Menu

[r4021]: / trunk / py4science / workbook / convolution.tex  Maximize  Restore  History

Download this file

28 lines (19 with data), 1.0 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
\begin{center}%
\begin{figure}
\begin{centering}\includegraphics[width=4in]{fig/convolve_explain}\par\end{centering}
\caption{\label{fig:convolve_explain}The output of a linear system to a series of impulse inputs is equal to the sum of the scaled and time shifted impulse response functions.}
\end{figure}
\par\end{center}
\begin{center}%
\begin{figure}
\begin{centering}\includegraphics[width=4in]{fig/convolve_deltas}\par\end{centering}
\caption{\label{fig:convolve_deltas}Representing a continuous time signal sampled as a sum of delta functions.}
\end{figure}
\par\end{center}
\lstinputlisting[label=code:convolution_demo,caption={IGNORED}]{skel/convolution_demo_skel.py}
\begin{center}%
\begin{figure}
\begin{centering}\includegraphics[width=4in]{fig/convolution_demo}\par\end{centering}
\caption{\label{fig:convolution_demo}Convolution of a white noise process with a double exponential function computed with \texttt{numpy.fft} and \texttt{numpy.convolve}}
\end{figure}
\par\end{center}
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.