Menu

[r4113]: / branches / transforms / lib / matplotlib / scale.py  Maximize  Restore  History

Download this file

181 lines (135 with data), 5.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as npy
from numpy import ma
from ticker import NullFormatter, ScalarFormatter, LogFormatterMathtext
from ticker import NullLocator, LogLocator, AutoLocator
from transforms import Transform, IdentityTransform
class ScaleBase(object):
def set_default_locators_and_formatters(self, axis):
raise NotImplementedError
def limit_range_for_scale(self, vmin, vmax, minpos):
return vmin, vmax
class LinearScale(ScaleBase):
name = 'linear'
def __init__(self, axis, **kwargs):
pass
def set_default_locators_and_formatters(self, axis):
axis.set_major_locator(AutoLocator())
axis.set_major_formatter(ScalarFormatter())
axis.set_minor_locator(NullLocator())
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
return IdentityTransform()
class LogScale(ScaleBase):
name = 'log'
class Log10Transform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform(self, a):
return ma.log10(ma.masked_where(a <= 0.0, a * 10.0))
def inverted(self):
return LogScale.InvertedLog10Transform()
class InvertedLog10Transform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform(self, a):
return ma.power(10.0, a) / 10.0
def inverted(self):
return LogScale.Log10Transform()
class Log2Transform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform(self, a):
return ma.log2(ma.masked_where(a <= 0.0, a * 2.0))
def inverted(self):
return LogScale.InvertedLog2Transform()
class InvertedLog2Transform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform(self, a):
return ma.power(2.0, a) / 2.0
def inverted(self):
return LogScale.Log2Transform()
class NaturalLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform(self, a):
return ma.log(ma.masked_where(a <= 0.0, a * npy.e))
def inverted(self):
return LogScale.InvertedNaturalLogTransform()
class InvertedNaturalLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform(self, a):
return ma.power(npy.e, a) / npy.e
def inverted(self):
return LogScale.Log2Transform()
class LogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, base):
Transform.__init__(self)
self._base = base
def transform(self, a):
return ma.log(ma.masked_where(a <= 0.0, a * self._base)) / npy.log(self._base)
def inverted(self):
return LogScale.InvertedLogTransform(self._base)
class InvertedLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, base):
Transform.__init__(self)
self._base = base
def transform(self, a):
return ma.power(self._base, a) / self._base
def inverted(self):
return LogScale.LogTransform(self._base)
def __init__(self, axis, **kwargs):
if axis.axis_name == 'x':
base = kwargs.pop('basex', 10.0)
subs = kwargs.pop('subsx', [])
else:
base = kwargs.pop('basey', 10.0)
subs = kwargs.pop('subsy', [])
if base == 10.0:
self._transform = self.Log10Transform()
elif base == 2.0:
self._transform = self.Log2Transform()
elif base == npy.e:
self._transform = self.NaturalLogTransform()
else:
self._transform = self.LogTransform(base)
self._base = base
self._subs = subs
def set_default_locators_and_formatters(self, axis):
axis.set_major_locator(LogLocator(self._base))
axis.set_major_formatter(LogFormatterMathtext(self._base))
axis.set_minor_locator(LogLocator(self._base, self._subs))
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
return self._transform
def limit_range_for_scale(self, vmin, vmax, minpos):
return (vmin <= 0.0 and minpos or vmin,
vmax <= 0.0 and minpos or vmax)
_scale_mapping = {
'linear' : LinearScale,
'log' : LogScale
}
def scale_factory(scale, axis, **kwargs):
scale = scale.lower()
if scale is None:
scale = 'linear'
if not _scale_mapping.has_key(scale):
raise ValueError("Unknown scale type '%s'" % scale)
return _scale_mapping[scale](axis, **kwargs)
def get_scale_names():
names = _scale_mapping.keys()
names.sort()
return names
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.