ValueError, 'xmax and y are unequal sized sequences'
verts = [ ((thisxmin, thisy), (thisxmax, thisy))
for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)]
coll = mcoll.LineCollection(verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(coll)
coll.update(kwargs)
minx = min(xmin.min(), xmax.min())
maxx = max(xmin.max(), xmax.max())
miny = y.min()
maxy = y.max()
minx, maxx = self.convert_xunits((minx, maxx))
miny, maxy = self.convert_yunits((miny, maxy))
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return coll
hlines.__doc__ = cbook.dedent(hlines.__doc__)
def vlines(self, x, ymin, ymax, colors='k', linestyles='solid',
label='', **kwargs):
"""
VLINES(x, ymin, ymax, color='k')
Plot vertical lines at each x from ymin to ymax. ymin or ymax can be
scalars or len(x) numpy arrays. If they are scalars, then the
respective values are constant, else the heights of the lines are
determined by ymin and ymax
colors is a line collections color args, either a single color
or a len(x) list of colors
linestyle is one of solid|dashed|dashdot|dotted
Returns the collections.LineCollection that was added
kwargs are collections.LineCollection properties:
%(LineCollection)s
"""
if kwargs.get('fmt') is not None:
raise DeprecationWarning(
'vlines now uses a collections.LineCollection and not a list of Line2D to draw; see API_CHANGES')
self._process_unit_info(xdata=x, ydata=ymin, kwargs=kwargs)
if not iterable(x): x = [x]
if not iterable(ymin): ymin = [ymin]
if not iterable(ymax): ymax = [ymax]
x = npy.asarray(x)
ymin = npy.asarray(ymin)
ymax = npy.asarray(ymax)
if len(ymin)==1:
ymin = ymin*npy.ones(x.shape, x.dtype)
if len(ymax)==1:
ymax = ymax*npy.ones(x.shape, x.dtype)
if len(ymin)!=len(x):
raise ValueError, 'ymin and x are unequal sized sequences'
if len(ymax)!=len(x):
raise ValueError, 'ymax and x are unequal sized sequences'
Y = npy.array([ymin, ymax]).T
verts = [ ((thisx, thisymin), (thisx, thisymax))
for thisx, (thisymin, thisymax) in zip(x,Y)]
#print 'creating line collection'
coll = mcoll.LineCollection(verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(coll)
coll.update(kwargs)
minx = x.min()
maxx = x.max()
miny = min(ymin.min(), ymax.min())
maxy = max(ymin.max(), ymax.max())
minx, maxx = self.convert_xunits((minx, maxx))
miny, maxy = self.convert_yunits((miny, maxy))
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return coll
vlines.__doc__ = cbook.dedent(vlines.__doc__) % martist.kwdocd
#### Basic plotting
def plot(self, *args, **kwargs):
"""
PLOT(*args, **kwargs)
Plot lines and/or markers to the Axes. *args is a variable length
argument, allowing for multiple x,y pairs with an optional format
string. For example, each of the following is legal
plot(x,y) # plot x and y using the default line style and color
plot(x,y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses
If x and/or y is 2-Dimensional, then the corresponding columns
will be plotted.
An arbitrary number of x, y, fmt groups can be specified, as in
a.plot(x1, y1, 'g^', x2, y2, 'g-')
Return value is a list of lines that were added.
The following line styles are supported:
- : solid line
-- : dashed line
-. : dash-dot line
: : dotted line
. : points
, : pixels
o : circle symbols
^ : triangle up symbols
v : triangle down symbols
< : triangle left symbols
> : triangle right symbols
s : square symbols
+ : plus symbols
x : cross symbols
D : diamond symbols
d : thin diamond symbols
1 : tripod down symbols
2 : tripod up symbols
3 : tripod left symbols
4 : tripod right symbols
h : hexagon symbols
H : rotated hexagon symbols
p : pentagon symbols
| : vertical line symbols
_ : horizontal line symbols
steps : use gnuplot style 'steps' # kwarg only
The following color abbreviations are supported
b : blue
g : green
r : red
c : cyan
m : magenta
y : yellow
k : black
w : white
In addition, you can specify colors in many weird and
wonderful ways, including full names 'green', hex strings
'#008000', RGB or RGBA tuples (0,1,0,1) or grayscale
intensities as a string '0.8'. Of these, the string
specifications can be used in place of a fmt group, but the
tuple forms can be used only as kwargs.
Line styles and colors are combined in a single format string, as in
'bo' for blue circles.
The **kwargs can be used to set line properties (any property that has
a set_* method). You can use this to set a line label (for auto
legends), linewidth, anitialising, marker face color, etc. Here is an
example:
plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs', label='line 2')
axis([0, 4, 0, 10])
legend()
If you make multiple lines with one plot command, the kwargs apply
to all those lines, eg
plot(x1, y1, x2, y2, antialised=False)
Neither line will be antialiased.
The kwargs are Line2D properties:
%(Line2D)s
kwargs scalex and scaley, if defined, are passed on
to autoscale_view to determine whether the x and y axes are
autoscaled; default True. See Axes.autoscale_view for more
information
"""
scalex = kwargs.pop( 'scalex', True)
scaley = kwargs.pop( 'scaley', True)
if not self._hold: self.cla()
lines = []
for line in self._get_lines(*args, **kwargs):
self.add_line(line)
lines.append(line)
self.autoscale_view(scalex=scalex, scaley=scaley)
return lines
plot.__doc__ = cbook.dedent(plot.__doc__) % martist.kwdocd
def plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False,
**kwargs):
"""
PLOT_DATE(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs)
Similar to the plot() command, except the x or y (or both) data
is considered to be dates, and the axis is labeled accordingly.
x or y (or both) can be a sequence of dates represented as
float days since 0001-01-01 UTC.
fmt is a plot format string.
tz is the time zone to use in labelling dates. Defaults to rc value.
If xdate is True, the x-axis will be labeled with dates.
If ydate is True, the y-axis will be labeled with dates.
Note if you are using custom date tickers and formatters, it
may be necessary to set the formatters/locators after the call
to plot_date since plot_date will set the default tick locator
to ticker.AutoDateLocator (if the tick locator is not already set to
a ticker.DateLocator instance) and the default tick formatter to
AutoDateFormatter (if the tick formatter is not already set to
a DateFormatter instance).
Valid kwargs are Line2D properties:
%(Line2D)s
See dates for helper functions date2num, num2date
and drange for help on creating the required floating point dates
"""
if not self._hold: self.cla()
ret = self.plot(x, y, fmt, **kwargs)
if xdate:
self.xaxis_date(tz)
if ydate:
self.yaxis_date(tz)
self.autoscale_view()
return ret
plot_date.__doc__ = cbook.dedent(plot_date.__doc__) % martist.kwdocd
def loglog(self, *args, **kwargs):
"""
LOGLOG(*args, **kwargs)
Make a loglog plot with log scaling on the a and y axis. The args
to semilog x are the same as the args to plot. See help plot for
more info.
Optional keyword args supported are any of the kwargs
supported by plot or set_xscale or set_yscale. Notable, for
log scaling:
* basex: base of the x logarithm
* subsx: the location of the minor ticks; None defaults to
autosubs, which depend on the number of decades in the
plot; see set_xscale for details
* basey: base of the y logarithm
* subsy: the location of the minor yticks; None defaults to
autosubs, which depend on the number of decades in the
plot; see set_yscale for details
The remaining valid kwargs are Line2D properties:
%(Line2D)s
"""
if not self._hold: self.cla()
dx = {'basex': kwargs.pop('basex', 10),
'subsx': kwargs.pop('subsx', None),
}
dy = {'basey': kwargs.pop('basey', 10),
'subsy': kwargs.pop('subsy', None),
}
self.set_xscale('log', **dx)
self.set_yscale('log', **dy)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
loglog.__doc__ = cbook.dedent(loglog.__doc__) % martist.kwdocd
def semilogx(self, *args, **kwargs):
"""
SEMILOGX(*args, **kwargs)
Make a semilog plot with log scaling on the x axis. The args to
semilog x are the same as the args to plot. See help plot for more
info.
Optional keyword args supported are any of the kwargs supported by
plot or set_xscale. Notable, for log scaling:
* basex: base of the logarithm
* subsx: the location of the minor ticks; None defaults to
autosubs, which depend on the number of decades in the
plot; see set_xscale for details
The remaining valid kwargs are Line2D properties:
%(Line2D)s
"""
if not self._hold: self.cla()
d = {'basex': kwargs.pop( 'basex', 10),
'subsx': kwargs.pop( 'subsx', None),
}
self.set_xscale('log', **d)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
semilogx.__doc__ = cbook.dedent(semilogx.__doc__) % martist.kwdocd
def semilogy(self, *args, **kwargs):
"""
SEMILOGY(*args, **kwargs):
Make a semilog plot with log scaling on the y axis. The args to
semilogy are the same as the args to plot. See help plot for more
info.
Optional keyword args supported are any of the kwargs supported by
plot or set_yscale. Notable, for log scaling:
* basey: base of the logarithm
* subsy: a sequence of the location of the minor ticks;
None defaults to autosubs, which depend on the number of
decades in the plot; see set_yscale for details
The remaining valid kwargs are Line2D properties:
%(Line2D)s
"""
if not self._hold: self.cla()
d = {'basey': kwargs.pop('basey', 10),
'subsy': kwargs.pop('subsy', None),
}
self.set_yscale('log', **d)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
semilogy.__doc__ = cbook.dedent(semilogy.__doc__) % martist.kwdocd
def acorr(self, x, **kwargs):
"""
ACORR(x, normed=False, detrend=mlab.detrend_none, usevlines=False,
maxlags=None, **kwargs)
Plot the autocorrelation of x. If normed=True, normalize the
data but the autocorrelation at 0-th lag. x is detrended by
the detrend callable (default no normalization.
data are plotted as plot(lags, c, **kwargs)
return value is lags, c, line where lags are a length
2*maxlags+1 lag vector, c is the 2*maxlags+1 auto correlation
vector, and line is a Line2D instance returned by plot. The
default linestyle is None and the default marker is 'o',
though these can be overridden with keyword args. The cross
correlation is performed with numpy correlate with
mode=2.
If usevlines is True, Axes.vlines rather than Axes.plot is used
to draw vertical lines from the origin to the acorr.
Otherwise the plotstyle is determined by the kwargs, which are
Line2D properties. If usevlines, the return value is lags, c,
linecol, b where linecol is the collections.LineCollection and b is the x-axis
if usevlines=True, kwargs are passed onto Axes.vlines
if usevlines=False, kwargs are passed onto Axes.plot
maxlags is a positive integer detailing the number of lags to show.
The default value of None will return all (2*len(x)-1) lags.
See the respective function for documentation on valid kwargs
"""
return self.xcorr(x, x, **kwargs)
acorr.__doc__ = cbook.dedent(acorr.__doc__) % martist.kwdocd
def xcorr(self, x, y, normed=False, detrend=mlab.detrend_none, usevlines=False,
maxlags=None, **kwargs):
"""
XCORR(x, y, normed=False, detrend=mlab.detrend_none, usevlines=False, **kwargs):
Plot the cross correlation between x and y. If normed=True,
normalize the data but the cross correlation at 0-th lag. x
and y are detrended by the detrend callable (default no
normalization. x and y must be equal length
data are plotted as plot(lags, c, **kwargs)
return value is lags, c, line where lags are a length
2*maxlags+1 lag vector, c is the 2*maxlags+1 auto correlation
vector, and line is a Line2D instance returned by plot. The
default linestyle is None and the default marker is 'o',
though these can be overridden with keyword args. The cross
correlation is performed with numpy correlate with
mode=2.
If usevlines is True, Axes.vlines rather than Axes.plot is used
to draw vertical lines from the origin to the acorr.
Otherwise the plotstyle is determined by the kwargs, which are
Line2D properties. If usevlines, the return value is lags, c,
linecol, b where linecol is the collections.LineCollection and b is the x-axis
if usevlines=True, kwargs are passed onto Axes.vlines
if usevlines=False, kwargs are passed onto Axes.plot
maxlags is a positive integer detailing the number of lags to show.
The default value of None will return all (2*len(x)-1) lags.
See the respective function for documentation on valid kwargs
"""
Nx = len(x)
if Nx!=len(y):
raise ValueError('x and y must be equal length')
x = detrend(npy.asarray(x))
y = detrend(npy.asarray(y))
c = npy.correlate(x, y, mode=2)
if normed: c/= npy.sqrt(npy.dot(x,x) * npy.dot(y,y))
if maxlags is None: maxlags = Nx - 1
if maxlags >= Nx or maxlags < 1:
raise ValueError('maglags must be None or strictly positive < %d'%Nx)
lags = npy.arange(-maxlags,maxlags+1)
c = c[Nx-1-maxlags:Nx+maxlags]
if usevlines:
a = self.vlines(lags, [0], c, **kwargs)
b = self.axhline(**kwargs)
else:
kwargs.setdefault('marker', 'o')
kwargs.setdefault('linestyle', 'None')
a, = self.plot(lags, c, **kwargs)
b = None
return lags, c, a, b
xcorr.__doc__ = cbook.dedent(xcorr.__doc__) % martist.kwdocd
def legend(self, *args, **kwargs):
"""
LEGEND(*args, **kwargs)
Place a legend on the current axes at location loc. Labels are a
sequence of strings and loc can be a string or an integer specifying
the legend location
USAGE:
Make a legend with existing lines
>>> legend()
legend by itself will try and build a legend using the label
property of the lines/patches/collections. You can set the label of
a line by doing plot(x, y, label='my data') or line.set_label('my
data'). If label is set to '_nolegend_', the item will not be shown
in legend.
# automatically generate the legend from labels
legend( ('label1', 'label2', 'label3') )
# Make a legend for a list of lines and labels
legend( (line1, line2, line3), ('label1', 'label2', 'label3') )
# Make a legend at a given location, using a location argument
# legend( LABELS, LOC ) or
# legend( LINES, LABELS, LOC )
legend( ('label1', 'label2', 'label3'), loc='upper left')
legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc=2)
The location codes are
'best' : 0,
'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10,
If none of these are suitable, loc can be a 2-tuple giving x,y
in axes coords, ie,
loc = 0, 1 is left top
loc = 0.5, 0.5 is center, center
and so on. The following kwargs are supported:
isaxes=True # whether this is an axes legend
numpoints = 4 # the number of points in the legend line
prop = FontProperties(size='smaller') # the font property
pad = 0.2 # the fractional whitespace inside the legend border
markerscale = 0.6 # the relative size of legend markers vs. original
shadow # if True, draw a shadow behind legend
labelsep = 0.005 # the vertical space between the legend entries
handlelen = 0.05 # the length of the legend lines
handletextsep = 0.02 # the space between the legend line and legend text
axespad = 0.02 # the border between the axes and legend edge
"""
def get_handles():
handles = self.lines[:]
handles.extend(self.patches)
handles.extend([c for c in self.collections
if isinstance(c, mcoll.LineCollection)])
handles.extend([c for c in self.collections
if isinstance(c, mcoll.RegularPolyCollection)])
return handles
if len(args)==0:
handles = []
labels = []
for handle in get_handles():
label = handle.get_label()
if label is not None and label != '' and not label.startswith('_'):
handles.append(handle)
labels.append(label)
if len(handles) == 0:
warnings.warn("No labeled objects found. Use label='...' kwarg on individual plots.")
return None
elif len(args)==1:
# LABELS
labels = args[0]
handles = [h for h, label in zip(get_handles(), labels)]
elif len(args)==2:
if is_string_like(args[1]) or isinstance(args[1], int):
# LABELS, LOC
labels, loc = args
handles = [h for h, label in zip(get_handles(), labels)]
kwargs['loc'] = loc
else:
# LINES, LABELS
handles, labels = args
elif len(args)==3:
# LINES, LABELS, LOC
handles, labels, loc = args
kwargs['loc'] = loc
else:
raise TypeError('Invalid arguments to legend')
handles = cbook.flatten(handles)
self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
return self.legend_
#### Specialized plotting
def step(self, x, y, *args, **kwargs):
'''
step(x, y, *args, **kwargs)
x and y must be 1-D sequences, and it is assumed, but not checked,
that x is uniformly increasing.
Make a step plot. The args and keyword args to step are the same
as the args to plot. See help plot for more info.
Additional keyword args for step:
* where: can be 'pre', 'post' or 'mid'; if 'pre', the
interval from x[i] to x[i+1] has level y[i];
if 'post', that interval has level y[i+1];
and if 'mid', the jumps in y occur half-way
between the x-values. Default is 'pre'.
'''
where = kwargs.pop('where', 'pre')
if where not in ('pre', 'post', 'mid'):
raise ValueError("'where' argument to step must be 'pre', 'post' or 'mid'")
kwargs['linestyle'] = 'steps-' + where
return self.plot(x, y, *args, **kwargs)
def bar(self, left, height, width=0.8, bottom=None,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align='edge', orientation='vertical', log=False,
**kwargs
):
"""
BAR(left, height, width=0.8, bottom=0,
color=None, edgecolor=None, linewidth=None,
yerr=None, xerr=None, ecolor=None, capsize=3,
align='edge', orientation='vertical', log=False)
Make a bar plot with rectangles bounded by
left, left+width, bottom, bottom+height
(left, right, bottom and top edges)
left, height, width, and bottom can be either scalars or sequences
Return value is a list of Rectangle patch instances
left - the x coordinates of the left sides of the bars
height - the heights of the bars
Optional arguments:
width - the widths of the bars
bottom - the y coordinates of the bottom edges of the bars
color - the colors of the bars
edgecolor - the colors of the bar edges
linewidth - width of bar edges; None means use default
linewidth; 0 means don't draw edges.
xerr and yerr, if not None, will be used to generate errorbars
on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error
bar caps
align = 'edge' (default) | 'center'
orientation = 'vertical' | 'horizontal'
log = False | True - False (default) leaves the orientation
axis as-is; True sets it to log scale
For vertical bars, align='edge' aligns bars by their left edges in
left, while 'center' interprets these values as the x coordinates of
the bar centers. For horizontal bars, 'edge' aligns bars by their
bottom edges in bottom, while 'center' interprets these values as the
y coordinates of the bar centers.
The optional arguments color, edgecolor, linewidth, xerr, and yerr can
be either scalars or sequences of length equal to the number of bars.
This enables you to use bar as the basis for stacked bar charts, or
candlestick plots.
Optional kwargs:
%(Rectangle)s
"""
if not self._hold: self.cla()
def make_iterable(x):
if not iterable(x):
return [x]
else:
return x
# make them safe to take len() of
_left = left
left = make_iterable(left)
height = make_iterable(height)
width = make_iterable(width)
_bottom = bottom
bottom = make_iterable(bottom)
linewidth = make_iterable(linewidth)
adjust_ylim = False
adjust_xlim = False
if orientation == 'vertical':
self._process_unit_info(xdata=left, ydata=height, kwargs=kwargs)
if log:
self.set_yscale('log')
# size width and bottom according to length of left
if _bottom is None:
if self.get_yscale() == 'log':
bottom = [1e-100]
adjust_ylim = True
else:
bottom = [0]
nbars = len(left)
if len(width) == 1:
width *= nbars
if len(bottom) == 1:
bottom *= nbars
elif orientation == 'horizontal':
self._process_unit_info(xdata=width, ydata=bottom, kwargs=kwargs)
if log:
self.set_xscale('log')
# size left and height according to length of bottom
if _left is None:
if self.get_xscale() == 'log':
left = [1e-100]
adjust_xlim = True
else:
left = [0]
nbars = len(bottom)
if len(left) == 1:
left *= nbars
if len(height) == 1:
height *= nbars
else:
raise ValueError, 'invalid orientation: %s' % orientation
# do not convert to array here as unit info is lost
#left = npy.asarray(left)
#height = npy.asarray(height)
#width = npy.asarray(width)
#bottom = npy.asarray(bottom)
if len(linewidth) == 1: linewidth = linewidth * nbars
# if color looks like a color string, an RGB tuple or a
# scalar, then repeat it by nbars
if (is_string_like(color) or
(iterable(color) and len(color)==3 and nbars!=3) or
not iterable(color)):
color = [color]*nbars
# if edgecolor looks like a color string, an RGB tuple or a
# scalar, then repeat it by nbars
if (is_string_like(edgecolor) or
(iterable(edgecolor) and len(edgecolor)==3 and nbars!=3) or
not iterable(edgecolor)):
edgecolor = [edgecolor]*nbars
if yerr is not None:
if not iterable(yerr):
yerr = [yerr]*nbars
if xerr is not None:
if not iterable(xerr):
xerr = [xerr]*nbars
assert len(left)==nbars, "argument 'left' must be %d or scalar" % nbars
assert len(height)==nbars, "argument 'height' must be %d or scalar" % nbars
assert len(width)==nbars, "argument 'width' must be %d or scalar" % nbars
assert len(bottom)==nbars, "argument 'bottom' must be %d or scalar" % nbars
assert len(color)==nbars, "argument 'color' must be %d or scalar" % nbars
assert len(edgecolor)==nbars, "argument 'edgecolor' must be %d or scalar" % nbars
assert len(linewidth)==nbars, "argument 'linewidth' must be %d or scalar" % nbars
if yerr is not None and len(yerr)!=nbars:
raise ValueError("bar() argument 'yerr' must be len(%s) or scalar" % nbars)
if xerr is not None and len(xerr)!=nbars:
raise ValueError("bar() argument 'xerr' must be len(%s) or scalar" % nbars)
patches = []
if align == 'edge':
pass
elif align == 'center':
if orientation == 'vertical':
left = [left[i] - width[i]/2. for i in range(len(left))]
elif orientation == 'horizontal':
bottom = [bottom[i] - height[i]/2. for i in range(len(bottom))]
else:
raise ValueError, 'invalid alignment: %s' % align
args = zip(left, bottom, width, height, color, edgecolor, linewidth)
for l, b, w, h, c, e, lw in args:
if h<0:
b += h
h = abs(h)
if w<0:
l += w
w = abs(w)
r = mpatches.Rectangle(
xy=(l, b), width=w, height=h,
facecolor=c,
edgecolor=e,
linewidth=lw,
)
r.update(kwargs)
self.add_patch(r)
patches.append(r)
holdstate = self._hold
self.hold(True) # ensure hold is on before plotting errorbars
if xerr is not None or yerr is not None:
if orientation == 'vertical':
# using list comps rather than arrays to preserve unit info
x = [l+0.5*w for l, w in zip(left, width)]
y = [b+h for b,h in zip(bottom, height)]
elif orientation == 'horizontal':
# using list comps rather than arrays to preserve unit info
x = [l+w for l,w in zip(left, width)]
y = [b+0.5*h for b,h in zip(bottom, height)]
self.errorbar(
x, y,
yerr=yerr, xerr=xerr,
fmt=None, ecolor=ecolor, capsize=capsize)
self.hold(holdstate) # restore previous hold state
if adjust_xlim:
xmin, xmax = self.dataLim.intervalx
xmin = npy.amin(width)
if xerr is not None:
xmin = xmin - npy.amax(xerr)
xmin = max(xmin*0.9, 1e-100)
self.dataLim.intervalx = (xmin, xmax)
if adjust_ylim:
ymin, ymax = self.dataLim.intervaly
ymin = npy.amin(height)
if yerr is not None:
ymin = ymin - npy.amax(yerr)
ymin = max(ymin*0.9, 1e-100)
self.dataLim.intervaly = (ymin, ymax)
self.autoscale_view()
return patches
bar.__doc__ = cbook.dedent(bar.__doc__) % martist.kwdocd
def barh(self, bottom, width, height=0.8, left=None, **kwargs):
"""
BARH(bottom, width, height=0.8, left=0, **kwargs)
Make a horizontal bar plot with rectangles bounded by
left, left+width, bottom, bottom+height
(left, right, bottom and top edges)
bottom, width, height, and left can be either scalars or sequences
Return value is a list of Rectangle patch instances
bottom - the vertical positions of the bottom edges of the bars
width - the lengths of the bars
Optional arguments:
height - the heights (thicknesses) of the bars
left - the x coordinates of the left edges of the bars
color - the colors of the bars
edgecolor - the colors of the bar edges
linewidth - width of bar edges; None means use default
linewidth; 0 means don't draw edges.
xerr and yerr, if not None, will be used to generate errorbars
on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error
bar caps
align = 'edge' (default) | 'center'
log = False | True - False (default) leaves the horizontal
axis as-is; True sets it to log scale
Setting align='edge' aligns bars by their bottom edges in bottom,
while 'center' interprets these values as the y coordinates of the bar
centers.
The optional arguments color, edgecolor, linewidth, xerr, and yerr can
be either scalars or sequences of length equal to the number of bars.
This enables you to use barh as the basis for stacked bar charts, or
candlestick plots.
Optional kwargs:
%(Rectangle)s
"""
patches = self.bar(left=left, height=height, width=width, bottom=bottom,
orientation='horizontal', **kwargs)
return patches
barh.__doc__ = cbook.dedent(barh.__doc__) % martist.kwdocd
def broken_barh(self, xranges, yrange, **kwargs):
"""
A collection of horizontal bars spanning yrange with a sequence of
xranges
xranges : sequence of (xmin, xwidth)
yrange : (ymin, ywidth)
kwargs are collections.BrokenBarHCollection properties
%(BrokenBarHCollection)s
these can either be a single argument, ie facecolors='black'
or a sequence of arguments for the various bars, ie
facecolors='black', 'red', 'green'
"""
col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs)
self.add_collection(col, autolim=True)
self.autoscale_view()
return col
broken_barh.__doc__ = cbook.dedent(broken_barh.__doc__) % martist.kwdocd
def stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-'):
"""
STEM(x, y, linefmt='b-', markerfmt='bo', basefmt='r-')
A stem plot plots vertical lines (using linefmt) at each x location
from the baseline to y, and places a marker there using markerfmt. A
horizontal line at 0 is is plotted using basefmt
Return value is (markerline, stemlines, baseline) .
See
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html
for details and examples/stem_plot.py for a demo.
"""
remember_hold=self._hold
if not self._hold: self.cla()
self.hold(True)
markerline, = self.plot(x, y, markerfmt)
stemlines = []
for thisx, thisy in zip(x, y):
l, = self.plot([thisx,thisx], [0, thisy], linefmt)
stemlines.append(l)
baseline, = self.plot([npy.amin(x), npy.amax(x)], [0,0], basefmt)
self.hold(remember_hold)
return markerline, stemlines, baseline
def pie(self, x, explode=None, labels=None,
colors=None,
autopct=None,
pctdistance=0.6,
shadow=False,
labeldistance=1.1,
):
"""
PIE(x, explode=None, labels=None,
colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)
Make a pie chart of array x. The fractional area of each wedge is
given by x/sum(x). If sum(x)<=1, then the values of x give the
fractional area directly and the array will not be normalized.
- explode, if not None, is a len(x) array which specifies the
fraction of the radius to offset that wedge.
- colors is a sequence of matplotlib color args that the pie chart
will cycle.
- labels, if not None, is a len(x) list of labels.
- autopct, if not None, is a string or function used to label the
wedges with their numeric value. The label will be placed inside
the wedge. If it is a format string, the label will be fmt%pct.
If it is a function, it will be called
- pctdistance is the ratio between the center of each pie slice
and the start of the text generated by autopct. Ignored if autopct
is None; default is 0.6.
- labeldistance is the radial distance at which the pie labels are drawn
- shadow, if True, will draw a shadow beneath the pie.
The pie chart will probably look best if the figure and axes are
square. Eg,
figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])
Return value:
If autopct is None, return a list of (patches, texts), where patches
is a sequence of mpatches.Wedge instances and texts is a
list of the label Text instnaces
If autopct is not None, return (patches, texts, autotexts), where
patches and texts are as above, and autotexts is a list of text
instances for the numeric labels
"""
self.set_frame_on(False)
x = npy.asarray(x).astype(npy.float32)
sx = float(x.sum())
if sx>1: x = npy.divide(x,sx)
if labels is None: labels = ['']*len(x)
if explode is None: explode = [0]*len(x)
assert(len(x)==len(labels))
assert(len(x)==len(explode))
if colors is None: colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w')
center = 0,0
radius = 1
theta1 = 0
i = 0
texts = []
slices = []
autotexts = []
for frac, label, expl in cbook.safezip(x,labels, explode):
x, y = center
theta2 = theta1 + frac
thetam = 2*math.pi*0.5*(theta1+theta2)
x += expl*math.cos(thetam)
y += expl*math.sin(thetam)
w = mpatches.Wedge((x,y), radius, 360.*theta1, 360.*theta2,
facecolor=colors[i%len(colors)])
slices.append(w)
self.add_patch(w)
w.set_label(label)
if shadow:
# make sure to add a shadow after the call to
# add_patch so the figure and transform props will be
# set
shad = mpatches.Shadow(w, -0.02, -0.02,
#props={'facecolor':w.get_facecolor()}
)
shad.set_zorder(0.9*w.get_zorder())
self.add_patch(shad)
xt = x + labeldistance*radius*math.cos(thetam)
yt = y + labeldistance*radius*math.sin(thetam)
t = self.text(xt, yt, label,
size=rcParams['xtick.labelsize'],
horizontalalignment='center',
verticalalignment='center')
texts.append(t)
if autopct is not None:
xt = x + pctdistance*radius*math.cos(thetam)
yt = y + pctdistance*radius*math.sin(thetam)
if is_string_like(autopct):
s = autopct%(100.*frac)
elif callable(autopct):
s = autopct(100.*frac)
else:
raise TypeError('autopct must be callable or a format string')
t = self.text(xt, yt, s,
horizontalalignment='center',
verticalalignment='center')
autotexts.append(t)
theta1 = theta2
i += 1
self.set_xlim((-1.25, 1.25))
self.set_ylim((-1.25, 1.25))
self.set_xticks([])
self.set_yticks([])
if autopct is None: return slices, texts
else: return slices, texts, autotexts
def errorbar(self, x, y, yerr=None, xerr=None,
fmt='-', ecolor=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, **kwargs):
"""
ERRORBAR(x, y, yerr=None, xerr=None,
fmt='b-', ecolor=None, capsize=3, barsabove=False,
lolims=False, uplims=False,
xlolims=False, xuplims=False)
Plot x versus y with error deltas in yerr and xerr.
Vertical errorbars are plotted if yerr is not None
Horizontal errorbars are plotted if xerr is not None
xerr and yerr may be any of:
a rank-0, Nx1 Numpy array - symmetric errorbars +/- value
an N-element list or tuple - symmetric errorbars +/- value
a rank-1, Nx2 Numpy array - asymmetric errorbars -column1/+column2
Alternatively, x, y, xerr, and yerr can all be scalars, which
plots a single error bar at x, y.
fmt is the plot format symbol for y. if fmt is None, just
plot the errorbars with no line symbols. This can be useful
for creating a bar plot with errorbars
ecolor is a matplotlib color arg which gives the color the
errorbar lines; if None, use the marker color.
capsize is the size of the error bar caps in points
barsabove, if True, will plot the errorbars above the plot symbols
- default is below
lolims, uplims, xlolims, xuplims: These arguments can be used
to indicate that a value gives only upper/lower limits. In
that case a caret symbol is used to indicate this. lims-arguments
may be of the same type as xerr and yerr.
kwargs are passed on to the plot command for the markers.
So you can add additional key=value pairs to control the
errorbar markers. For example, this code makes big red
squares with thick green edges
>>> x,y,yerr = rand(3,10)
>>> errorbar(x, y, yerr, marker='s',
mfc='red', mec='green', ms=20, mew=4)
mfc, mec, ms and mew are aliases for the longer property
names, markerfacecolor, markeredgecolor, markersize and
markeredgewith.
valid kwargs for the marker properties are
%(Line2D)s
Return value is a length 3 tuple. The first element is the
Line2D instance for the y symbol lines. The second element is
a list of error bar cap lines, the third element is a list of
line collections for the horizontal and vertical error ranges
"""
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
if not self._hold: self.cla()
# make sure all the args are iterable; use lists not arrays to preserve units
if not iterable(x):
x = [x]
if not iterable(y):
y = [y]
if xerr is not None:
if not iterable(xerr):
xerr = [xerr]*len(x)
if yerr is not None:
if not iterable(yerr):
yerr = [yerr]*len(y)
l0 = None
if barsabove and fmt is not None:
l0, = self.plot(x,y,fmt,**kwargs)
barcols = []
caplines = []
lines_kw = {'label':'_nolegend_'}
if 'linewidth' in kwargs:
lines_kw['linewidth']=kwargs['linewidth']
if 'lw' in kwargs:
lines_kw['lw']=kwargs['lw']
# arrays fine here, they are booleans and hence not units
if not iterable(lolims):
lolims = npy.asarray([lolims]*len(x), bool)
else: lolims = npy.asarray(lolims, bool)
if not iterable(uplims): uplims = npy.array([uplims]*len(x), bool)
else: uplims = npy.asarray(uplims, bool)
if not iterable(xlolims): xlolims = npy.array([xlolims]*len(x), bool)
else: xlolims = npy.asarray(xlolims, bool)
if not iterable(xuplims): xuplims = npy.array([xuplims]*len(x), bool)
else: xuplims = npy.asarray(xuplims, bool)
def xywhere(xs, ys, mask):
"""
return xs[mask], ys[mask] where mask is True but xs and
ys are not arrays
"""
assert len(xs)==len(ys)
assert len(xs)==len(mask)
xs = [thisx for thisx, b in zip(xs, mask) if b]
ys = [thisy for thisy, b in zip(ys, mask) if b]
return xs, ys
if capsize > 0:
plot_kw = {
'ms':2*capsize,
'label':'_nolegend_'}
if 'markeredgewidth' in kwargs:
plot_kw['markeredgewidth']=kwargs['markeredgewidth']
if 'mew' in kwargs:
plot_kw['mew']=kwargs['mew']
if xerr is not None:
if iterable(xerr) and len(xerr)==2 and iterable(xerr[0]) and iterable(xerr[1]):
# using list comps rather than arrays to preserve units
left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[0])]
right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[1])]
else:
# using list comps rather than arrays to preserve units
left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)]
right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)]
barcols.append( self.hlines(y, left, right, **lines_kw ) )
if capsize > 0:
if xlolims.any():
# can't use numpy logical indexing since left and
# y are lists
leftlo, ylo = xywhere(left, y, xlolims)
caplines.extend( self.plot(leftlo, ylo, ls='None', marker=mlines.CARETLEFT, **plot_kw) )
xlolims = ~xlolims
leftlo, ylo = xywhere(left, y, xlolims)
caplines.extend( self.plot(leftlo, ylo, 'k|', **plot_kw) )
else:
caplines.extend( self.plot(left, y, 'k|', **plot_kw) )
if xuplims.any():
rightup, yup = xywhere(right, y, xuplims)
caplines.extend( self.plot(rightup, yup, ls='None', marker=mlines.CARETRIGHT, **plot_kw) )
xuplims = ~xuplims
rightup, yup = xywhere(right, y, xuplims)
caplines.extend( self.plot(rightup, yup, 'k|', **plot_kw) )
else:
caplines.extend( self.plot(right, y, 'k|', **plot_kw) )
if yerr is not None:
if iterable(yerr) and len(yerr)==2 and iterable(yerr[0]) and iterable(yerr[1]):
# using list comps rather than arrays to preserve units
lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[0])]
upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[1])]
else:
# using list comps rather than arrays to preserve units
lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)]
upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)]
barcols.append( self.vlines(x, lower, upper, **lines_kw) )
if capsize > 0:
if lolims.any():
xlo, lowerlo = xywhere(x, lower, lolims)
caplines.extend( self.plot(xlo, lowerlo, ls='None', marker=mlines.CARETDOWN, **plot_kw) )
lolims = ~lolims
xlo, lowerlo = xywhere(x, lower, lolims)
caplines.extend( self.plot(xlo, lowerlo, 'k_', **plot_kw) )
else:
caplines.extend( self.plot(x, lower, 'k_', **plot_kw) )
if uplims.any():
xup, upperup = xywhere(x, upper, uplims)
caplines.extend( self.plot(xup, upperup, ls='None', marker=mlines.CARETUP, **plot_kw) )
uplims = ~uplims
xup, upperup = xywhere(x, upper, uplims)
caplines.extend( self.plot(xup, upperup, 'k_', **plot_kw) )
else:
caplines.extend( self.plot(x, upper, 'k_', **plot_kw) )
if not barsabove and fmt is not None:
l0, = self.plot(x,y,fmt,**kwargs)
if ecolor is None:
if l0 is None:
ecolor = self._get_lines._get_next_cycle_color()
else:
ecolor = l0.get_color()
for l in barcols:
l.set_color(ecolor)
for l in caplines:
l.set_color(ecolor)
self.autoscale_view()
return (l0, caplines, barcols)
errorbar.__doc__ = cbook.dedent(errorbar.__doc__) % martist.kwdocd
def boxplot(self, x, notch=0, sym='b+', vert=1, whis=1.5,
positions=None, widths=None):
"""
boxplot(x, notch=0, sym='+', vert=1, whis=1.5,
positions=None, widths=None)
Make a box and whisker plot for each column of x or
each vector in sequence x.
The box extends from the lower to upper quartile values
of the data, with a line at the median. The whiskers
extend from the box to show the range of the data. Flier
points are those past the end of the whiskers.
notch = 0 (default) produces a rectangular box plot.
notch = 1 will produce a notched box plot
sym (default 'b+') is the default symbol for flier points.
Enter an empty string ('') if you don't want to show fliers.
vert = 1 (default) makes the boxes vertical.
vert = 0 makes horizontal boxes. This seems goofy, but
that's how Matlab did it.
whis (default 1.5) defines the length of the whiskers as
a function of the inner quartile range. They extend to the
most extreme data point within ( whis*(75%-25%) ) data range.
positions (default 1,2,...,n) sets the horizontal positions of
the boxes. The ticks and limits are automatically set to match
the positions.
widths is either a scalar or a vector and sets the width of
each box. The default is 0.5, or 0.15*(distance between extreme
positions) if that is smaller.
x is an array or a sequence of vectors.
Returns a list of the lines added.
"""
if not self._hold: self.cla()
holdStatus = self._hold
whiskers, caps, boxes, medians, fliers = [], [], [], [], []
# convert x to a list of vectors
if hasattr(x, 'shape'):
if len(x.shape) == 1:
if hasattr(x[0], 'shape'):
x = list(x)
else:
x = [x,]
elif len(x.shape) == 2:
nr, nc = x.shape
if nr == 1:
x = [x]
elif nc == 1:
x = [x.ravel()]
else:
x = [x[:,i] for i in range(nc)]
else:
raise ValueError, "input x can have no more than 2 dimensions"
if not hasattr(x[0], '__len__'):
x = [x]
col = len(x)
# get some plot info
if positions is None:
positions = range(1, col + 1)
if widths is None:
distance = max(positions) - min(positions)
widths = min(0.15*max(distance,1.0), 0.5)
if isinstance(widths, float) or isinstance(widths, int):
widths = npy.ones((col,), float) * widths
# loop through columns, adding each to plot
self.hold(True)
for i,pos in enumerate(positions):
d = npy.ravel(x[i])
row = len(d)
# get median and quartiles
q1, med, q3 = mlab.prctile(d,[25,50,75])
# get high extreme
iq = q3 - q1
hi_val = q3 + whis*iq
wisk_hi = npy.compress( d <= hi_val , d )
if len(wisk_hi) == 0:
wisk_hi = q3
else:
wisk_hi = max(wisk_hi)
# get low extreme
lo_val = q1 - whis*iq
wisk_lo = npy.compress( d >= lo_val, d )
if len(wisk_lo) == 0:
wisk_lo = q1
else:
wisk_lo = min(wisk_lo)
# get fliers - if we are showing them
flier_hi = []
flier_lo = []
flier_hi_x = []
flier_lo_x = []
if len(sym) != 0:
flier_hi = npy.compress( d > wisk_hi, d )
flier_lo = npy.compress( d < wisk_lo, d )
flier_hi_x = npy.ones(flier_hi.shape[0]) * pos
flier_lo_x = npy.ones(flier_lo.shape[0]) * pos
# get x locations for fliers, whisker, whisker cap and box sides
box_x_min = pos - widths[i] * 0.5
box_x_max = pos + widths[i] * 0.5
wisk_x = npy.ones(2) * pos
cap_x_min = pos - widths[i] * 0.25
cap_x_max = pos + widths[i] * 0.25
cap_x = [cap_x_min, cap_x_max]
# get y location for median
med_y = [med, med]
# calculate 'regular' plot
if notch == 0:
# make our box vectors
box_x = [box_x_min, box_x_max, box_x_max, box_x_min, box_x_min ]
box_y = [q1, q1, q3, q3, q1 ]
# make our median line vectors
med_x = [box_x_min, box_x_max]
# calculate 'notch' plot
else:
notch_max = med + 1.57*iq/npy.sqrt(row)
notch_min = med - 1.57*iq/npy.sqrt(row)
if notch_max > q3:
notch_max = q3
if notch_min < q1:
notch_min = q1
# make our notched box vectors
box_x = [box_x_min, box_x_max, box_x_max, cap_x_max, box_x_max,
box_x_max, box_x_min, box_x_min, cap_x_min, box_x_min,
box_x_min ]
box_y = [q1, q1, notch_min, med, notch_max, q3, q3, notch_max,
med, notch_min, q1]
# make our median line vectors
med_x = [cap_x_min, cap_x_max]
med_y = [med, med]
# vertical or horizontal plot?
if vert:
def doplot(*args):
return self.plot(*args)
else:
def doplot(*args):
shuffled = []
for i in range(0, len(args), 3):
shuffled.extend([args[i+1], args[i], args[i+2]])
return self.plot(*shuffled)
whiskers.extend(doplot(wisk_x, [q1, wisk_lo], 'b--',
wisk_x, [q3, wisk_hi], 'b--'))
caps.extend(doplot(cap_x, [wisk_hi, wisk_hi], 'k-',
cap_x, [wisk_lo, wisk_lo], 'k-'))
boxes.extend(doplot(box_x, box_y, 'b-'))
medians.extend(doplot(med_x, med_y, 'r-'))
fliers.extend(doplot(flier_hi_x, flier_hi, sym,
flier_lo_x, flier_lo, sym))
# fix our axes/ticks up a little
if 1 == vert:
setticks, setlim = self.set_xticks, self.set_xlim
else:
setticks, setlim = self.set_yticks, self.set_ylim
newlimits = min(positions)-0.5, max(positions)+0.5
setlim(newlimits)
setticks(positions)
# reset hold status
self.hold(holdStatus)
return dict(whiskers=whiskers, caps=caps, boxes=boxes,
medians=medians, fliers=fliers)
def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
faceted=True, verts=None,
**kwargs):
"""
SCATTER(x, y, s=20, c='b', marker='o', cmap=None, norm=None,
vmin=None, vmax=None, alpha=1.0, linewidths=None,
faceted=True, **kwargs)
Supported function signatures:
SCATTER(x, y, **kwargs)
SCATTER(x, y, s, **kwargs)
SCATTER(x, y, s, c, **kwargs)
Make a scatter plot of x versus y, where x, y are 1-D sequences
of the same length, N.
Arguments s and c can also be given as kwargs; this is encouraged
for readability.
s is a size in points^2. It is a scalar
or an array of the same length as x and y.
c is a color and can be a single color format string,
or a sequence of color specifications of length N,
or a sequence of N numbers to be mapped to colors
using the cmap and norm specified via kwargs (see below).
Note that c should not be a single numeric RGB or RGBA
sequence because that is indistinguishable from an array
of values to be colormapped. c can be a 2-D array in which
the rows are RGB or RGBA, however.
The marker can be one of
's' : square
'o' : circle
'^' : triangle up
'>' : triangle right
'v' : triangle down
'<' : triangle left
'd' : diamond
'p' : pentagram
'h' : hexagon
'8' : octagon
If marker is None and verts is not None, verts is a sequence
of (x,y) vertices for a custom scatter symbol.
s is a size argument in points squared.
Any or all of x, y, s, and c may be masked arrays, in which
case all masks will be combined and only unmasked points
will be plotted.
Other keyword args; the color mapping and normalization arguments will
be used only if c is an array of floats
* cmap = cm.jet : a colors.Colormap instance from cm.
defaults to rc image.cmap
* norm = colors.Normalize() : colors.Normalize instance
is used to scale luminance data to 0,1.
* vmin=None and vmax=None : vmin and vmax are used in conjunction
with norm to normalize luminance data. If either are None, the
min and max of the color array C is used. Note if you pass a norm
instance, your settings for vmin and vmax will be ignored
* alpha =1.0 : the alpha value for the patches
* linewidths, if None, defaults to (lines.linewidth,). Note
that this is a tuple, and if you set the linewidths
argument you must set it as a sequence of floats, as
required by RegularPolyCollection -- see
collections.RegularPolyCollection for details
* faceted: if True, will use the default edgecolor for the
markers. If False, will set the edgecolors to be the same
as the facecolors.
This kwarg is deprecated;
please use the edgecolors kwarg instead:
shading='flat' --> edgecolors='None'
shading='faceted --> edgecolors=None
edgecolors also can be any mpl color or sequence of colors.
Optional kwargs control the Collection properties:
%(Collection)s
A Collection instance is returned
"""
if not self._hold: self.cla()
syms = { # a dict from symbol to (numsides, angle)
's' : (4,math.pi/4.0,0), # square
'o' : (20,0,0), # circle
'^' : (3,0,0), # triangle up
'>' : (3,math.pi/2.0,0), # triangle right
'v' : (3,math.pi,0), # triangle down
'<' : (3,3*math.pi/2.0,0), # triangle left
'd' : (4,0,0), # diamond
'p' : (5,0,0), # pentagram
'h' : (6,0,0), # hexagon
'8' : (8,0,0), # octagon
'+' : (4,0,2), # plus
'x' : (4,math.pi/4.0,2) # cross
}
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x, y, s, c = delete_masked_points(x, y, s, c)
# The inherent ambiguity is resolved in favor of color
# mapping, not interpretation as rgb or rgba.
if not is_string_like(c):
sh = npy.shape(c)
if len(sh) == 1 and sh[0] == len(x):
colors = None # use cmap, norm after collection is created
else:
colors = mcolors.colorConverter.to_rgba_array(c, alpha)
else:
colors = mcolors.colorConverter.to_rgba_array(c, alpha)
if not iterable(s):
scales = (s,)
else:
scales = s
if faceted: edgecolors = None
else: edgecolors = 'None'
sym = None
symstyle = 0
# to be API compatible
if marker is None and not (verts is None):
marker = (verts, 0)
verts = None
if is_string_like(marker):
# the standard way to define symbols using a string character
sym = syms.get(marker)
if sym is None and verts is None:
raise ValueError('Unknown marker symbol to scatter')
numsides, rotation, symstyle = syms[marker]
elif iterable(marker):
# accept marker to be:
# (numsides, style, [angle])
# or
# (verts[], style, [angle])
if len(marker)<2 or len(marker)>3:
raise ValueError('Cannot create markersymbol from marker')
if cbook.is_numlike(marker[0]):
# (numsides, style, [angle])
if len(marker)==2:
numsides, rotation = marker[0], 0.
elif len(marker)==3:
numsides, rotation = marker[0], marker[2]
sym = True
if marker[1] in (1,2):
symstyle = marker[1]
else:
verts = npy.asarray(marker[0])
if sym is not None:
if symstyle==0:
collection = mcoll.RegularPolyCollection(
self.figure.dpi,
numsides, rotation, scales,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
elif symstyle==1:
collection = mcoll.StarPolygonCollection(
self.figure.dpi,
numsides, rotation, scales,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
elif symstyle==2:
collection = mcoll.AsteriskPolygonCollection(
self.figure.dpi,
numsides, rotation, scales,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
else:
# rescale verts
rescale = npy.sqrt(max(verts[:,0]**2+verts[:,1]**2))
verts /= rescale
scales = npy.asarray(scales)
scales = npy.sqrt(scales * self.figure.dpi / 72.)
if len(scales)==1:
verts = [scales[0]*verts]
else:
# todo -- make this nx friendly
verts = [verts*s for s in scales]
collection = mcoll.PolyCollection(
verts,
facecolors = colors,
edgecolors = edgecolors,
linewidths = linewidths,
offsets = zip(x,y),
transOffset = self.transData,
)
collection.set_transform(mtransforms.IdentityTransform())
collection.set_alpha(alpha)
collection.update(kwargs)
if colors is None:
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
collection.set_array(npy.asarray(c))
collection.set_cmap(cmap)
collection.set_norm(norm)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
temp_x = x
temp_y = y
minx = npy.amin(temp_x)
maxx = npy.amax(temp_x)
miny = npy.amin(temp_y)
maxy = npy.amax(temp_y)
w = maxx-minx
h = maxy-miny
# the pad is a little hack to deal with the fact that we don't
# want to transform all the symbols whose scales are in points
# to data coords to get the exact bounding box for efficiency
# reasons. It can be done right if this is deemed important
padx, pady = 0.05*w, 0.05*h
corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady)
self.update_datalim( corners)
self.autoscale_view()
# add the collection last
self.add_collection(collection)
return collection
scatter.__doc__ = cbook.dedent(scatter.__doc__) % martist.kwdocd
def arrow(self, x, y, dx, dy, **kwargs):
"""
Draws arrow on specified axis from (x,y) to (x+dx,y+dy).
Optional kwargs control the arrow properties:
%(FancyArrow)s
"""
a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
self.add_artist(a)
return a
arrow.__doc__ = cbook.dedent(arrow.__doc__) % martist.kwdocd
def quiverkey(self, *args, **kw):
qk = mquiver.QuiverKey(*args, **kw)
self.add_artist(qk)
return qk
quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc
def quiver(self, *args, **kw):
"""
TODO: Document me
"""
q = mquiver.Quiver(self, *args, **kw)
self.add_collection(q, False)
self.update_datalim_numerix(q.X, q.Y)
self.autoscale_view()
return q
quiver.__doc__ = mquiver.Quiver.quiver_doc
def fill(self, *args, **kwargs):
"""
FILL(*args, **kwargs)
plot filled polygons. *args is a variable length argument, allowing
for multiple x,y pairs with an optional color format string; see plot
for details on the argument parsing. For example, all of the
following are legal, assuming ax is an Axes instance:
ax.fill(x,y) # plot polygon with vertices at x,y
ax.fill(x,y, 'b' ) # plot polygon with vertices at x,y in blue
An arbitrary number of x, y, color groups can be specified, as in
ax.fill(x1, y1, 'g', x2, y2, 'r')
Return value is a list of patches that were added
The same color strings that plot supports are supported by the fill
format string.
If you would like to fill below a curve, eg shade a region
between 0 and y along x, use mlab.poly_between, eg
xs, ys = poly_between(x, 0, y)
axes.fill(xs, ys, facecolor='red', alpha=0.5)
See examples/fill_between.py for more examples.
kwargs control the Polygon properties:
%(Polygon)s
"""
if not self._hold: self.cla()
patches = []
for poly in self._get_patches_for_fill(*args, **kwargs):
self.add_patch( poly )
patches.append( poly )
self.autoscale_view()
return patches
fill.__doc__ = cbook.dedent(fill.__doc__) % martist.kwdocd
#### plotting z(x,y): imshow, pcolor and relatives, contour
def imshow(self, X,
cmap = None,
norm = None,
aspect=None,
interpolation=None,
alpha=1.0,
vmin = None,
vmax = None,
origin=None,
extent=None,
shape=None,
filternorm=1,
filterrad=4.0,
imlim=None,
**kwargs):
"""
IMSHOW(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=1.0, vmin=None, vmax=None, origin=None, extent=None)
IMSHOW(X) - plot image X to current axes, resampling to scale to axes
size (X may be numarray/Numeric array or PIL image)
IMSHOW(X, **kwargs) - Use keyword args to control image scaling,
colormapping etc. See below for details
Display the image in X to current axes. X may be a float array, a
uint8 array or a PIL image. If X is an array, X can have the following
shapes:
MxN : luminance (grayscale, float array only)
MxNx3 : RGB (float or uint8 array)
MxNx4 : RGBA (float or uint8 array)
The value for each component of MxNx3 and MxNx4 float arrays should be
in the range 0.0 to 1.0; MxN float arrays may be normalised.
A image.AxesImage instance is returned
The following kwargs are allowed:
* cmap is a cm colormap instance, eg cm.jet. If None, default to rc
image.cmap value (Ignored when X has RGB(A) information)
* aspect is one of: auto, equal, or a number. If None, default to rc
image.aspect value
* interpolation is one of:
'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36',
'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc',
'lanczos', 'blackman'
if interpolation is None, default to rc
image.interpolation. See also th the filternorm and
filterrad parameters
* norm is a mcolors.Normalize instance; default is
normalization(). This scales luminance -> 0-1 (only used for an
MxN float array).
* vmin and vmax are used to scale a luminance image to 0-1. If
either is None, the min and max of the luminance values will be
used. Note if you pass a norm instance, the settings for vmin and
vmax will be ignored.
* alpha = 1.0 : the alpha blending value
* origin is 'upper' or 'lower', to place the [0,0]
index of the array in the upper left or lower left corner of
the axes. If None, default to rc image.origin
* extent is (left, right, bottom, top) data values of the
axes. The default assigns zero-based row, column indices
to the x, y centers of the pixels.
* shape is for raw buffer images
* filternorm is a parameter for the antigrain image resize
filter. From the antigrain documentation, if normalize=1,
the filter normalizes integer values and corrects the
rounding errors. It doesn't do anything with the source
floating point values, it corrects only integers according
to the rule of 1.0 which means that any sum of pixel
weights must be equal to 1.0. So, the filter function
must produce a graph of the proper shape.
* filterrad: the filter radius for filters that have a radius
parameter, ie when interpolation is one of: 'sinc',
'lanczos' or 'blackman'
Additional kwargs are martist properties
"""
if not self._hold: self.cla()
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
if aspect is None: aspect = rcParams['image.aspect']
self.set_aspect(aspect)
im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
filternorm=filternorm,
filterrad=filterrad, **kwargs)
im.set_data(X)
im.set_alpha(alpha)
self._set_artist_props(im)
im.set_clip_path(self.axesPatch)
#if norm is None and shape is None:
# im.set_clim(vmin, vmax)
if vmin is not None or vmax is not None:
im.set_clim(vmin, vmax)
else:
im.autoscale_None()
xmin, xmax, ymin, ymax = im.get_extent()
corners = (xmin, ymin), (xmax, ymax)
self.update_datalim(corners)
if self._autoscaleon:
self.set_xlim((xmin, xmax))
self.set_ylim((ymin, ymax))
self.images.append(im)
return im
def _pcolorargs(self, funcname, *args):
if len(args)==1:
C = args[0]
numRows, numCols = C.shape
X, Y = npy.meshgrid(npy.arange(numCols+1), npy.arange(numRows+1) )
elif len(args)==3:
X, Y, C = args
else:
raise TypeError(
'Illegal arguments to %s; see help(%s)' % (funcname, funcname))
Nx = X.shape[-1]
Ny = Y.shape[0]
if len(X.shape) <> 2 or X.shape[0] == 1:
x = X.reshape(1,Nx)
X = x.repeat(Ny, axis=0)
if len(Y.shape) <> 2 or Y.shape[1] == 1:
y = Y.reshape(Ny, 1)
Y = y.repeat(Nx, axis=1)
if X.shape != Y.shape:
raise TypeError(
'Incompatible X, Y inputs to %s; see help(%s)' % (funcname, funcname))
return X, Y, C
def pcolor(self, *args, **kwargs):
"""
pcolor(*args, **kwargs): pseudocolor plot of a 2-D array
Function signatures
pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)
C is the array of color values
X and Y, if given, specify the (x,y) coordinates of the colored
quadrilaterals; the quadrilateral for C[i,j] has corners at
(X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]),
(X[i+1,j+1],Y[i+1,j+1]). Ideally the dimensions of X and Y
should be one greater than those of C; if the dimensions are the
same, then the last row and column of C will be ignored.
Note that the the column index corresponds to the x-coordinate,
and the row index corresponds to y; for details, see
the "Grid Orientation" section below.
If either or both of X and Y are 1-D arrays or column vectors,
they will be expanded as needed into the appropriate 2-D arrays,
making a rectangular grid.
X,Y and C may be masked arrays. If either C[i,j], or one
of the vertices surrounding C[i,j] (X or Y at [i,j],[i+1,j],
[i,j+1],[i=1,j+1]) is masked, nothing is plotted.
Optional keyword args are shown with their defaults below (you must
use kwargs for these):
* cmap = cm.jet : a cm Colormap instance from cm
* norm = Normalize() : mcolors.Normalize instance
is used to scale luminance data to 0,1.
* vmin=None and vmax=None : vmin and vmax are used in conjunction
with norm to normalize luminance data. If either are None, the
min and max of the color array C is used. If you pass a norm
instance, vmin and vmax will be None
* shading = 'flat' : or 'faceted'. If 'faceted', a black grid is
drawn around each rectangle; if 'flat', edges are not drawn.
Default is 'flat', contrary to Matlab(TM).
This kwarg is deprecated;
please use the edgecolors kwarg instead:
shading='flat' --> edgecolors='None'
shading='faceted --> edgecolors='k'
edgecolors can also be None to specify the rcParams
default, or any mpl color or sequence of colors.
* alpha=1.0 : the alpha blending value
Return value is a mcoll.Collection
object
Grid Orientation
The orientation follows the Matlab(TM) convention: an
array C with shape (nrows, ncolumns) is plotted with
the column number as X and the row number as Y, increasing
up; hence it is plotted the way the array would be printed,
except that the Y axis is reversed. That is, C is taken
as C(y,x).
Similarly for meshgrid:
x = npy.arange(5)
y = npy.arange(3)
X, Y = meshgrid(x,y)
is equivalent to
X = array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])
Y = array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2]])
so if you have
C = rand( len(x), len(y))
then you need
pcolor(X, Y, C.T)
or
pcolor(C.T)
Dimensions
Matlab pcolor always discards
the last row and column of C, but matplotlib displays
the last row and column if X and Y are not specified, or
if X and Y have one more row and column than C.
kwargs can be used to control the PolyCollection properties:
%(PolyCollection)s
"""
if not self._hold: self.cla()
alpha = kwargs.pop('alpha', 1.0)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
shading = kwargs.pop('shading', 'flat')
X, Y, C = self._pcolorargs('pcolor', *args)
Ny, Nx = X.shape
# convert to MA, if necessary.
C = ma.asarray(C)
X = ma.asarray(X)
Y = ma.asarray(Y)
mask = ma.getmaskarray(X)+ma.getmaskarray(Y)
xymask = mask[0:-1,0:-1]+mask[1:,1:]+mask[0:-1,1:]+mask[1:,0:-1]
# don't plot if C or any of the surrounding vertices are masked.
mask = ma.getmaskarray(C)[0:Ny-1,0:Nx-1]+xymask
newaxis = npy.newaxis
compress = npy.compress
ravelmask = (mask==0).ravel()
X1 = compress(ravelmask, ma.filled(X[0:-1,0:-1]).ravel())
Y1 = compress(ravelmask, ma.filled(Y[0:-1,0:-1]).ravel())
X2 = compress(ravelmask, ma.filled(X[1:,0:-1]).ravel())
Y2 = compress(ravelmask, ma.filled(Y[1:,0:-1]).ravel())
X3 = compress(ravelmask, ma.filled(X[1:,1:]).ravel())
Y3 = compress(ravelmask, ma.filled(Y[1:,1:]).ravel())
X4 = compress(ravelmask, ma.filled(X[0:-1,1:]).ravel())
Y4 = compress(ravelmask, ma.filled(Y[0:-1,1:]).ravel())
npoly = len(X1)
xy = npy.concatenate((X1[:,newaxis], Y1[:,newaxis],
X2[:,newaxis], Y2[:,newaxis],
X3[:,newaxis], Y3[:,newaxis],
X4[:,newaxis], Y4[:,newaxis],
X1[:,newaxis], Y1[:,newaxis]),
axis=1)
verts = xy.reshape((npoly, 5, 2))
#verts = zip(zip(X1,Y1),zip(X2,Y2),zip(X3,Y3),zip(X4,Y4))
C = compress(ravelmask, ma.filled(C[0:Ny-1,0:Nx-1]).ravel())
if shading == 'faceted':
edgecolors = (0,0,0,1),
linewidths = (0.25,)
else:
edgecolors = 'None'
linewidths = (0.0,)
kwargs.setdefault('edgecolors', edgecolors)
kwargs.setdefault('antialiaseds', (0,))
kwargs.setdefault('linewidths', linewidths)
collection = mcoll.PolyCollection(verts, **kwargs)
collection.set_alpha(alpha)
collection.set_array(C)
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
collection.set_cmap(cmap)
collection.set_norm(norm)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
self.grid(False)
x = X.compressed()
y = Y.compressed()
minx = npy.amin(x)
maxx = npy.amax(x)
miny = npy.amin(y)
maxy = npy.amax(y)
corners = (minx, miny), (maxx, maxy)
self.update_datalim( corners)
self.autoscale_view()
self.add_collection(collection)
return collection
pcolor.__doc__ = cbook.dedent(pcolor.__doc__) % martist.kwdocd
def pcolormesh(self, *args, **kwargs):
"""
PCOLORMESH(*args, **kwargs)
Function signatures
PCOLORMESH(C) - make a pseudocolor plot of matrix C
PCOLORMESH(X, Y, C) - a pseudo color plot of C on the matrices X and Y
PCOLORMESH(C, **kwargs) - Use keyword args to control colormapping and
scaling; see below
C may be a masked array, but X and Y may not. Masked array support
is implemented via cmap and norm; in contrast, pcolor simply does
not draw quadrilaterals with masked colors or vertices.
Optional keyword args are shown with their defaults below (you must
use kwargs for these):
* cmap = cm.jet : a cm Colormap instance from cm.
* norm = Normalize() : colors.Normalize instance
is used to scale luminance data to 0,1. Instantiate it
with clip=False if C is a masked array.
* vmin=None and vmax=None : vmin and vmax are used in conjunction
with norm to normalize luminance data. If either are None, the
min and max of the color array C is used.
* shading = 'flat' : or 'faceted'. If 'faceted', a black grid is
drawn around each rectangle; if 'flat', edges are not drawn.
Default is 'flat', contrary to Matlab(TM).
This kwarg is deprecated;
please use the edgecolors kwarg instead:
shading='flat' --> edgecolors='None'
shading='faceted --> edgecolors='k'
More flexible specification of edgecolors, as in pcolor,
is not presently supported.
* alpha=1.0 : the alpha blending value
Return value is a collections.Collection
object
See pcolor for an explantion of the grid orientation and the
expansion of 1-D X and/or Y to 2-D arrays.
kwargs can be used to control the collections.QuadMesh polygon
collection properties:
%(QuadMesh)s
"""
if not self._hold: self.cla()
alpha = kwargs.pop('alpha', 1.0)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
shading = kwargs.pop('shading', 'flat')
edgecolors = kwargs.pop('edgecolors', 'None')
antialiased = kwargs.pop('antialiased', False)
X, Y, C = self._pcolorargs('pcolormesh', *args)
Ny, Nx = X.shape
# convert to one dimensional arrays
C = ma.ravel(C[0:Ny-1, 0:Nx-1]) # data point in each cell is value at lower left corner
X = X.ravel()
Y = Y.ravel()
coords = npy.zeros(((Nx * Ny), 2), dtype=float)
coords[:, 0] = X
coords[:, 1] = Y
if shading == 'faceted' or edgecolors != 'None':
showedges = 1
else:
showedges = 0
collection = mcoll.QuadMesh(
Nx - 1, Ny - 1, coords, showedges, antialiased=antialiased) # kwargs are not used
collection.set_alpha(alpha)
collection.set_array(C)
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
collection.set_cmap(cmap)
collection.set_norm(norm)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
self.grid(False)
minx = npy.amin(X)
maxx = npy.amax(X)
miny = npy.amin(Y)
maxy = npy.amax(Y)
corners = (minx, miny), (maxx, maxy)
self.update_datalim( corners)
self.autoscale_view()
self.add_collection(collection)
return collection
pcolormesh.__doc__ = cbook.dedent(pcolormesh.__doc__) % martist.kwdocd
def pcolorfast(self, *args, **kwargs):
"""
Experimental; this is a version of pcolor that
does not draw lines, that provides the fastest
possible rendering with the Agg backend, and that
can handle any quadrilateral grid.
pcolor(*args, **kwargs): pseudocolor plot of a 2-D array
Function signatures
pcolor(C, **kwargs)
pcolor(xr, yr, C, **kwargs)
pcolor(x, y, C, **kwargs)
pcolor(X, Y, C, **kwargs)
C is the 2D array of color values corresponding to quadrilateral
cells. Let (nr, nc) be its shape. C may be a masked array.
pcolor(C, **kwargs) is equivalent to
pcolor([0,nc], [0,nr], C, **kwargs)
xr, yr specify the ranges of x and y corresponding to the rectangular
region bounding C. If xr = [x0, x1] and yr = [y0,y1] then
x goes from x0 to x1 as the second index of C goes from 0 to nc,
etc. (x0, y0) is the outermost corner of cell (0,0), and (x1, y1)
is the outermost corner of cell (nr-1, nc-1). All cells are
rectangles of the same size. This is the fastest version.
x, y are 1D arrays of length nc+1 and nr+1, respectively, giving
the x and y boundaries of the cells. Hence the cells are
rectangular but the grid may be nonuniform. The speed is
intermediate. (The grid is checked, and if found to be
uniform the fast version is used.)
X and Y are 2D arrays with shape (nr+1, nc+1) that specify
the (x,y) coordinates of the corners of the colored
quadrilaterals; the quadrilateral for C[i,j] has corners at
(X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]),
(X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular.
This is the most general, but the slowest to render. It may
produce faster and more compact output using ps, pdf, and
svg backends, however.
Note that the the column index corresponds to the x-coordinate,
and the row index corresponds to y; for details, see
the "Grid Orientation" section below.
Optional keyword args are shown with their defaults below (you must
use kwargs for these):
* cmap = cm.jet : a cm Colormap instance from cm
* norm = Normalize() : mcolors.Normalize instance
is used to scale luminance data to 0,1.
* vmin=None and vmax=None : vmin and vmax are used in conjunction
with norm to normalize luminance data. If either are None, the
min and max of the color array C is used. If you pass a norm
instance, vmin and vmax will be None
* alpha=1.0 : the alpha blending value
Return value is an image if a regular or rectangular grid
is specified, and a QuadMesh collection in the general
quadrilateral case.
"""
if not self._hold: self.cla()
alpha = kwargs.pop('alpha', 1.0)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
if norm is not None: assert(isinstance(norm, mcolors.Normalize))
if cmap is not None: assert(isinstance(cmap, mcolors.Colormap))
C = args[-1]
nr, nc = C.shape
if len(args) == 1:
style = "image"
x = [0, nc+1]
y = [0, nr+1]
elif len(args) == 3:
x, y = args[:2]
x = npy.asarray(x)
y = npy.asarray(y)
if x.ndim == 1 and y.ndim == 1:
if x.size == 2 and y.size == 2:
style = "image"
else:
dx = npy.diff(x)
dy = npy.diff(y)
if (npy.ptp(dx) < 0.01*npy.abs(dx.mean()) and
npy.ptp(dy) < 0.01*npy.abs(dy.mean())):
style = "image"
style = "pcolorimage"
elif x.ndim == 2 and y.ndim == 2:
style = "quadmesh"
else:
raise TypeError("arguments do not match valid signatures")
else:
raise TypeError("need 1 argument or 3 arguments")
if style == "quadmesh":
# convert to one dimensional arrays
# This should also be moved to the QuadMesh class
C = ma.ravel(C) # data point in each cell is value at lower left corner
X = x.ravel()
Y = y.ravel()
Nx = nc+1
Ny = nr+1
# The following needs to be cleaned up; the renderer
# requires separate contiguous arrays for X and Y,
# but the QuadMesh class requires the 2D array.
coords = npy.empty(((Nx * Ny), 2), npy.float64)
coords[:, 0] = X
coords[:, 1] = Y
# The QuadMesh class can also be changed to
# handle relevant superclass kwargs; the initializer
# should do much more than it does now.
collection = mcoll.QuadMesh(nc, nr, coords, 0)
collection.set_alpha(alpha)
collection.set_array(C)
collection.set_cmap(cmap)
collection.set_norm(norm)
self.add_collection(collection)
xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max()
ret = collection
else:
# One of the image styles:
xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]
if style == "image":
im = mimage.AxesImage(self, cmap, norm,
interpolation='nearest',
origin='lower',
extent=(xl, xr, yb, yt),
**kwargs)
im.set_data(C)
im.set_alpha(alpha)
self.images.append(im)
ret = im
if style == "pcolorimage":
im = mimage.PcolorImage(self, x, y, C,
cmap=cmap,
norm=norm,
alpha=alpha,
**kwargs)
self.images.append(im)
ret = im
self._set_artist_props(ret)
if vmin is not None or vmax is not None:
ret.set_clim(vmin, vmax)
else:
ret.autoscale_None()
self.update_datalim(npy.array([[xl, yb], [xr, yt]]))
self.autoscale_view(tight=True)
return ret
def contour(self, *args, **kwargs):
kwargs['filled'] = False
return mcontour.ContourSet(self, *args, **kwargs)
contour.__doc__ = mcontour.ContourSet.contour_doc
def contourf(self, *args, **kwargs):
kwargs['filled'] = True
return mcontour.ContourSet(self, *args, **kwargs)
contourf.__doc__ = mcontour.ContourSet.contour_doc
def clabel(self, CS, *args, **kwargs):
return CS.clabel(*args, **kwargs)
clabel.__doc__ = mcontour.ContourSet.clabel.__doc__
def table(self, **kwargs):
"""
TABLE(cellText=None, cellColours=None,
cellLoc='right', colWidths=None,
rowLabels=None, rowColours=None, rowLoc='left',
colLabels=None, colColours=None, colLoc='center',
loc='bottom', bbox=None):
Add a table to the current axes. Returns a table instance. For
finer grained control over tables, use the Table class and add it
to the axes with add_table.
Thanks to John Gill for providing the class and table.
kwargs control the Table properties:
%(Table)s
"""
return mtable.table(self, **kwargs)
table.__doc__ = cbook.dedent(table.__doc__) % martist.kwdocd
def twinx(self):
"""
ax = twinx()
create a twin of Axes for generating a plot with a sharex
x-axis but independent y axis. The y-axis of self will have
ticks on left and the returned axes will have ticks on the
right
"""
ax2 = self.figure.add_axes(self.get_position(), sharex=self, frameon=False)
ax2.yaxis.tick_right()
ax2.yaxis.set_label_position('right')
self.yaxis.tick_left()
return ax2
def twiny(self):
"""
ax = twiny()
create a twin of Axes for generating a plot with a shared
y-axis but independent x axis. The x-axis of self will have
ticks on bottom and the returned axes will have ticks on the
top
"""
ax2 = self.figure.add_axes(self.get_position(), sharey=self, frameon=False)
ax2.xaxis.tick_top()
ax2.xaxis.set_label_position('top')
self.xaxis.tick_bottom()
return ax2
#### Data analysis
def hist(self, x, bins=10, normed=0, bottom=None,
align='edge', orientation='vertical', width=None,
log=False, **kwargs):
"""
HIST(x, bins=10, normed=0, bottom=None,
align='edge', orientation='vertical', width=None,
log=False, **kwargs)
Compute the histogram of x. bins is either an integer number of
bins or a sequence giving the bins. x are the data to be binned.
The return values is (n, bins, patches)
If normed is true, the first element of the return tuple will
be the counts normalized to form a probability density, ie,
n/(len(x)*dbin). In a probability density, the integral of
the histogram should be one (we assume equally spaced bins);
you can verify that with
# trapezoidal integration of the probability density function
pdf, bins, patches = ax.hist(...)
print npy.trapz(pdf, bins)
align = 'edge' | 'center'. Interprets bins either as edge
or center values
orientation = 'horizontal' | 'vertical'. If horizontal, barh
will be used and the "bottom" kwarg will be the left edges.
width: the width of the bars. If None, automatically compute
the width.
log: if True, the histogram axis will be set to a log scale
kwargs are used to update the properties of the
hist Rectangles:
%(Rectangle)s
"""
if not self._hold: self.cla()
n, bins = npy.histogram(x, bins, range=None, normed=normed)
if width is None: width = 0.9*(bins[1]-bins[0])
if orientation == 'horizontal':
patches = self.barh(bins, n, height=width, left=bottom,
align=align, log=log)
elif orientation == 'vertical':
patches = self.bar(bins, n, width=width, bottom=bottom,
align=align, log=log)
else:
raise ValueError, 'invalid orientation: %s' % orientation
for p in patches:
p.update(kwargs)
return n, bins, cbook.silent_list('Patch', patches)
hist.__doc__ = cbook.dedent(hist.__doc__) % martist.kwdocd
def psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, **kwargs):
"""
PSD(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, **kwargs)
The power spectral density by Welches average periodogram method. The
vector x is divided into NFFT length segments. Each segment is
detrended by function detrend and windowed by function window.
noperlap gives the length of the overlap between segments. The
absolute(fft(segment))**2 of each segment are averaged to compute Pxx,
with a scaling to correct for power loss due to windowing. Fs is the
sampling frequency.
* NFFT is the length of the fft segment; must be a power of 2
* Fs is the sampling frequency.
* Fc is the center frequency of x (defaults to 0), which offsets
the yextents of the image to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
* detrend - the function applied to each segment before fft-ing,
designed to remove the mean or linear trend. Unlike in matlab,
where the detrend parameter is a vector, in matplotlib is it a
function. The mlab module defines detrend_none, detrend_mean,
detrend_linear, but you can use a custom function as well.
* window - the function used to window the segments. window is a
function, unlike in matlab(TM) where it is a vector. mlab defines
window_none, window_hanning, but you can use a custom function
as well.
* noverlap gives the length of the overlap between segments.
Returns the tuple Pxx, freqs
For plotting, the power is plotted as 10*npy.log10(pxx) for decibels,
though pxx itself is returned
Refs:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the Line2D properties:
%(Line2D)s
"""
if not self._hold: self.cla()
pxx, freqs = mlab.psd(x, NFFT, Fs, detrend, window, noverlap)
pxx.shape = len(freqs),
freqs += Fc
self.plot(freqs, 10*npy.log10(pxx), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Power Spectrum (dB)')
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax-vmin
logi = int(npy.log10(intv))
if logi==0: logi=.1
step = 10*logi
#print vmin, vmax, step, intv, math.floor(vmin), math.ceil(vmax)+1
ticks = npy.arange(math.floor(vmin), math.ceil(vmax)+1, step)
self.set_yticks(ticks)
return pxx, freqs
psd.__doc__ = cbook.dedent(psd.__doc__) % martist.kwdocd
def csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, **kwargs):
"""
CSD(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=window_hanning, noverlap=0, **kwargs)
The cross spectral density Pxy by Welches average periodogram method.
The vectors x and y are divided into NFFT length segments. Each
segment is detrended by function detrend and windowed by function
window. The product of the direct FFTs of x and y are averaged over
each segment to compute Pxy, with a scaling to correct for power loss
due to windowing.
See the PSD help for a description of the optional parameters.
Returns the tuple Pxy, freqs. Pxy is the cross spectrum (complex
valued), and 10*npy.log10(|Pxy|) is plotted
Refs:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the Line2D properties:
%(Line2D)s
"""
if not self._hold: self.cla()
pxy, freqs = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap)
pxy.shape = len(freqs),
# pxy is complex
freqs += Fc
self.plot(freqs, 10*npy.log10(npy.absolute(pxy)), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Cross Spectrum Magnitude (dB)')
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax-vmin
step = 10*int(npy.log10(intv))
ticks = npy.arange(math.floor(vmin), math.ceil(vmax)+1, step)
self.set_yticks(ticks)
return pxy, freqs
csd.__doc__ = cbook.dedent(csd.__doc__) % martist.kwdocd
def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, **kwargs):
"""
COHERE(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, **kwargs)
cohere the coherence between x and y. Coherence is the normalized
cross spectral density
Cxy = |Pxy|^2/(Pxx*Pyy)
The return value is (Cxy, f), where f are the frequencies of the
coherence vector.
See the PSD help for a description of the optional parameters.
kwargs are applied to the lines
Returns the tuple Cxy, freqs
Refs: Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the Line2D properties of the coherence plot:
%(Line2D)s
"""
if not self._hold: self.cla()
cxy, freqs = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap)
freqs += Fc
self.plot(freqs, cxy, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Coherence')
self.grid(True)
return cxy, freqs
cohere.__doc__ = cbook.dedent(cohere.__doc__) % martist.kwdocd
def specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap = None, xextent=None):
"""
SPECGRAM(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window = mlab.window_hanning, noverlap=128,
cmap=None, xextent=None)
Compute a spectrogram of data in x. Data are split into NFFT length
segements and the PSD of each section is computed. The windowing
function window is applied to each segment, and the amount of overlap
of each segment is specified with noverlap.
* cmap is a colormap; if None use default determined by rc
* xextent is the image extent in the xaxes xextent=xmin, xmax -
default 0, max(bins), 0, max(freqs) where bins is the return
value from mlab.specgram
* See help(psd) for information on the other keyword arguments.
Return value is (Pxx, freqs, bins, im), where
bins are the time points the spectrogram is calculated over
freqs is an array of frequencies
Pxx is a len(times) x len(freqs) array of power
im is a image.AxesImage.
Note: If x is real (i.e. non-complex) only the positive spectrum is
shown. If x is complex both positive and negative parts of the
spectrum are shown.
"""
if not self._hold: self.cla()
Pxx, freqs, bins = mlab.specgram(x, NFFT, Fs, detrend,
window, noverlap)
Z = 10*npy.log10(Pxx)
Z = npy.flipud(Z)
if xextent is None: xextent = 0, npy.amax(bins)
xmin, xmax = xextent
freqs += Fc
extent = xmin, xmax, freqs[0], freqs[-1]
im = self.imshow(Z, cmap, extent=extent)
self.axis('auto')
return Pxx, freqs, bins, im
def spy(self, Z, precision=None, marker=None, markersize=None,
aspect='equal', **kwargs):
"""
spy(Z) plots the sparsity pattern of the 2-D array Z
If precision is None, any non-zero value will be plotted;
else, values of absolute(Z)>precision will be plotted.
The array will be plotted as it would be printed, with
the first index (row) increasing down and the second
index (column) increasing to the right.
By default aspect is 'equal' so that each array element
occupies a square space; set the aspect kwarg to 'auto'
to allow the plot to fill the plot box, or to any scalar
number to specify the aspect ratio of an array element
directly.
Two plotting styles are available: image or marker. Both
are available for full arrays, but only the marker style
works for scipy.sparse.spmatrix instances.
If marker and markersize are None, an image will be
returned and any remaining kwargs are passed to imshow;
else, a Line2D object will be returned with the value
of marker determining the marker type, and any remaining
kwargs passed to the axes plot method.
If marker and markersize are None, useful kwargs include:
cmap
alpha
See documentation for imshow() for details.
For controlling colors, e.g. cyan background and red marks, use:
cmap = mcolors.ListedColormap(['c','r'])
If marker or markersize is not None, useful kwargs include:
marker
markersize
color
See documentation for plot() for details.
Useful values for marker include:
's' square (default)
'o' circle
'.' point
',' pixel
"""
if marker is None and markersize is None:
if hasattr(Z, 'tocoo'):
raise TypeError, "Image mode does not support scipy.sparse arrays"
Z = npy.asarray(Z)
if precision is None: mask = Z!=0.
else: mask = npy.absolute(Z)>precision
if 'cmap' not in kwargs:
kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'], name='binary')
nr, nc = Z.shape
extent = [-0.5, nc-0.5, nr-0.5, -0.5]
ret = self.imshow(mask, interpolation='nearest', aspect=aspect,
extent=extent, origin='upper', **kwargs)
else:
if hasattr(Z, 'tocoo'):
c = Z.tocoo()
y = c.row
x = c.col
z = c.data
else:
Z = npy.asarray(Z)
if precision is None: mask = Z!=0.
else: mask = npy.absolute(Z)>precision
y,x,z = mlab.get_xyz_where(mask, mask)
if marker is None: marker = 's'
if markersize is None: markersize = 10
lines = self.plot(x, y, linestyle='None',
marker=marker, markersize=markersize, **kwargs)
nr, nc = Z.shape
self.set_xlim(xmin=-0.5, xmax=nc-0.5)
self.set_ylim(ymin=nr-0.5, ymax=-0.5)
self.set_aspect(aspect)
ret = lines
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
return ret
def matshow(self, Z, **kwargs):
'''
Plot a matrix as an image.
The matrix will be shown the way it would be printed,
with the first row at the top. Row and column numbering
is zero-based.
Argument:
Z anything that can be interpreted as a 2-D array
kwargs: all are passed to imshow. matshow sets defaults
for extent, origin, interpolation, and aspect; use care
in overriding the extent and origin kwargs, because they
interact. (Also, if you want to change them, you probably
should be using imshow directly in your own version of
matshow.)
Returns: an image.AxesImage instance
'''
Z = npy.asarray(Z)
nr, nc = Z.shape
extent = [-0.5, nc-0.5, nr-0.5, -0.5]
kw = {'extent': extent,
'origin': 'upper',
'interpolation': 'nearest',
'aspect': 'equal'} # (already the imshow default)
kw.update(kwargs)
im = self.imshow(Z, **kw)
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
return im
class SubplotBase:
"""
Base class for subplots, which are Axes instances with additional
methods to facilitate generating and manipulating a set of Axes
within a figure.
"""
def __init__(self, fig, *args, **kwargs):
"""
fig is a figure instance
args is numRows, numCols, plotNum
where the array of subplots in the figure has dimensions
numRows, numCols, and where plotNum is the number of the
subplot being created. plotNum starts at 1 in the upper
right corner and increases to the right.
If numRows<=numCols<=plotNum<10, args can be the decimal
integer numRows*100 + numCols*10 + plotNum.
"""
self.figure = fig
if len(args)==1:
s = str(args[0])
if len(s) != 3:
raise ValueError('Argument to subplot must be a 3 digits long')
rows, cols, num = map(int, s)
elif len(args)==3:
rows, cols, num = args
else:
raise ValueError( 'Illegal argument to subplot')
total = rows*cols
num -= 1 # convert from matlab to python indexing ie num in range(0,total)
if num >= total:
raise ValueError( 'Subplot number exceeds total subplots')
self._rows = rows
self._cols = cols
self._num = num
self.update_params()
# _axes_class is set in the subplot_class_factory
self._axes_class.__init__(self, fig, self.figbox, **kwargs)
def get_geometry(self):
'get the subplot geometry, eg 2,2,3'
return self._rows, self._cols, self._num+1
# COVERAGE NOTE: Never used internally or from examples
def change_geometry(self, numrows, numcols, num):
'change subplot geometry, eg from 1,1,1 to 2,2,3'
self._rows = numrows
self._cols = numcols
self._num = num-1
self.update_params()
self.set_position(self.figbox)
def update_params(self):
'update the subplot position from fig.subplotpars'
rows = self._rows
cols = self._cols
num = self._num
pars = self.figure.subplotpars
left = pars.left
right = pars.right
bottom = pars.bottom
top = pars.top
wspace = pars.wspace
hspace = pars.hspace
totWidth = right-left
totHeight = top-bottom
figH = totHeight/(rows + hspace*(rows-1))
sepH = hspace*figH
figW = totWidth/(cols + wspace*(cols-1))
sepW = wspace*figW
rowNum, colNum = divmod(num, cols)
figBottom = top - (rowNum+1)*figH - rowNum*sepH
figLeft = left + colNum*(figW + sepW)
self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom, figW, figH)
self.rowNum = rowNum
self.colNum = colNum
self.numRows = rows
self.numCols = cols
if 0:
print 'rcn', rows, cols, num
print 'lbrt', left, bottom, right, top
print 'self.figBottom', self.figBottom
print 'self.figLeft', self.figLeft
print 'self.figW', self.figW
print 'self.figH', self.figH
print 'self.rowNum', self.rowNum
print 'self.colNum', self.colNum
print 'self.numRows', self.numRows
print 'self.numCols', self.numCols
def is_first_col(self):
return self.colNum==0
def is_first_row(self):
return self.rowNum==0
def is_last_row(self):
return self.rowNum==self.numRows-1
def is_last_col(self):
return self.colNum==self.numCols-1
# COVERAGE NOTE: Never used internally or from examples
def label_outer(self):
"""
set the visible property on ticklabels so xticklabels are
visible only if the subplot is in the last row and yticklabels
are visible only if the subplot is in the first column
"""
lastrow = self.is_last_row()
firstcol = self.is_first_col()
for label in self.get_xticklabels():
label.set_visible(lastrow)
for label in self.get_yticklabels():
label.set_visible(firstcol)
_subplot_classes = {}
def subplot_class_factory(axes_class=None):
# This makes a new class that inherits from SubclassBase and the
# given axes_class (which is assumed to be a subclass of Axes).
# This is perhaps a little bit roundabout to make a new class on
# the fly like this, but it means that a new Subplot class does
# not have to be created for every type of Axes.
if axes_class is None:
axes_class = Axes
new_class = _subplot_classes.get(axes_class)
if new_class is None:
new_class = new.classobj("%sSubplot" % (axes_class.__name__),
(SubplotBase, axes_class),
{'_axes_class': axes_class})
_subplot_classes[axes_class] = new_class
return new_class
# This is provided for backward compatibility
Subplot = subplot_class_factory()
martist.kwdocd['Axes'] = martist.kwdocd['Subplot'] = martist.kwdoc(Axes)
"""
# this is some discarded code I was using to find the minimum positive
# data point for some log scaling fixes. I realized there was a
# cleaner way to do it, but am keeping this around as an example for
# how to get the data out of the axes. Might want to make something
# like this a method one day, or better yet make get_verts an Artist
# method
minx, maxx = self.get_xlim()
if minx<=0 or maxx<=0:
# find the min pos value in the data
xs = []
for line in self.lines:
xs.extend(line.get_xdata(orig=False))
for patch in self.patches:
xs.extend([x for x,y in patch.get_verts()])
for collection in self.collections:
xs.extend([x for x,y in collection.get_verts()])
posx = [x for x in xs if x>0]
if len(posx):
minx = min(posx)
maxx = max(posx)
# warning, probably breaks inverted axis
self.set_xlim((0.1*minx, maxx))
"""