"""
This is a matlab style functional interface the matplotlib.
The following matlab compatible commands are provided
Plotting commands
axes - Create a new axes
axis - Set or return the current axis limits
bar - make a bar chart
close - close a figure window
errorbar - make an errorbar graph
figure - create or change active figure
gca - return the current axes
gcf - return the current figure
get - get a handle graphics property
hist - make a histogram
plot - make a line plot
savefig - save the current figure
scatter - make a scatter plot
set - set a handle graphics property
show - show the figures
subplot - make a subplot (numrows, numcols, axesnum)
text - add some text at location x,y to the current axes
title - add a title to the current axes
xlabel - add an xlabel to the current axes
ylabel - add a ylabel to the current axes
Matrix commands
cumprod - the cumulative product along a dimension
cumsum - the cumulative sum along a dimension
detrend - remove the mean or besdt fit line from an array
diag - the k-th diagonal of matrix
diff - the n-th differnce of an array
eig - the eigenvalues and eigen vectors of v
eye - a matrix where the k-th diagonal is ones, else zero
find - return the indices where a condition is nonzero
fliplr - flip the rows of a matrix up/down
flipud - flip the columns of a matrix left/right
linspace - a linear spaced vector of N values from min to max inclusive
ones - an array of ones
rand - an array from the uniform distribution [0,1]
randn - an array from the normal distribution
rot90 - rotate matrix k*90 degress counterclockwise
squeeze - squeeze an array removing any dimensions of length 1
tri - a triangular matrix
tril - a lower triangular matrix
triu - an upper triangular matrix
vander - the Vandermonde matrix of vector x
svd - singular value decomposition
zeros - a matrix of zeros
Probability
levypdf - The levy probability density function from the char. func.
normpdf - The Gaussian probability density function
pdffit - First data to a probability density function
rand - random numbers from the uniform distribution
randn - random numbers from the normal distribution
Statistics
corrcoef - correlation coefficient
cov - covariance matrix
max - the maximum along dimension m
mean - the mean along dimension m
median - the median along dimension m
min - the minimum along dimension m
norm - the norm of vector x
prod - the product along dimension m
ptp - the max-min along dimension m
std - the standard deviation along dimension m
sum - the sum along dimension m
Time series analysis
bartlett - M-point Bartlett window
blackman - M-point Blackman window
cohere - the coherence using average periodiogram
csd - the cross spectral density using average periodiogram
fft - the fast Fourier transform of vector x
hamming - M-point Hamming window
hanning - M-point Hanning window
hist - compute the histogram of x
kaiser - M length Kaiser window
psd - the power spectral density using average periodiogram
sinc - the sinc function of array x
Other
angle - the angle of a complex array
polyfit - fit x, y to an n-th order polynomial
polyval - evaluate an n-th order polynomial
roots - the roots of the polynomial coefficients in p
trapz - trapezoidal integration
Credits: The plotting commands were provided by
John D. Hunter <jdhunter@ace.bsd.uhicago.edu>
Most of the other commands are from the Numeric, MLab and FFT, with
the exception of those in mlab.py provided by matplotlib.
"""
# bring all the MLab and mlab symbols in so folks can import them from
# matplotlib.matlab in one fell swoop
from Numeric import *
from MLab import *
from mlab import *
from FFT import fft
import pygtk
pygtk.require('2.0')
import gtk
from gtk import gdk
from gtkutils import error_msg, raise_msg_to_str
from cbook import is_string_like, flatten
from figure import Figure, Subplot, Axes, to_arrays, NavigationToolbar
import mlab #so I can override hist, psd, etc...
interactive =0
def plotting():
"""
Plotting commands
axes - Create a new axes
axis - Set or return the current axis limits
bar - make a bar chart
close - close a figure window
errorbar - make an errorbar graph
figure - create or change active figure
gca - return the current axes
gcf - return the current figure
get - get a handle graphics property
hist - make a histogram
plot - make a line plot
savefig - save the current figure
scatter - make a scatter plot
set - set a handle graphics property
show - show the figures
subplot - make a subplot (numrows, numcols, axesnum)
text - add some text at location x,y to the current axes
title - add a title to the current axes
xlabel - add an xlabel to the current axes
ylabel - add a ylabel to the current axes
"""
pass
def get_plot_commands():
return ['axis', 'axes', 'subplot', 'plot', 'set', 'get', 'title',
'xlabel', 'ylabel', 'text', 'scatter', 'errorbar', 'bar', 'hist',
'figure', 'gca', 'gcf', 'close' ]
def draw_if_interactive():
#print 'interactive', interactive
if interactive:
gcf().draw()
class FigureWin:
def __init__(self, figure, window, vbox, toolbar):
self.figure = figure
self.window = window
self.vbox = vbox
self.toolbar = toolbar
self.axes = {}
def add_subplot(self, *args):
if self.axes.has_key(args):
self.currentAxis = self.axes[args]
else:
a = Subplot(*args)
self.figure.add_axis(a)
self.toolbar.update()
self.axes[args] = a
self.currentAxis = a
return a
def add_axes(self, rect, axisbg):
rect = tuple(rect)
if self.axes.has_key(rect):
self.currentAxis = self.axes[rect]
else:
a = Axes(position=rect, axisbg=axisbg)
self.figure.add_axis(a)
self.axes[rect] = a
self.currentAxis = a
return a
def get_current_axis(self):
try: return self.currentAxis
except AttributeError:
self.add_subplot(111)
return self.currentAxis
def set_current_axes(self, a):
if a not in self.axes.values():
error_msg('Axes is not in current figure')
self.currentAxis = a
class Gcf:
__shared_state = {}
figs = {}
lastActive = None # todo: last active needs to be a stack
active = None
def __init__(self, num=None):
self.__dict__ = self.__shared_state
if num is None and self.active is not None:
# nothing to do
return
if self.figs.has_key(num): active = self.figs[num]
else: active = self.newfig(num)
if active!=self.active:
self.lastActive, self.active = self.active, active
def destroy(self, num):
if not self.has_fignum(num): return
self.figs[num].window.destroy()
self.active = self.lastActive
def has_fignum(num):
return self.figs.has_key(num)
def get_current_figwin(self):
if self.active is not None: return self.active
else: return self.newfig()
def newfig(self, num=None):
if num is None:
if len(self.figs)>0:
num = max(self.figs.keys())+1
else:
num = 1
thisFig = Figure(size=(600,400))
thisFig.show()
win = gtk.Window()
win.set_title("Figure %d" % num)
win.connect("destroy", lambda *args: win.destroy())
win.set_border_width(5)
vbox = gtk.VBox(spacing=3)
win.add(vbox)
vbox.show()
vbox.pack_start(thisFig)
toolbar = NavigationToolbar( thisFig, win)
toolbar.show()
vbox.pack_start(toolbar, gtk.FALSE, gtk.FALSE )
figwin = FigureWin(thisFig, win, vbox, toolbar)
self.figs[num] = figwin
win.show()
return figwin
def gcf():
"Return a handle to the current figure"
return Gcf().get_current_figwin().figure
def figure(num=1):
"""
Create a new figure and return a handle to it
If figure(num) already exists, make it active and return the
handle to it.
"""
if num==0:
error_msg('Figure number can not be 0.\n' + \
'Hey, give me a break, this is matlab compatability')
return
return Gcf(num).get_current_figwin().figure
def close(num=1):
"Close the figure window num"
Gcf().destroy(num)
def gca():
"""
Return the current axis instance. This can be used to control
axis properties either using set or the Axes methods.
Example:
plot(t,s)
set(gca(), 'xlim', [0,10]) # set the x axis limits
or
plot(t,s)
a = gca()
a.set_xlim([0,10]) # does the same
"""
return Gcf().get_current_figwin().get_current_axis()
def axis(*v):
"""
axis() returns the current axis as a length a length 4 vector
axis(v) where v= [xmin xmax ymin ymax] sets the min and max of the
x and y axis limits
"""
try: v[0]
except IndexError:
xlim = gca().get_xlim()
ylim = gca().get_ylim()
return [xlim[0], xlim[1], ylim[0], ylim[1]]
v = v[0]
if len(v) != 4:
error_msg('v must contain [xmin xmax ymin ymax]')
return
gca().set_xlim([v[0], v[1]])
gca().set_ylim([v[2], v[3]])
draw_if_interactive()
def axes(*args, **kwargs):
"""
Add an axis at positon rect specified by
axes() by itself creates a default full window axis
axes(rect, axisbg='w') where rect=[left, bottom, width, height] in
normalized (0,1) units background is the background color for
the axis, default white
axes(h, axisbg='w') where h is an axes instance makes h the
current axis An Axes instance is returned
axisbg is a color format string which sets the background color of
the axes (default white)
"""
nargs = len(args)
if args==0: return subplot(111)
if nargs>1:
error_msg('Only one non keyword arg to axes allowed')
arg = args[0]
if isinstance(arg, Axes):
Gcf().get_current_figwin().set_current_axes(arg)
return arg
else:
rect = arg
return Gcf().get_current_figwin().add_axes(
rect=rect, **kwargs)
def bar(*args, **kwargs):
"""
bar(self, x, y, width=0.8)
Make a bar plot with rectangles at x, x+width, 0, y
x and y are Numeric arrays
Return value is a list of Rectangle patch instances
"""
try: patches = gca().bar(*args, **kwargs)
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
raise RuntimeError, msg
draw_if_interactive()
return patches
def errorbar(x, y, e, u=None, fmt='b-'):
"""
Plot x versus y with error bars in e. if u is not None, then u
gives the upper error bars and e gives the lower error bars.
Otherwise e the error bars are symmetrix about y and given in the
array e.
fmt is the plot format symbol for y
Return value is a length 2 tuple. The first element is a list of
y symbol lines. The second element is a list of error bar lines.
"""
l0 = plot(x,y,fmt)
e = to_arrays(Float, e)
if u is None: u = e
upper = y+u
lower = y-e
width = (max(x)-min(x))*0.005
a = gca()
try:
l1 = a.vlines(x, y, lower)
l2 = a.vlines(x, y, upper)
l3 = a.hlines(upper, x-width, x+width)
l4 = a.hlines(lower, x-width, x+width)
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
raise RuntimeError, msg
l1.extend(l2)
l3.extend(l4)
l1.extend(l3)
draw_if_interactive()
return (l0, l1)
def get(o, s):
"""
Return the value of handle property s
h is an instance of a class, eg a Line2D or an Axes or AxisText.
if s is 'somename', this function returns
o.get_somename()
"""
func = 'o.get_%s(val)' % s
return eval(func, {}, {'o': o})
def plot(*args, **kwargs):
"""
plot lines. *args is a variable length argument, allowing for
multiple x, y pairs with an optional format string. For
example, all of the following are legal
plot(x,y) # plot Numeric arrays y vs x
plot(x,y, 'bo') # plot Numeric arrays y vs x with blue circles
plot(y) # plot y using x = arange(len(y))
plot(y, 'r+') # ditto with red plusses
An arbitrary number of x, y, fmt groups can be specified, as in
a.plot(x1, y1, 'g^', x2, y2, 'l-')
Return value is a list of lines that were added
The following line styles are supported:
- : solid line
-- : dashed line
-. : dash-dot line
: : dotted line
| : verical lines
. : points
, : pixels
o : circle symbols
^ : triangle up symbols
v : triangle down symbols
< : triangle left symbols
> : triangle right symbols
s : square symbols
+ : plus symbols
The following color strings are supported
b : blue
g : green
r : red
c : cyan
m : magenta
y : yellow
k : black
w : white
Line styles and colors are combined in a single format string
"""
try: lines = gca().plot(*args, **kwargs)
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
draw_if_interactive()
return lines
def hist(x, bins=10, noplot=0, normed=0):
"""
Compute the histogram of x. bins is either an integer number of
bins or a sequence giving the bins. x are the data to be binned.
if noplot is True, just compute the histogram and return the
number of observations and the bins as an (n, bins) tuple.
If noplot is False, compute the histogram and plot it, returning
n, bins, patches
If normed is true, the first element of the return tuple will be the
counts normalized to form a probability distribtion, ie,
n/(len(x)*dbin)
"""
n,bins = mlab.hist(x, bins, normed)
width = bins[1]-bins[0]
if noplot: return n, bins
else:
try:
patches = gca().bar(bins, n, width=width)
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
raise RuntimeError, msg
draw_if_interactive()
return n, bins, patches
def hlines(*args, **kwargs):
"""
lines = hlines(self, y, xmin, xmax, fmt='k-')
plot horizontal lines at each y from xmin to xmax. xmin or
xmax can be scalars or len(x) numpy arrays. If they are
scalars, then the respective values are constant, else the
widths of the lines are determined by xmin and xmax
Returns a list of line instances that were added
"""
try: lines = gca().hlines(*args, **kwargs)
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
raise RuntimeError, msg
draw_if_interactive()
return lines
def savefig(fname, size=(800,600)):
"""
Save the current figure to filename fname. size is a (width, height)
tuple giving the figure resolution in pixels.
Output file types currently supported are jpeg and png and will be
deduced by the extension to fname
"""
# print_figure does it's own error handling because of queing
gcf().print_figure(fname, size)
def scatter(*args, **kwargs):
"""
scatter(self, x, y, s=None, c='b'):
Make a scatter plot of x versus y. s is a size (in data
coords) and can be either a scalar or an array of the same
length as x or y. c is a color and can be a single color
format string or an length(x) array of intensities which will
be mapped by the colormap jet.
If size is None a default size will be used
"""
try: patches = gca().scatter(*args, **kwargs)
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
raise RuntimeError, msg
draw_if_interactive()
return patches
def set(h, s, val):
"""
Set handle h property in string s to value val
h can be a handle or vector of handles.
h is an instance (or vector of instances) of a class, eg a Line2D
or an Axes or AxisText. if s is 'somename', this function calls
o.set_somename(val)
for every instance in o in h
"""
if not iterable(h): h = [h]
else: h = flatten(h)
for o in h:
try:
func = 'o.set_%s(val)' % s
eval(func, {}, {'o': o, 'val' : val})
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
raise RuntimeError, msg
draw_if_interactive()
def show():
"""
Show all the figures and enter the gtk mainloop
This should be the last line of your script
"""
if not interactive:
gtk.mainloop()
def subplot(*args):
"""
Create a subplot command, creating axes with
subplot(numRows, numCols, plotNum)
where plotNum=1 is the first plot number and increasing plotNums
fill rows first. max(plotNum)==numRows*numCols
You can leave out the commas if numRows<=numCols<=plotNum<10, as
in
subplot(211) # 2 rows, 1 column, first (upper) plot
subplot(111) is the default axis
"""
try:
Gcf().get_current_figwin().add_subplot(*args)
a = gca()
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
raise RuntimeError, msg
draw_if_interactive()
return a
def text(x, y, label, *args, **kwargs):
"""
Add text to axis at location x,y
args, if present, must be a single argument which is a dictionary
to override the default text properties. If no dictionary is
provided, this will be used
'fontsize' : 9,
'verticalalignment' : 'bottom',
'horizontalalignment' : 'left'
**kwargs can in turn be used to override the override, as in
a.text(x,y,label, fontsize=12)
This command supplies no override dict, and so will have
'verticalalignment'='bottom' and 'horizontalalignment'='left' but
the keyword arg 'fontsize' will create a fontsize of 12
The purpose of all of these options is to make it easy for you to
create a default font theme for your plots by creating a single
dictionary, and then being able to selective change individual
attributes for the varous text creation commands, as in
fonts = {
'color' : 'k',
'fontname' : 'Courier',
'fontweight' : 'bold'
}
title('My title', fonts, fontsize=12)
xlabel('My xlabel', fonts, fontsize=10)
ylabel('My ylabel', fonts, fontsize=10)
text(12, 20, 'some text', fonts, fontsize=8)
The AxisText defaults are
'color' : 'k',
'fontname' : 'Sans',
'fontsize' : 10,
'fontweight' : 'bold',
'fontangle' : 'normal',
'horizontalalignment' : 'left'
'rotation' : 'horizontal',
'verticalalignment' : 'bottom',
"""
t = gca().text(x, y, label, *args, **kwargs)
draw_if_interactive()
return t
def title(s, *args, **kwargs):
"""
Set the title of the current axis to s
Default font override is:
override = {
'fontsize' : 11,
'verticalalignment' : 'bottom',
'horizontalalignment' : 'center'
}
See the text docstring for information of how override and the
optional args work
"""
l = gca().set_title(s, *args, **kwargs)
draw_if_interactive()
return l
def vlines(*args, **kwargs):
"""
lines = vlines(x, ymin, ymax, color='k'):
Plot vertical lines at each x from ymin to ymax. ymin or ymax
can be scalars or len(x) numpy arrays. If they are scalars,
then the respective values are constant, else the heights of
the lines are determined by ymin and ymax
Returns a list of lines that were added
"""
try: lines = gca().vlines(*args, **kwargs)
except ValueError, msg:
msg = raise_msg_to_str(msg)
error_msg(msg)
raise RuntimeError, msg
draw_if_interactive()
return lines
def xlabel(s, *args, **kwargs):
"""
Set the x axis label of the current axis to s
Default override is
override = {
'fontsize' : 10,
'verticalalignment' : 'top',
'horizontalalignment' : 'center'
}
See the text docstring for information of how override and
the optional args work
"""
l = gca().set_xlabel(s, *args, **kwargs)
draw_if_interactive()
return l
def ylabel(s, *args, **kwargs):
"""
Set the y axis label of the current axis to s
Defaults override is
override = {
'fontsize' : 10,
'verticalalignment' : 'center',
'horizontalalignment' : 'right',
'rotation'='vertical' : }
See the text docstring for information of how override and the
optional args work
"""
l = gca().set_ylabel(s, *args, **kwargs)
draw_if_interactive()
return l