200 lines (197 with data), 14.9 kB
@header@
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading">
<tr bgcolor="#7799ee">
<td valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"> <br><big><big><strong><a href="matplotlib.html"><font color="#ffffff">matplotlib</font></a>.mlab</strong></big></big></font></td
><td align=right valign=bottom
><font color="#ffffff" face="helvetica, arial"><a href=".">index</a><br><a href="file:/usr/local/lib/python2.3/site-packages/matplotlib/mlab.py">/usr/local/lib/python2.3/site-packages/matplotlib/mlab.py</a></font></td></tr></table>
<p><tt>Numerical python functions written for compatability with matlab<br>
commands with the same names. <br>
<br>
Matlab compatible functions:<br>
<br>
* cohere - Coherence (normalized cross spectral density)<br>
<br>
* corrcoef - The matrix of correlation coefficients<br>
<br>
* csd - Cross spectral density uing Welch's average periodogram<br>
<br>
* detrend -- Remove the mean or best fit line from an array<br>
<br>
* find - Return the indices where some condition is true<br>
<br>
* linspace -- Linear spaced array from min to max<br>
<br>
* hist -- Histogram<br>
<br>
* polyfit - least squares best polynomial fit of x to y<br>
<br>
* polyval - evaluate a vector for a vector of polynomial coeffs<br>
<br>
* prctile - find the percentiles of a sequence<br>
<br>
* prepca - Principal Component's Analysis<br>
<br>
* psd - Power spectral density uing Welch's average periodogram<br>
<br>
* rk4 - A 4th order runge kutta integrator for 1D or ND systems<br>
<br>
* vander - the Vandermonde matrix<br>
<br>
* trapz - trapeziodal integration<br>
<br>
Functions that don't exist in matlab, but are useful anyway:<br>
<br>
* cohere_pairs - Coherence over all pairs. This is not a matlab<br>
function, but we compute coherence a lot in my lab, and we<br>
compute it for alot of pairs. This function is optimized to do<br>
this efficiently by caching the direct FFTs.<br>
<br>
Credits:<br>
<br>
Unless otherwise noted, these functions were written by<br>
Author: John D. Hunter <jdhunter@ace.bsd.uchicago.edu><br>
<br>
Some others are from the Numeric documentation, or imported from<br>
MLab or other Numeric packages</tt></p>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#aa55cc">
<td colspan=3 valign=bottom> <br>
<font color="#fffff" face="helvetica, arial"><big><strong>Modules</strong></big></font></td></tr>
<tr><td bgcolor="#aa55cc"><tt> </tt></td><td> </td>
<td width="100%"><table width="100%" summary="list"><tr><td width="25%" valign=top><a href="LinearAlgebra.html">LinearAlgebra</a><br>
<a href="MLab.html">MLab</a><br>
<a href="RandomArray.html">RandomArray</a><br>
<a href="copy.html">copy</a><br>
</td><td width="25%" valign=top><a href="copy_reg.html">copy_reg</a><br>
<a href="math.html">math</a><br>
<a href="multiarray.html">multiarray</a><br>
<a href="matplotlib.numerix.html">matplotlib.numerix</a><br>
</td><td width="25%" valign=top><a href="os.html">os</a><br>
<a href="pickle.html">pickle</a><br>
<a href="string.html">string</a><br>
<a href="sys.html">sys</a><br>
</td><td width="25%" valign=top><a href="types.html">types</a><br>
</td></tr></table></td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#eeaa77">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Functions</strong></big></font></td></tr>
<tr><td bgcolor="#eeaa77"><tt> </tt></td><td> </td>
<td width="100%"><dl><dt><a name="-arange"><strong>arange</strong></a>(...)</dt><dd><tt><a href="#-arange">arange</a>(start, stop=None, step=1, typecode=None)<br>
<br>
Just like range() except it returns an array whose type can be<br>
specified by the keyword argument typecode.</tt></dd></dl>
<dl><dt><a name="-array"><strong>array</strong></a>(...)</dt><dd><tt><a href="#-array">array</a>(sequence, typecode=None, copy=1, savespace=0) will return a new array formed from the given (potentially nested) sequence with type given by typecode. If no typecode is given, then the type will be determined as the minimum type required to hold the objects in sequence. If copy is zero and sequence is already an array, a reference will be returned. If savespace is nonzero, the new array will maintain its precision in operations.</tt></dd></dl>
<dl><dt><a name="-arrayrange"><strong>arrayrange</strong></a> = arange(...)</dt><dd><tt><a href="#-arange">arange</a>(start, stop=None, step=1, typecode=None)<br>
<br>
Just like range() except it returns an array whose type can be<br>
specified by the keyword argument typecode.</tt></dd></dl>
<dl><dt><a name="-choose"><strong>choose</strong></a>(...)</dt><dd><tt><a href="#-choose">choose</a>(a, (b1,b2,...))</tt></dd></dl>
<dl><dt><a name="-cross_correlate"><strong>cross_correlate</strong></a>(...)</dt><dd><tt><a href="#-cross_correlate">cross_correlate</a>(a,v, mode=0)</tt></dd></dl>
<dl><dt><a name="-fromstring"><strong>fromstring</strong></a>(...)</dt><dd><tt><a href="#-fromstring">fromstring</a>(string, typecode='l', count=-1) returns a new 1d array initialized from the raw binary data in string. If count is positive, the new array will have count elements, otherwise it's size is determined by the size of string.</tt></dd></dl>
<dl><dt><a name="-reshape"><strong>reshape</strong></a>(...)</dt><dd><tt><a href="#-reshape">reshape</a>(a, (d1, d2, ..., dn)). Change the shape of a to be an n-dimensional array with dimensions given by d1...dn. Note: the size specified for the new array must be exactly equal to the size of the old one or an error will occur.</tt></dd></dl>
<dl><dt><a name="-searchsorted"><strong>searchsorted</strong></a> = binarysearch(...)</dt><dd><tt>binarysearch(a,v)</tt></dd></dl>
<dl><dt><a name="-take"><strong>take</strong></a>(...)</dt><dd><tt><a href="#-take">take</a>(a, indices, axis=0). Selects the elements in indices from array a along the given axis.</tt></dd></dl>
<dl><dt><a name="-zeros"><strong>zeros</strong></a>(...)</dt><dd><tt><a href="#-zeros">zeros</a>((d1,...,dn),typecode='l',savespace=0) will return a new array of shape (d1,...,dn) and type typecode with all it's entries initialized to zero. If savespace is nonzero the array will be a spacesaver array.</tt></dd></dl>
</td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#55aa55">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Data</strong></big></font></td></tr>
<tr><td bgcolor="#55aa55"><tt> </tt></td><td> </td>
<td width="100%"><strong>Character</strong> = 'c'<br>
<strong>Complex</strong> = 'D'<br>
<strong>Complex0</strong> = 'F'<br>
<strong>Complex16</strong> = 'F'<br>
<strong>Complex32</strong> = 'F'<br>
<strong>Complex64</strong> = 'D'<br>
<strong>Complex8</strong> = 'F'<br>
<strong>False</strong> = False<br>
<strong>Float</strong> = 'd'<br>
<strong>Float0</strong> = 'f'<br>
<strong>Float16</strong> = 'f'<br>
<strong>Float32</strong> = 'f'<br>
<strong>Float64</strong> = 'd'<br>
<strong>Float8</strong> = 'f'<br>
<strong>Int</strong> = 'l'<br>
<strong>Int0</strong> = '1'<br>
<strong>Int16</strong> = 's'<br>
<strong>Int32</strong> = 'i'<br>
<strong>Int8</strong> = '1'<br>
<strong>LittleEndian</strong> = True<br>
<strong>NewAxis</strong> = None<br>
<strong>PrecisionError</strong> = 'PrecisionError'<br>
<strong>PyObject</strong> = 'O'<br>
<strong>True</strong> = True<br>
<strong>UInt</strong> = 'u'<br>
<strong>UInt16</strong> = 'w'<br>
<strong>UInt32</strong> = 'u'<br>
<strong>UInt8</strong> = 'b'<br>
<strong>UnsignedInt16</strong> = 'w'<br>
<strong>UnsignedInt32</strong> = 'u'<br>
<strong>UnsignedInt8</strong> = 'b'<br>
<strong>UnsignedInteger</strong> = 'u'<br>
<strong>a</strong> = 'matplotlib.transforms'<br>
<strong>absolute</strong> = <ufunc 'absolute'><br>
<strong>add</strong> = <ufunc 'add'><br>
<strong>arccos</strong> = <ufunc 'arccos'><br>
<strong>arccosh</strong> = <ufunc 'arccosh'><br>
<strong>arcsin</strong> = <ufunc 'arcsin'><br>
<strong>arcsinh</strong> = <ufunc 'arcsinh'><br>
<strong>arctan</strong> = <ufunc 'arctan'><br>
<strong>arctan2</strong> = <ufunc 'arctan2'><br>
<strong>arctanh</strong> = <ufunc 'arctanh'><br>
<strong>bitwise_and</strong> = <ufunc 'bitwise_and'><br>
<strong>bitwise_or</strong> = <ufunc 'bitwise_or'><br>
<strong>bitwise_xor</strong> = <ufunc 'bitwise_xor'><br>
<strong>ceil</strong> = <ufunc 'ceil'><br>
<strong>conjugate</strong> = <ufunc 'conjugate'><br>
<strong>cos</strong> = <ufunc 'cos'><br>
<strong>cosh</strong> = <ufunc 'cosh'><br>
<strong>divide</strong> = <ufunc 'divide'><br>
<strong>divide_safe</strong> = <ufunc 'divide_safe'><br>
<strong>division</strong> = _Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)<br>
<strong>e</strong> = 2.7182818284590451<br>
<strong>equal</strong> = <ufunc 'equal'><br>
<strong>exp</strong> = <ufunc 'exp'><br>
<strong>fabs</strong> = <ufunc 'fabs'><br>
<strong>floor</strong> = <ufunc 'floor'><br>
<strong>floor_divide</strong> = <ufunc 'floor_divide'><br>
<strong>fmod</strong> = <ufunc 'fmod'><br>
<strong>greater</strong> = <ufunc 'greater'><br>
<strong>greater_equal</strong> = <ufunc 'greater_equal'><br>
<strong>hypot</strong> = <ufunc 'hypot'><br>
<strong>invert</strong> = <ufunc 'invert'><br>
<strong>left_shift</strong> = <ufunc 'left_shift'><br>
<strong>less</strong> = <ufunc 'less'><br>
<strong>less_equal</strong> = <ufunc 'less_equal'><br>
<strong>log</strong> = <ufunc 'log'><br>
<strong>log10</strong> = <ufunc 'log10'><br>
<strong>logical_and</strong> = <ufunc 'logical_and'><br>
<strong>logical_not</strong> = <ufunc 'logical_not'><br>
<strong>logical_or</strong> = <ufunc 'logical_or'><br>
<strong>logical_xor</strong> = <ufunc 'logical_xor'><br>
<strong>maximum</strong> = <ufunc 'maximum'><br>
<strong>minimum</strong> = <ufunc 'minimum'><br>
<strong>multiply</strong> = <ufunc 'multiply'><br>
<strong>negative</strong> = <ufunc 'negative'><br>
<strong>not_equal</strong> = <ufunc 'not_equal'><br>
<strong>nx</strong> = <matplotlib.nc_imports._TypeNamespace instance><br>
<strong>pi</strong> = 3.1415926535897931<br>
<strong>power</strong> = <ufunc 'power'><br>
<strong>rcParams</strong> = {'axes.edgecolor': 'k', 'axes.facecolor': 'w', 'axes.grid': False, 'axes.labelcolor': 'k', 'axes.labelsize': 12.0, 'axes.linewidth': 0.5, 'axes.titlesize': 14.0, 'backend': 'GTKAgg', 'datapath': '/usr/local/share/matplotlib', 'figure.dpi': 72.0, ...}<br>
<strong>readme</strong> = '<font color="#c040c0">\n</font>MLab2.py, release 1<font color="#c040c0">\n\n</font>Created on February 2003 b...<font color="#c040c0">\n</font>Look at: http://pdilib.sf.net for new releases.<font color="#c040c0">\n</font>'<br>
<strong>remainder</strong> = <ufunc 'remainder'><br>
<strong>right_shift</strong> = <ufunc 'right_shift'><br>
<strong>sin</strong> = <ufunc 'sin'><br>
<strong>sinh</strong> = <ufunc 'sinh'><br>
<strong>sqrt</strong> = <ufunc 'sqrt'><br>
<strong>subtract</strong> = <ufunc 'subtract'><br>
<strong>tan</strong> = <ufunc 'tan'><br>
<strong>tanh</strong> = <ufunc 'tanh'><br>
<strong>true_divide</strong> = <ufunc 'true_divide'><br>
<strong>typecodes</strong> = {'Character': 'c', 'Complex': 'FD', 'Float': 'fd', 'Integer': '1sil', 'UnsignedInteger': 'bwu'}<br>
<strong>which</strong> = ('numeric', 'rc')</td></tr></table>
@footer@