from __future__ import division
import math
import matplotlib as mpl
import numpy as npy
import matplotlib.cbook as cbook
import matplotlib.artist as artist
import matplotlib.colors as colors
import matplotlib.lines as lines
import matplotlib.transforms as transforms
import matplotlib.nxutils as nxutils
import matplotlib.mlab as mlab
import matplotlib.artist as artist
# these are not available for the object inspector until after the
# class is build so we define an initial set here for the init
# function and they will be overridden after object defn
artist.kwdocd['Patch'] = """\
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
clip_box: a matplotlib.transform.Bbox instance
clip_on: [True | False]
edgecolor or ec: any matplotlib color
facecolor or fc: any matplotlib color
figure: a matplotlib.figure.Figure instance
fill: [True | False]
hatch: unknown
label: any string
linewidth or lw: float
lod: [True | False]
transform: a matplotlib.transform transformation instance
visible: [True | False]
zorder: any number
"""
class Patch(artist.Artist):
"""
A patch is a 2D thingy with a face color and an edge color
If any of edgecolor, facecolor, linewidth, or antialiased are
None, they default to their rc params setting
"""
zorder = 1
def __str__(self):
return str(self.__class__).split('.')[-1]
def __init__(self,
edgecolor=None,
facecolor=None,
linewidth=None,
antialiased = None,
hatch = None,
fill=1,
**kwargs
):
"""
The following kwarg properties are supported
%(Patch)s
"""
artist.Artist.__init__(self)
if edgecolor is None: edgecolor = mpl.rcParams['patch.edgecolor']
if facecolor is None: facecolor = mpl.rcParams['patch.facecolor']
if linewidth is None: linewidth = mpl.rcParams['patch.linewidth']
if antialiased is None: antialiased = mpl.rcParams['patch.antialiased']
self._edgecolor = edgecolor
self._facecolor = facecolor
self._linewidth = linewidth
self._antialiased = antialiased
self._hatch = hatch
self.fill = fill
if len(kwargs): artist.setp(self, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def contains(self, mouseevent):
"""Test whether the mouse event occurred in the patch.
Returns T/F, {}
"""
if callable(self._contains): return self._contains(self,mouseevent)
try:
# TODO: make this consistent with patch collection algorithm
x, y = self.get_transform().inverse_xy_tup((mouseevent.x, mouseevent.y))
xyverts = self.get_verts()
inside = nxutils.pnpoly(x, y, xyverts)
#print str(self),"%g,%g is in"%(x,y),xyverts,inside
return inside,{}
except ValueError:
return False,{}
def update_from(self, other):
artist.Artist.update_from(self, other)
self.set_edgecolor(other.get_edgecolor())
self.set_facecolor(other.get_facecolor())
self.set_fill(other.get_fill())
self.set_hatch(other.get_hatch())
self.set_linewidth(other.get_linewidth())
self.set_transform(other.get_transform())
self.set_figure(other.get_figure())
self.set_alpha(other.get_alpha())
def get_antialiased(self):
return self._antialiased
def get_edgecolor(self):
return self._edgecolor
def get_facecolor(self):
return self._facecolor
def get_linewidth(self):
return self._linewidth
def set_antialiased(self, aa):
"""
Set whether to use antialiased rendering
ACCEPTS: [True | False]
"""
self._antialiased = aa
def set_edgecolor(self, color):
"""
Set the patch edge color
ACCEPTS: any matplotlib color
"""
self._edgecolor = color
def set_facecolor(self, color):
"""
Set the patch face color
ACCEPTS: any matplotlib color
"""
self._facecolor = color
def set_linewidth(self, w):
"""
Set the patch linewidth in points
ACCEPTS: float
"""
self._linewidth = w
def set_fill(self, b):
"""
Set whether to fill the patch
ACCEPTS: [True | False]
"""
self.fill = b
def get_fill(self):
'return whether fill is set'
return self.fill
def set_hatch(self, h):
"""
Set the hatching pattern
hatch can be one of:
/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
# - crossed
x - crossed diagonal
letters can be combined, in which case all the specified
hatchings are done
if same letter repeats, it increases the density of hatching
in that direction
CURRENT LIMITATIONS:
1. Hatching is supported in the PostScript
backend only.
2. Hatching is done with solid black lines of width 0.
"""
self._hatch = h
def get_hatch(self):
'return the current hatching pattern'
return self._hatch
def draw(self, renderer):
if not self.get_visible(): return
#renderer.open_group('patch')
gc = renderer.new_gc()
gc.set_foreground(self._edgecolor)
gc.set_linewidth(self._linewidth)
gc.set_alpha(self._alpha)
gc.set_antialiased(self._antialiased)
self._set_gc_clip(gc)
gc.set_capstyle('projecting')
if not self.fill or self._facecolor is None: rgbFace = None
else: rgbFace = colors.colorConverter.to_rgb(self._facecolor)
if self._hatch:
gc.set_hatch(self._hatch )
verts = self.get_verts()
tverts = self.get_transform()(verts)
# MGDTODO: This result is an Nx2 numpy array, which could be passed
# directly to renderer.draw_polygon since it currently expects
# a list of tuples so we're converting it to that now.
tverts = [tuple(x) for x in tverts]
renderer.draw_polygon(gc, rgbFace, tverts)
#renderer.close_group('patch')
def get_verts(self):
"""
Return the vertices of the patch
"""
raise NotImplementedError('Derived must override')
def get_window_extent(self, renderer=None):
verts = self.get_verts()
tverts = self.get_transform().seq_xy_tups(verts)
return transforms.bound_vertices(tverts)
def set_lw(self, val):
'alias for set_linewidth'
self.set_linewidth(val)
def set_ec(self, val):
'alias for set_edgecolor'
self.set_edgecolor(val)
def set_fc(self, val):
'alias for set_facecolor'
self.set_facecolor(val)
def get_aa(self):
'alias for get_antialiased'
return self.get_antialiased()
def get_lw(self):
'alias for get_linewidth'
return self.get_linewidth()
def get_ec(self):
'alias for get_edgecolor'
return self.get_edgecolor()
def get_fc(self):
'alias for get_facecolor'
return self.get_facecolor()
class Shadow(Patch):
def __str__(self):
return "Shadow(%s)"%(str(self.patch))
def __init__(self, patch, ox, oy, props=None, **kwargs):
"""
Create a shadow of the patch offset by ox, oy. props, if not None is
a patch property update dictionary. If None, the shadow will have
have the same color as the face, but darkened
kwargs are
%(Patch)s
"""
Patch.__init__(self)
self.ox, self.oy = ox, oy
self.patch = patch
self.props = props
self._update()
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def _update(self):
self.update_from(self.patch)
if self.props is not None:
self.update(self.props)
else:
r,g,b,a = colors.colorConverter.to_rgba(self.patch.get_facecolor())
rho = 0.3
r = rho*r
g = rho*g
b = rho*b
self.set_facecolor((r,g,b))
self.set_edgecolor((r,g,b))
def get_verts(self):
verts = self.patch.get_verts()
xs = self.convert_xunits([x+self.ox for x,y in verts])
ys = self.convert_yunits([y+self.oy for x,y in verts])
return zip(xs, ys)
def _draw(self, renderer):
'draw the shadow'
self._update()
Patch.draw(self, renderer)
class Rectangle(Patch):
"""
Draw a rectangle with lower left at xy=(x,y) with specified
width and height
"""
def __str__(self):
return str(self.__class__).split('.')[-1] \
+ "(%g,%g;%gx%g)"%(self.xy[0],self.xy[1],self.width,self.height)
def __init__(self, xy, width, height,
**kwargs):
"""
xy is an x,y tuple lower, left
width and height are width and height of rectangle
fill is a boolean indicating whether to fill the rectangle
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
self.xy = list(xy)
self.width, self.height = width, height
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_verts(self):
"""
Return the vertices of the rectangle
"""
x, y = self.xy
left, right = self.convert_xunits((x, x + self.width))
bottom, top = self.convert_yunits((y, y + self.height))
return npy.array([[left, bottom], [left, top],
[right, top], [right, bottom]],
npy.float_)
def get_x(self):
"Return the left coord of the rectangle"
return self.xy[0]
def get_y(self):
"Return the bottom coord of the rectangle"
return self.xy[1]
def get_width(self):
"Return the width of the rectangle"
return self.width
def get_height(self):
"Return the height of the rectangle"
return self.height
def set_x(self, x):
"""
Set the left coord of the rectangle
ACCEPTS: float
"""
self.xy[0] = x
def set_y(self, y):
"""
Set the bottom coord of the rectangle
ACCEPTS: float
"""
self.xy[1] = y
def set_width(self, w):
"""
Set the width rectangle
ACCEPTS: float
"""
self.width = w
def set_height(self, h):
"""
Set the width rectangle
ACCEPTS: float
"""
self.height = h
def set_bounds(self, *args):
"""
Set the bounds of the rectangle: l,b,w,h
ACCEPTS: (left, bottom, width, height)
"""
if len(args)==0:
l,b,w,h = args[0]
else:
l,b,w,h = args
self.xy = [l,b]
self.width = w
self.height = h
class RegularPolygon(Patch):
"""
A regular polygon patch.
"""
def __str__(self):
return "Poly%d(%g,%g)"%(self.numVertices,self.xy[0],self.xy[1])
def __init__(self, xy, numVertices, radius=5, orientation=0,
**kwargs):
"""
xy is a length 2 tuple (the center)
numVertices is the number of vertices.
radius is the distance from the center to each of the vertices.
orientation is in radians and rotates the polygon.
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
self.xy = list(xy)
self.numVertices = numVertices
self.radius = radius
self.orientation = orientation
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_verts(self):
theta = 2*npy.pi/self.numVertices*npy.arange(self.numVertices) + \
self.orientation
r = float(self.radius)
x, y = map(float, self.xy)
xs = x + r*npy.cos(theta)
ys = y + r*npy.sin(theta)
#xs = self.convert_xunits(xs)
#ys = self.convert_yunits(ys)
self.verts = zip(xs, ys)
return self.verts
class Polygon(Patch):
"""
A general polygon patch.
"""
def __str__(self):
return "Poly(%g,%g)"%self.xy[0]
def __init__(self, xy, **kwargs):
"""
xy is a sequence of (x,y) 2 tuples
Valid kwargs are:
%(Patch)s
See Patch documentation for additional kwargs
"""
Patch.__init__(self, **kwargs)
if not isinstance(xy, list):
xy = list(xy)
self.xy = xy
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_verts(self):
xs, ys = zip(*self.xy)[:2]
xs = self.convert_xunits(xs)
ys = self.convert_yunits(ys)
return zip(xs, ys)
class Wedge(Polygon):
def __str__(self):
return "Wedge(%g,%g)"%self.xy[0]
def __init__(self, center, r, theta1, theta2,
dtheta=0.1, **kwargs):
"""
Draw a wedge centered at x,y tuple center with radius r that
sweeps theta1 to theta2 (angles)
dtheta is the resolution in degrees
Valid kwargs are:
%(Patch)s
"""
xc, yc = center
rads = (math.pi/180.)*npy.arange(theta1, theta2+0.1*dtheta, dtheta)
xs = r*npy.cos(rads)+xc
ys = r*npy.sin(rads)+yc
verts = [center]
verts.extend([(x,y) for x,y in zip(xs,ys)])
Polygon.__init__(self, verts, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
class Arrow(Polygon):
"""
An arrow patch
"""
def __str__(self):
x1,y1 = self.xy[0]
x2,y2 = self.xy[1]
cx,cy = (x1+x2)/2.,(y1+y2)/2.
return "Arrow(%g,%g)"%(cx,cy)
def __init__( self, x, y, dx, dy, width=1.0, **kwargs ):
"""Draws an arrow, starting at (x,y), direction and length
given by (dx,dy) the width of the arrow is scaled by width
Valid kwargs are:
%(Patch)s
"""
arrow = npy.array( [
[ 0.0, 0.1 ], [ 0.0, -0.1],
[ 0.8, -0.1 ], [ 0.8, -0.3],
[ 1.0, 0.0 ], [ 0.8, 0.3],
[ 0.8, 0.1 ] ] )
L = npy.sqrt(dx**2+dy**2) or 1 # account for div by zero
arrow[:,0] *= L
arrow[:,1] *= width
cx = float(dx)/L
sx = float(dy)/L
M = npy.array( [ [ cx, sx],[ -sx, cx ] ] )
verts = npy.dot( arrow, M )+ [x,y]
Polygon.__init__( self, [ tuple(t) for t in verts ], **kwargs )
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
class FancyArrow(Polygon):
"""Like Arrow, but lets you set head width and head height independently."""
def __str__(self):
x1,y1 = self.xy[0]
x2,y2 = self.xy[1]
cx,cy = (x1+x2)/2.,(y1+y2)/2.
return "FancyArrow(%g,%g)"%(cx,cy)
def __init__(self, x, y, dx, dy, width=0.001, length_includes_head=False, \
head_width=None, head_length=None, shape='full', overhang=0, \
head_starts_at_zero=False,**kwargs):
"""Returns a new Arrow.
length_includes_head: True if head is counted in calculating the length.
shape: ['full', 'left', 'right']
overhang: distance that the arrow is swept back (0 overhang means
triangular shape).
head_starts_at_zero: if True, the head starts being drawn at coordinate
0 instead of ending at coordinate 0.
Valid kwargs are:
%(Patch)s
"""
if head_width is None:
head_width = 3 * width
if head_length is None:
head_length = 1.5 * head_width
distance = npy.sqrt(dx**2 + dy**2)
if length_includes_head:
length=distance
else:
length=distance+head_length
if not length:
verts = [] #display nothing if empty
else:
#start by drawing horizontal arrow, point at (0,0)
hw, hl, hs, lw = head_width, head_length, overhang, width
left_half_arrow = npy.array([
[0.0,0.0], #tip
[-hl, -hw/2.0], #leftmost
[-hl*(1-hs), -lw/2.0], #meets stem
[-length, -lw/2.0], #bottom left
[-length, 0],
])
#if we're not including the head, shift up by head length
if not length_includes_head:
left_half_arrow += [head_length, 0]
#if the head starts at 0, shift up by another head length
if head_starts_at_zero:
left_half_arrow += [head_length/2.0, 0]
#figure out the shape, and complete accordingly
if shape == 'left':
coords = left_half_arrow
else:
right_half_arrow = left_half_arrow*[1,-1]
if shape == 'right':
coords = right_half_arrow
elif shape == 'full':
coords=npy.concatenate([left_half_arrow,right_half_arrow[::-1]])
else:
raise ValueError, "Got unknown shape: %s" % shape
cx = float(dx)/distance
sx = float(dy)/distance
M = npy.array([[cx, sx],[-sx,cx]])
verts = npy.dot(coords, M) + (x+dx, y+dy)
Polygon.__init__(self, map(tuple, verts), **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
class YAArrow(Polygon):
"""
Yet another arrow class
This is an arrow that is defined in display space and has a tip at
x1,y1 and a base at x2, y2.
"""
def __str__(self):
x1,y1 = self.xy[0]
x2,y2 = self.xy[1]
cx,cy = (x1+x2)/2.,(y1+y2)/2.
return "YAArrow(%g,%g)"%(cx,cy)
def __init__(self, dpi, xytip, xybase, width=4, frac=0.1, headwidth=12, **kwargs):
"""
xytip : (x,y) location of arrow tip
xybase : (x,y) location the arrow base mid point
dpi : the figure dpi instance (fig.dpi)
width : the width of the arrow in points
frac : the fraction of the arrow length occupied by the head
headwidth : the width of the base of the arrow head in points
Valid kwargs are:
%(Patch)s
"""
self.dpi = dpi
self.xytip = xytip
self.xybase = xybase
self.width = width
self.frac = frac
self.headwidth = headwidth
verts = self.get_verts()
Polygon.__init__(self, verts, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def get_verts(self):
# the base vertices
x1, y1 = self.xytip
x2, y2 = self.xybase
k1 = self.width*self.dpi.get()/72./2.
k2 = self.headwidth*self.dpi.get()/72./2.
xb1, yb1, xb2, yb2 = self.getpoints(x1, y1, x2, y2, k1)
# a point on the segment 20% of the distance from the tip to the base
theta = math.atan2(y2-y1, x2-x1)
r = math.sqrt((y2-y1)**2. + (x2-x1)**2.)
xm = x1 + self.frac * r * math.cos(theta)
ym = y1 + self.frac * r * math.sin(theta)
xc1, yc1, xc2, yc2 = self.getpoints(x1, y1, xm, ym, k1)
xd1, yd1, xd2, yd2 = self.getpoints(x1, y1, xm, ym, k2)
xs = self.convert_xunits([xb1, xb2, xc2, xd2, x1, xd1, xc1])
ys = self.convert_yunits([yb1, yb2, yc2, yd2, y1, yd1, yc1])
return zip(xs, ys)
def getpoints(self, x1,y1,x2,y2, k):
"""
for line segment defined by x1,y1 and x2,y2, return the points on
the line that is perpendicular to the line and intersects x2,y2
and the distance from x2,y2 ot the returned points is k
"""
x1,y1,x2,y2,k = map(float, (x1,y1,x2,y2,k))
m = (y2-y1)/(x2-x1)
pm = -1./m
a = 1
b = -2*y2
c = y2**2. - k**2.*pm**2./(1. + pm**2.)
y3a = (-b + math.sqrt(b**2.-4*a*c))/(2.*a)
x3a = (y3a - y2)/pm + x2
y3b = (-b - math.sqrt(b**2.-4*a*c))/(2.*a)
x3b = (y3b - y2)/pm + x2
return x3a, y3a, x3b, y3b
class CirclePolygon(RegularPolygon):
"""
A circle patch
"""
def __str__(self):
return "CirclePolygon(%d,%d)"%self.center
def __init__(self, xy, radius=5,
resolution=20, # the number of vertices
**kwargs):
"""
Create a circle at xy=(x,y) with radius given by 'radius'
Valid kwargs are:
%(Patch)s
"""
self.center = xy
self.radius = radius
RegularPolygon.__init__(self, xy,
resolution,
radius,
orientation=0,
**kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
def inellipse(x,y,cx,cy,a,b,angle):
x,y = x-cx,y-cy
theta = math.atan2(x,y) + math.radians(angle)
rsq = x*x+y*y
asin = a * math.sin(theta)
bcos = b * math.cos(theta)
Rsq = b*b*a*a / (bcos*bcos + asin*asin)
return Rsq > rsq;
class Ellipse(Patch):
"""
A scale-free ellipse
"""
def __str__(self):
return "Ellipse(%d,%d;%dx%d)"%(self.center[0],self.center[1],self.width,self.height)
def __init__(self, xy, width, height, angle=0.0, **kwargs):
"""
xy - center of ellipse
width - length of horizontal axis
height - length of vertical axis
angle - rotation in degrees (anti-clockwise)
Valid kwargs are:
%(Patch)s
"""
Patch.__init__(self, **kwargs)
# self.center = npy.array(xy, npy.float)
self.center = xy
self.width, self.height = width, height
self.angle = angle
def contains(self,ev):
if ev.xdata is None or ev.ydata is None: return False,{}
inside = inellipse(ev.xdata,ev.ydata,
self.center[0],self.center[1],
self.height*0.5,self.width*0.5,self.angle)
return inside,{}
def get_verts(self):
x,y = self.center
l,r = x-self.width/2.0, x+self.width/2.0
b,t = y-self.height/2.0, y+self.height/2.0
x,l,r = self.convert_xunits((x,l,r))
y,b,t = self.convert_yunits((y,b,t))
return npy.array(((x,y),(l,y),(x,t),(r,y),(x,b)), npy.float)
def draw(self, renderer):
if not self.get_visible(): return
#renderer.open_group('patch')
gc = renderer.new_gc()
gc.set_foreground(self._edgecolor)
gc.set_linewidth(self._linewidth)
gc.set_alpha(self._alpha)
gc.set_antialiased(self._antialiased)
self._set_gc_clip(gc)
gc.set_capstyle('projecting')
if not self.fill or self._facecolor is None: rgbFace = None
else: rgbFace = colors.colorConverter.to_rgb(self._facecolor)
if self._hatch:
gc.set_hatch(self._hatch )
tverts = self.get_transform().seq_xy_tups(self.get_verts())
# center is first vert
width = tverts[3,0] - tverts[1,0]
height = tverts[2,1] - tverts[4,1]
renderer.draw_arc(gc, rgbFace, tverts[0,0], tverts[0,1],
width, height, 0.0, 360.0, self.angle)
class Circle(Ellipse):
"""
A circle patch
"""
def __str__(self):
return "Circle((%g,%g),r=%g)"%(self.center[0],self.center[1],self.radius)
def __init__(self, xy, radius=5,
**kwargs):
"""
Create true circle at center xy=(x,y) with given radius;
unlike circle polygon which is a polygonal approcimation, this
uses splines and is much closer to a scale free circle
Valid kwargs are:
%(Patch)s
"""
if kwargs.has_key('resolution'):
import warnings
warnings.warn('Circle is now scale free. Use CirclePolygon instead!', DeprecationWarning)
kwargs.pop('resolution')
self.radius = radius
Ellipse.__init__(self, xy, radius*2, radius*2, **kwargs)
__init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd
class PolygonInteractor:
"""
An polygon editor.
Key-bindings
't' toggle vertex markers on and off. When vertex markers are on,
you can move them, delete them
'd' delete the vertex under point
'i' insert a vertex at point. You must be within epsilon of the
line connecting two existing vertices
"""
showverts = True
epsilon = 5 # max pixel distance to count as a vertex hit
def __str__(self):
return "PolygonInteractor"
def __init__(self, poly):
if poly.figure is None:
raise RuntimeError('You must first add the polygon to a figure or canvas before defining the interactor')
canvas = poly.figure.canvas
self.poly = poly
self.poly.verts = list(self.poly.verts)
x, y = zip(*self.poly.verts)
self.line = lines.Line2D(x,y,marker='o', markerfacecolor='r')
#self._update_line(poly)
cid = self.poly.add_callback(self.poly_changed)
self._ind = None # the active vert
canvas.mpl_connect('button_press_event', self.button_press_callback)
canvas.mpl_connect('key_press_event', self.key_press_callback)
canvas.mpl_connect('button_release_event', self.button_release_callback)
canvas.mpl_connect('motion_notify_event', self.motion_notify_callback)
self.canvas = canvas
def poly_changed(self, poly):
'this method is called whenever the polygon object is called'
# only copy the artist props to the line (except visibility)
vis = self.line.get_visible()
artist.Artist.update_from(self.line, poly)
self.line.set_visible(vis) # don't use the poly visibility state
def get_ind_under_point(self, event):
'get the index of the vertex under point if within epsilon tolerance'
x, y = zip(*self.poly.verts)
# display coords
xt, yt = self.poly.get_transform().numerix_x_y(x, y)
d = npy.sqrt((xt-event.x)**2 + (yt-event.y)**2)
ind, = npy.nonzero(npy.equal(d, npy.amin(d)))
if d[ind]>=self.epsilon:
ind = None
return ind
def button_press_callback(self, event):
'whenever a mouse button is pressed'
if not self.showverts: return
if event.inaxes==None: return
if event.button != 1: return
self._ind = self.get_ind_under_point(event)
def button_release_callback(self, event):
'whenever a mouse button is released'
if not self.showverts: return
if event.button != 1: return
self._ind = None
def key_press_callback(self, event):
'whenever a key is pressed'
if not event.inaxes: return
if event.key=='t':
self.showverts = not self.showverts
self.line.set_visible(self.showverts)
if not self.showverts: self._ind = None
elif event.key=='d':
ind = self.get_ind_under_point(event)
if ind is not None:
self.poly.verts = [tup for i,tup in enumerate(self.poly.verts) if i!=ind]
self.line.set_data(zip(*self.poly.verts))
elif event.key=='i':
xys = self.poly.get_transform().seq_xy_tups(self.poly.verts)
p = event.x, event.y # display coords
for i in range(len(xys)-1):
s0 = xys[i]
s1 = xys[i+1]
d = mlab.dist_point_to_segment(p, s0, s1)
if d<=self.epsilon:
self.poly.verts.insert(i+1, (event.xdata, event.ydata))
self.line.set_data(zip(*self.poly.verts))
break
self.canvas.draw()
def motion_notify_callback(self, event):
'on mouse movement'
if not self.showverts: return
if self._ind is None: return
if event.inaxes is None: return
if event.button != 1: return
x,y = event.xdata, event.ydata
self.poly.verts[self._ind] = x,y
self.line.set_data(zip(*self.poly.verts))
self.canvas.draw_idle()
def bbox_artist(artist, renderer, props=None, fill=True):
"""
This is a debug function to draw a rectangle around the bounding
box returned by get_window_extent of an artist, to test whether
the artist is returning the correct bbox
props is a dict of rectangle props with the additional property
'pad' that sets the padding around the bbox in points
"""
if props is None: props = {}
props = props.copy() # don't want to alter the pad externally
pad = props.pop('pad', 4)
pad = renderer.points_to_pixels(pad)
bbox = artist.get_window_extent(renderer)
l,b,w,h = bbox.get_bounds()
l-=pad/2.
b-=pad/2.
w+=pad
h+=pad
r = Rectangle(xy=(l,b),
width=w,
height=h,
fill=fill,
)
r.set_clip_on( False )
r.update(props)
r.draw(renderer)
def draw_bbox(bbox, renderer, color='k', trans=None):
"""
This is a debug function to draw a rectangle around the bounding
box returned by get_window_extent of an artist, to test whether
the artist is returning the correct bbox
"""
l,b,w,h = bbox.get_bounds()
r = Rectangle(xy=(l,b),
width=w,
height=h,
edgecolor=color,
fill=False,
)
if trans is not None: r.set_transform(trans)
r.set_clip_on( False )
r.draw(renderer)
artist.kwdocd['Patch'] = patchdoc = artist.kwdoc(Patch)
for k in ('Rectangle', 'Circle', 'RegularPolygon', 'Polygon', 'Wedge', 'Arrow',
'FancyArrow', 'YAArrow', 'CirclePolygon', 'Ellipse'):
artist.kwdocd[k] = patchdoc