Menu

[r2807]: / trunk / course / examples / scipy / example1.1  Maximize  Restore  History

Download this file

38 lines (25 with data), 1.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
>>> info(optimize.fmin)
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,
full_output=0, printmessg=1)
Minimize a function using the simplex algorithm.
Description:
Uses a Nelder-Mead simplex algorithm to find the minimum of function
of one or more variables.
Inputs:
func -- the Python function or method to be minimized.
x0 -- the initial guess.
args -- extra arguments for func.
xtol -- relative tolerance
Outputs: (xopt, {fopt, warnflag})
xopt -- minimizer of function
fopt -- value of function at minimum: fopt = func(xopt)
warnflag -- Integer warning flag:
1 : 'Maximum number of function evaluations.'
2 : 'Maximum number of iterations.'
Additional Inputs:
xtol -- acceptable relative error in xopt for convergence.
ftol -- acceptable relative error in func(xopt) for convergence.
maxiter -- the maximum number of iterations to perform.
maxfun -- the maximum number of function evaluations.
full_output -- non-zero if fval and warnflag outputs are desired.
printmessg -- non-zero to print convergence messages.
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.