Menu

[r1434]: / trunk / htdocs / examples / poormans_contour.py  Maximize  Restore  History

Download this file

45 lines (33 with data), 1.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/env python
"""
Use a pcolor or imshow with a custom colormap to make a contour plot.
Since this example was initially written, a proper contour routine was
added to matplotlib - see contour_demo.py and
http://matplotlib.sf.net/matplotlib.pylab.html#-contour.
"""
from pylab import *
def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0,
mux=0.0, muy=0.0, sigmaxy=0.0):
"""
Bivariate gaussan distribution for equal shape X, Y
http://mathworld.wolfram.com/BivariateNormalDistribution.html
"""
Xmu = X-mux
Ymu = Y-muy
rho = sigmaxy/(sigmax*sigmay)
z = Xmu**2/sigmax**2 + Ymu**2/sigmay - 2*rho*Xmu*Ymu/(sigmax*sigmay)
return 1.0/(2*pi*sigmax*sigmay*(1-rho**2)) * exp( -z/(2*(1-rho**2)))
delta = 0.01
x = arange(-3.0, 3.0, delta)
y = arange(-3.0, 3.0, delta)
X,Y = meshgrid(x, y)
Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = Z2 - Z1 # difference of Gaussians
cmap = cm.get_cmap('jet', 10) # 10 discrete colors
im = imshow(Z, cmap=cmap, interpolation='bilinear')
axis('off')
colorbar(tickfmt='%1.2f')
clim(-.1, .1)
#savefig('test')
show()
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.