Menu

[01c4ec]: / Organism.java  Maximize  Restore  History

Download this file

1269 lines (1250 with data), 41.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
/* Copyright (C) 2006-2010 Joan Queralt Molina
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
package biogenesis;
import java.awt.*;
import java.awt.image.*;
import java.awt.geom.*;
/**
* This class implements an organism.
* The body of the organism is drawn inside the Rectangle from which it inherits.
*/
public class Organism extends Rectangle {
/**
* The version of this class
*/
private static final long serialVersionUID = Utils.FILE_VERSION;
/**
* A reference to the genetic code of this organism
*/
protected GeneticCode _geneticCode;
/**
* If this organism has been infected by a white segment, here we have the
* genetic code that this organism will reproduce.
*/
protected GeneticCode _infectedGeneticCode = null;
/**
* Number of children that this organism will produce at once. This
* is the number of yellow segments in its genetic code with a
* maximum of 8 and a minimum of 1.
*/
protected int _nChildren;
/**
* Reference to the world where the organism lives.
*/
protected World _world;
/**
* Reference to the visual part of the world where the organism lives.
*/
transient protected VisibleWorld _visibleWorld;
/**
* Identification number of this organism's parent.
*/
protected int _parentID;
/**
* Identification number of this organism.
*/
protected int _ID;
/**
* Generation number
*/
protected int _generation;
/**
* Number of children it has produced.
*/
protected int _nTotalChildren=0;
/**
* Number of organism that has killed
*/
protected int _nTotalKills=0;
/**
* Number of organism that has infected
*/
protected int _nTotalInfected=0;
/**
* X coordinates of the starting point of each organism's segments.
*/
protected int[] _startPointX;
/**
* Y coordinates of the starting point of each organism's segments.
*/
protected int[] _startPointY;
/**
* X coordinates of the ending point of each organism's segments.
*/
protected int[] _endPointX;
/**
* Y coordinates of the ending point of each organism's segments.
*/
protected int[] _endPointY;
/**
* Precalculated distance from the origin to the starting point of each segment.
* Used to calculate rotations.
*/
protected double[] _m1;
/**
* Precalculated distance from the origin to the ending point of each segment.
* Used to calculate rotations.
*/
protected double[] _m2;
/**
* Precalculated modulus of each segment.
*/
protected double[] _m;
/**
* X coordinate of this organim's center of gravity.
*/
protected int _centerX;
/**
* Y coordinate of this organim's center of gravity.
*/
protected int _centerY;
/**
* Like _centerX but with double precision to be able to make movements slower than a pixel.
*/
protected double _dCenterX;
/**
* Like _centerY but with double precision to be able to make movements slower than a pixel.
*/
protected double _dCenterY;
/**
* Effective segment colors, taken from the genetic code if alive or brown if dead.
*/
protected Color[] _segColor;
/**
* The total number of segments of the organism
*/
protected int _segments;
/**
* Growth ratio of the organism. Used to calculate segments when the organism is not
* fully grown.
*/
protected int _growthRatio;
/**
* Total mass of this organism. The mass is calculated as the sum of all segment lengths.
* Used to calculate the effect of collisions.
*/
protected double _mass = 0;
/**
* Moment of inertia of this organism, used to calculate the effect of collisions.
*/
protected double _I = 0;
/**
* Chemical energy stored by this organism
*/
protected double _energy;
/**
* Organism size independent on its position in the world.
* Let p be a point in the organism. Then, p.x + x - _sizeRect.x is the x coordinate
* of p representation in the world.
*/
protected Rectangle _sizeRect = new Rectangle();
/**
* Rotation angle that this organism has at a given moment.
*/
protected double _theta;
/**
* Last frame angle, used to avoid calculating point rotations when the angle doesn't
* change between two consecutive frames.
*/
protected double _lastTheta = -1;
/**
* Rotated segments of the last frame, to use when _theta == _lastTheta
*/
protected int x1[],y1[],x2[],y2[];
/**
* Speed. Variation applied to organism coordinates at every frame.
*/
protected double dx=0d, dy=0d;
/**
* Angular speed. Organism angle variation at every frame.
*/
protected double dtheta = 0d;
/**
* Number of frames of life of this organism
*/
protected int _age=0;
/**
* Color used to draw the organism when a collision occurs. We save the color that
* should be shown and the number of frames that it should be shown. If the number
* if frames is 0, each segment is shown in its color.
*/
protected Color _color;
/**
* Number of frames in which the organism will be drawn in _color.
*/
protected int _framesColor = 0;
/**
* Number of frame that need to pass between two reproductions, even they are not
* successfully.
*/
protected int _timeToReproduce = 0;
/**
* Indicates if the organism has grown at the last frame. If it has grown it is
* necessary to recalculate its segments.
*/
protected int hasGrown;
/**
* Indicates if it has moved at the last frame. If it has moved it is necessary
* to repaint it.
*/
protected boolean hasMoved = true;
/**
* The place that this organism occupies at the last frame. If the organism
* moves, this rectangle must be painted too.
*/
protected Rectangle lastFrame = new Rectangle();
/**
* Indicates if the organism is alive.
*/
protected boolean alive = true;
private static transient Vector2D v = new Vector2D();
/**
* Returns true if this organism is alive, false otherwise.
*
* @return true if this organism is alive, false otherwise.
*/
public boolean isAlive() {
return alive;
}
/**
* Returns the amount of chemical energy stored by this organism.
*
* @return The amount of chemical energy stored by this organism.
*/
public double getEnergy() {
return _energy;
}
/**
* Returns the identification number of this organism.
*
* @return The identification number of this organism.
*/
public int getID() {
return _ID;
}
/**
* Returns the identification number of this organism's parent.
*
* @return The identification number of this organism's parent.
*/
public int getParentID() {
return _parentID;
}
/**
* Returns the generation number of this organism.
*
* @return The generation number of this organism.
*/
public int getGeneration() {
return _generation;
}
/**
* Returns the age of this organism.
*
* @return The age of this organism, in number of frames.
*/
public int getAge() {
return _age;
}
/**
* Returns the number of children that this organism produced.
*
* @return The number of children that this organism produced.
*/
public int getTotalChildren() {
return _nTotalChildren;
}
/**
* Returns the number of organisms killed by this organism.
*
* @return The number of organisms killed by this organism.
*/
public int getTotalKills() {
return _nTotalKills;
}
/**
* Returns the number of organisms infected by this organism.
*
* @return The number of organisms infected by this organism.
*/
public int getTotalInfected() {
return _nTotalInfected;
}
/**
* Returns a reference to this organism's genetic code.
*
* @return A reference to this organism's genetic code.
*/
public GeneticCode getGeneticCode() {
return _geneticCode;
}
/**
* Returns the total mass of this organism.
*
* @return The total mass of this organism calculated as the sum
* of all its segments length.
*/
public double getMass() {
return _mass;
}
/**
* Basic constructor. Doesn't initialize it: use {@link randomCreate}
* or {@link inherit} to do this.
*
* @param world A reference to the world where this organism is in.
*/
public Organism(World world) {
_world = world;
_visibleWorld = world._visibleWorld;
_theta = Utils.random.nextDouble() * Math.PI * 2d;
}
/**
* Construct an organism with a given genetic code. Doesn't initialize it:
* use {@link pasteOrganism} to do it. Use {@link World.addOrganism} to add
* it to the world.
*
* @param world A reference to the world where this organism is in.
* @param geneticCode A reference to the genetic code of this organism.
*/
public Organism(World world, GeneticCode geneticCode) {
_world = world;
_visibleWorld = world._visibleWorld;
_theta = Utils.random.nextDouble() * Math.PI * 2d;
_geneticCode = geneticCode;
}
/**
* Creates all data structures of this organism. Must be used after the organism
* has a genetic code assigned.
*/
protected void create() {
_segments = _geneticCode.getNGenes() * _geneticCode.getSymmetry();
_segColor = new Color[_segments];
for (int i = 0; i < _segments; i++)
_segColor[i] = _geneticCode.getGene(i%_geneticCode.getNGenes()).getColor();
_startPointX = new int[_segments];
_startPointY = new int[_segments];
_endPointX = new int[_segments];
_endPointY = new int[_segments];
_m1 = new double[_segments];
_m2 = new double[_segments];
_m = new double[_segments];
x1 = new int[_segments];
y1 = new int[_segments];
x2 = new int[_segments];
y2 = new int[_segments];
}
/**
* Initializes variables for a new random organism and finds a place
* to put it in the world.
*
* @return true if it found a place for this organism or false otherwise.
*/
public boolean randomCreate() {
// Generates a random genetic code
_geneticCode = new GeneticCode();
// it has no parent
_parentID = -1;
_generation = 1;
_growthRatio = 16;
// initial energy
_energy = Math.min(Utils.INITIAL_ENERGY,_world.getCO2());
_world.decreaseCO2(_energy);
_world.addO2(_energy);
// initialize
create();
symmetric();
// put it in the world
return placeRandom();
}
/**
* Initializes variables for a new organism born from an existing
* organism. Generates a mutated genetic code based on the parent's one
* and finds a place in the world to put it.
*
* @param parent The organism from which this organism is born.
* @return true if it found a place for this organism or false otherwise.
*/
public boolean inherit(Organism parent, boolean first) {
GeneticCode inheritGeneticCode;
boolean ok = true;
// Create the inherited genetic code
if (parent._infectedGeneticCode != null)
inheritGeneticCode = parent._infectedGeneticCode;
else
inheritGeneticCode = parent._geneticCode;
_geneticCode = new GeneticCode(inheritGeneticCode);
// Take a reference to the parent
_parentID = parent.getID();
_generation = parent.getGeneration() + 1;
_growthRatio = 16;
// Initial energy: minimum energy required to reproduce is divided
// between all children and the parent.
_energy = Math.min((inheritGeneticCode._reproduceEnergy / (double)(parent._nChildren + 1)), parent._energy);
if (first || parent._energy >= _energy+Utils.YELLOW_ENERGY_CONSUMPTION) {
// Initialize
create();
symmetric();
// Put it in the world, near its parent
ok = placeNear(parent);
if (ok && !first)
parent.useEnergy(Utils.YELLOW_ENERGY_CONSUMPTION);
} else
ok = false;
return ok;
}
/**
* Places the organism at the specified position in the world and initializes its
* variables. The organism must has an assigned genetic code.
*
* @param posx The x coordinate of the position in the world we want to put this organism.
* @param posy The y coordinate of the position in the world we want to put this organism.
* @return true if there were enough space to put the organism, false otherwise.
*/
public boolean pasteOrganism(int posx, int posy) {
_parentID = -1;
_generation = 1;
_growthRatio = 16;
create();
symmetric();
_dCenterX = _centerX = posx;
_dCenterY = _centerY = posy;
calculateBounds(true);
// Check that the position is inside the world
if (isInsideWorld()) {
// Check that the organism will not overlap other organisms
if (_world.fastCheckHit(this) == null) {
// Generem identificador
_ID = _world.getNewId();
_energy = Math.min(Utils.INITIAL_ENERGY,_world.getCO2());
_world.decreaseCO2(_energy);
_world.addO2(_energy);
return true;
}
}
// It can't be placed
return false;
}
/**
* Translates the genetic code of this organism to its segments representation in the world.
* Also, calculates some useful information like segments length, inertia, etc.
* This method must be called when an organism is firstly displayed on the world and every
* time it changes its size.
* inherit, randomCreate and pasteOrganism are the standard ways to add an organism to a world
* and they already call this method.
*/
public void symmetric() {
int i,j,segment=0;
int symmetry = _geneticCode.getSymmetry();
int mirror = _geneticCode.getMirror();
int sequence = _segments / symmetry;
int left=0, right=0, top=0, bottom=0;
int centerX, centerY;
double cx, cy;
for (i=0; i<symmetry; i++) {
for (j=0; j<sequence; j++,segment++) {
// Here, we take the vector that forms the segment, scale it depending on
// the relative size of the organism and rotate it depending on the
// symmetry and mirroring.
v.setModulus(_geneticCode.getGene(j).getLength()/Utils.scale[_growthRatio-1]);
if (j==0) {
_startPointX[segment] = 0;
_startPointY[segment] = 0;
if (mirror == 0 || i%2==0)
v.setTheta(_geneticCode.getGene(j).getTheta()+i*2*Math.PI/symmetry);
else {
v.setTheta(_geneticCode.getGene(j).getTheta()+(i-1)*2*Math.PI/symmetry);
v.invertX();
}
} else {
_startPointX[segment] = _endPointX[segment - 1];
_startPointY[segment] = _endPointY[segment - 1];
if (mirror == 0 || i%2==0)
v.addDegree(_geneticCode.getGene(j).getTheta());
else
v.addDegree(-_geneticCode.getGene(j).getTheta());
}
// Apply the vector to the starting point to get the ending point.
_endPointX[segment] = (int) Math.round(v.getX() + _startPointX[segment]);
_endPointY[segment] = (int) Math.round(v.getY() + _startPointY[segment]);
// Calculate the bounding rectangle of this organism
left = Math.min(left, _endPointX[segment]);
right = Math.max(right, _endPointX[segment]);
top = Math.min(top, _endPointY[segment]);
bottom = Math.max(bottom, _endPointY[segment]);
}
}
_sizeRect.setBounds(left, top, right-left+1, bottom-top+1);
// image center
centerX = (left+right)>>1;
centerY = (top+bottom)>>1;
_mass = 0;
_I = 0;
for (i=0; i<_segments; i++) {
// express points relative to the image center
_startPointX[i]-=centerX;
_startPointY[i]-=centerY;
_endPointX[i]-=centerX;
_endPointY[i]-=centerY;
// calculate points distance of the origin and modulus
_m1[i] = Math.sqrt(_startPointX[i]*_startPointX[i]+_startPointY[i]*_startPointY[i]);
_m2[i] = Math.sqrt(_endPointX[i]*_endPointX[i]+_endPointY[i]*_endPointY[i]);
_m[i] = Math.sqrt(Math.pow(_endPointX[i]-_startPointX[i],2) +
Math.pow(_endPointY[i]-_startPointY[i],2));
_mass += _m[i];
// calculate inertia moment
// the mass center of a segment is its middle point
cx = (_startPointX[i] + _endPointX[i]) / 2d;
cy = (_startPointY[i] + _endPointY[i]) / 2d;
// add the effect of this segment, following the parallel axis theorem
_I += Math.pow(_m[i],3)/12d +
_m[i] * cx*cx + cy*cy;// mass * length^2 (center is at 0,0)
}
}
/**
* Given a vector, calculates the resulting vector after a rotation, a scalation and possibly
* after mirroring it.
* The rotation degree and the mirroring is found using the Utils.degree array, where parameter
* mirror is the row and step is the column. The step represents the repetition of this vector
* following the organism symmetry.
* The scalation is calculated using the Utils.scale coefficients, using the organism's
* _growthRatio to find the appropriate value.
*
* @param p The end point of the vector. The starting point is (0,0).
* @param step The repetition of the vectors pattern we are calculating.
* @param mirror If mirroring is applied to this organism 1, otherwise 0.
* @return The translated vector.
*/
/* private Vector2D translate(Point p, int step, int mirror) {
if (p.x == 0 && p.y == 0)
return new Vector2D();
double px = p.x;
double py = p.y;
px /= Utils.scale[_growthRatio - 1];
py /= Utils.scale[_growthRatio - 1];
Vector2D v = new Vector2D(px,py);
v.addDegree(Utils.degree[mirror][step]);
if (Utils.invertX[mirror][step] != 0)
v.invertX();
if (Utils.invertY[mirror][step] != 0)
v.invertY();
return v;
}*/
/**
* Tries to find a spare place in the world for this organism and place it.
* It also generates an identification number for the organism if it can be placed
* somewhere.
*
* @return true if a suitable place has been found, false if not.
*/
private boolean placeRandom() {
/* We try to place the organism in 12 different positions. If all of them
* are occupied, we return false.
*/
for (int i=12; i>0; i--) {
/* Get a random point for the top left corner of the organism
* making sure it is inside the world.
*/
Point origin = new Point(
Utils.random.nextInt(_world.getWidth()-_sizeRect.width),
Utils.random.nextInt(_world.getHeight()-_sizeRect.height));
setBounds(origin.x,origin.y,_sizeRect.width,_sizeRect.height);
_dCenterX = _centerX = origin.x + (_sizeRect.width>>1);
_dCenterY = _centerY = origin.y + (_sizeRect.height>>1);
// Check that the position is not occupied.
if (_world.fastCheckHit(this) == null) {
// Generate an identification
_ID = _world.getNewId();
return true;
}
}
// If we get here, we haven't find a place for this organism.
return false;
}
/**
* Tries to find a spare place near its parent for this organism and place it.
* It also generates an identification number for the organism if it can be placed
* somewhere and substracts its energy from its parent's energy.
*
* @return true if a suitable place has been found, false if not.
*/
private boolean placeNear(Organism parent) {
int nPos = Utils.random.nextInt(8);
// Try to put it in any possible position, starting from a randomly chosen one.
for (int nSide = 0; nSide < 8; nSide++) {
// Calculate candidate position
_dCenterX = parent._dCenterX + (parent.width / 2 + width / 2+ 1) * Utils.side[nPos][0];
_dCenterY = parent._dCenterY + (parent.height / 2 + height / 2 + 1) * Utils.side[nPos][1];
_centerX = (int) _dCenterX;
_centerY = (int) _dCenterY;
calculateBounds(true);
// Check this position is inside the world.
if (isInsideWorld()) {
// Check that it doesn't overlap with other organisms.
if (_world.fastCheckHit(this) == null) {
if (parent._geneticCode.getDisperseChildren()) {
dx = Utils.side[nPos][0];
dy = Utils.side[nPos][1];
} else {
dx = parent.dx;
dy = parent.dy;
}
// Generate an identification
_ID = _world.getNewId();
// Substract the energy from the parent
parent._energy -= _energy;
return true;
}
}
nPos = (nPos + 1) % 8;
}
// It can't be placed.
return false;
}
/**
* Draws this organism to a graphics context.
* The organism is drawn at its position in the world.
*
* @param g The graphics context to draw to.
*/
public void draw(Graphics g) {
int i;
if (_framesColor > 0) {
// Draw all the organism in the same color
g.setColor(_color);
_framesColor--;
for (i=0; i<_segments; i++)
g.drawLine(
x1[i] + _centerX,
y1[i] + _centerY,
x2[i] + _centerX,
y2[i] + _centerY);
} else {
if (alive) {
for (i=0; i<_segments; i++) {
g.setColor(_segColor[i]);
g.drawLine(
x1[i] + _centerX,
y1[i] + _centerY,
x2[i] + _centerX,
y2[i] + _centerY);
}
} else {
g.setColor(Utils.ColorBROWN);
for (i=0; i<_segments; i++) {
g.drawLine(
x1[i] + _centerX,
y1[i] + _centerY,
x2[i] + _centerX,
y2[i] + _centerY);
}
}
}
}
/**
* Calculates the position of all organism points in the world, depending on
* its rotation. It also calculates the bounding rectangle of the organism.
* This method must be called from outside this class only when doing
* manual drawing.
*
* @param force To avoid calculations, segments position are only calculated
* if the organism's rotation has changed in the last frame. If it is necessary
* to calculate them even when the rotation hasn't changed, assign true to this
* parameter.
*/
public void calculateBounds(boolean force) {
double left=java.lang.Double.MAX_VALUE, right=java.lang.Double.MIN_VALUE,
top=java.lang.Double.MAX_VALUE, bottom=java.lang.Double.MIN_VALUE;
double theta;
for (int i=_segments-1; i>=0; i--) {
/* Save calculation: if rotation hasn't changed and it is not forced,
* don't calculate points again.
*/
if (_lastTheta != _theta || force) {
theta=_theta+Math.atan2(_startPointY[i] ,_startPointX[i]);
x1[i]=(int)(_m1[i]*Math.cos(theta));
y1[i]=(int)(_m1[i]*Math.sin(theta));
theta=_theta+Math.atan2(_endPointY[i], _endPointX[i]);
x2[i]=(int)(_m2[i]*Math.cos(theta));
y2[i]=(int)(_m2[i]*Math.sin(theta));
}
// Finds the rectangle that comprises the organism
left = Utils.min(left, x1[i]+ _dCenterX, x2[i]+ _dCenterX);
right = Utils.max(right, x1[i]+ _dCenterX, x2[i]+ _dCenterX);
top = Utils.min(top, y1[i]+ _dCenterY, y2[i]+ _dCenterY);
bottom = Utils.max(bottom, y1[i]+ _dCenterY, y2[i]+ _dCenterY);
}
setBounds((int)left, (int)top, (int)(right-left+1)+1, (int)(bottom-top+1)+1);
_lastTheta = _theta;
}
/**
* If its the time for this organism to grow, calculates its new segments and speed.
* An alive organism can grow once every 8 frames until it gets its maximum size.
*/
private void grow() {
if (_growthRatio > 1 && (_age & 0x07) == 0x07 && alive && _energy >= _mass/10) {
_growthRatio--;
double m = _mass;
double I = _I;
symmetric();
// Cynetic energy is constant. If mass changes, speed must also change.
m = Math.sqrt(m/_mass);
dx *= m;
dy *= m;
dtheta *= Math.sqrt(I/_I);
hasGrown = 1;
} else {
if (_growthRatio < 15 && _energy < _mass/12) {
_growthRatio++;
double m = _mass;
double I = _I;
symmetric();
// Cynetic energy is constant. If mass changes, speed must also change.
m = Math.sqrt(m/_mass);
dx *= m;
dy *= m;
dtheta *= Math.sqrt(I/_I);
hasGrown = -1;
} else
hasGrown = 0;
}
}
/**
* Makes this organism reproduce. It tries to create at least one
* child and at maximum 8 (depending on the number of yellow segments
* of the organism) and put them in the world.
*/
public void reproduce() {
Organism newOrg;
for (int i=0; i < Utils.between(_nChildren,1,8); i++) {
newOrg = new Organism(_world);
if (newOrg.inherit(this, i==0)) {
// It can be created
_nTotalChildren++;
_world.addOrganism(newOrg,this);
_infectedGeneticCode = null;
}
_timeToReproduce = 20;
}
}
/**
* Executes the organism's movement for this frame.
* This includes segments upkeep and activation,
* movement, growth, collision detection, reproduction,
* respiration and death.
*/
public boolean move() {
boolean collision = false;
hasMoved = false;
lastFrame.setBounds(this);
if (Math.abs(dx) < Utils.tol) dx = 0;
if (Math.abs(dy) < Utils.tol) dy = 0;
if (Math.abs(dtheta) < Utils.tol) dtheta = 0;
// Apply segment effects for this frame.
segmentsFrameEffects();
// Apply rubbing effects
rubbingFramesEffects();
// Check if it can grow or shrink
grow();
// Movement
double dxbak=dx, dybak=dy, dthetabak=dtheta;
offset(dx,dy,dtheta);
calculateBounds(hasGrown!=0);
if (hasGrown!=0 || dx!=0 || dy!=0 || dtheta!=0) {
hasMoved = true;
// Check it is inside the world
collision = !isInsideWorld();
// Collision detection with biological corridors
if (alive) {
OutCorridor c = _world.checkHitCorridor(this);
if (c != null && c.canSendOrganism()) {
if (c.sendOrganism(this))
return false;
}
}
// Collision detection with other organisms.
if (_world.checkHit(this) != null)
collision = true;
// If there is a collision, undo movement.
if (collision) {
hasMoved = false;
offset(-dxbak,-dybak,-dthetabak);
if (hasGrown!=0) {
_growthRatio+=hasGrown;
symmetric();
}
calculateBounds(hasGrown!=0);
}
}
// Substract one to the time needed to reproduce
if (_timeToReproduce > 0)
_timeToReproduce--;
// Check if it can reproduce: it needs enough energy and to be adult
if (_energy > _geneticCode.getReproduceEnergy() + Utils.YELLOW_ENERGY_CONSUMPTION*(_nChildren-1)
&& _growthRatio==1 && _timeToReproduce==0 && alive)
reproduce();
// Check that it don't exceed the maximum chemical energy
if (_energy > 2*_geneticCode.getReproduceEnergy())
useEnergy(_energy - 2*_geneticCode.getReproduceEnergy());
// Maintenance
breath();
// Check that the organism has energy after this frame
return _energy > Utils.tol;
}
/**
* Makes the organism spend an amount of energy using the
* respiration process.
*
* @param q The quantity of energy to spend.
* @return true if the organism has enough energy and there are
* enough oxygen in the atmosphere, false otherwise.
*/
public boolean useEnergy(double q) {
if (_energy < q) {
return false;
}
double respiration = _world.respiration(q);
_energy -= respiration;
if (respiration < q)
return false;
return true;
}
/**
* Realize the respiration process to maintain its structure.
* Aging is applied here too.
*/
public void breath() {
if (alive) {
_age++;
// Respiration process
boolean canBreath = useEnergy(Math.min(_mass / Utils.SEGMENT_COST_DIVISOR, _energy));
if ((_age >> 8) > _geneticCode.getMaxAge() || !canBreath) {
// It's dead, but still may have energy
die(null);
} else {
if (_energy <= Utils.tol) {
alive = false;
_world.decreasePopulation();
_world.organismHasDied(this, null);
}
}
} else {
// The corpse slowly decays
useEnergy(Math.min(_energy, Utils.DECAY_ENERGY));
}
}
/**
* Kills the organism. Sets its segments to brown and tells the world
* about the event.
*
* @param killingOrganism The organism that has killed this organism,
* or null if it has died of natural causes.
*/
public void die(Organism killingOrganism) {
alive = false;
hasMoved = true;
for (int i=0; i<_segments; i++) {
_segColor[i] = Utils.ColorBROWN;
}
_world.decreasePopulation();
if (killingOrganism != null)
killingOrganism._nTotalKills++;
_world.organismHasDied(this, killingOrganism);
}
/**
* Infects this organism with a genetic code.
* Tells the world about this event.
* Not currently used.
*
* @param infectingCode The genetic code that infects this organism.
*/
public void infectedBy(GeneticCode infectingCode) {
_infectedGeneticCode = infectingCode;
_world.organismHasBeenInfected(this, null);
}
/**
* Infects this organism with the genetic code of another organism.
* Tells the world about this event.
*
* @param infectingOrganism The organism that is infecting this one.
*/
public void infectedBy(Organism infectingOrganism) {
infectingOrganism._nTotalInfected++;
_infectedGeneticCode = infectingOrganism.getGeneticCode();
_world.organismHasBeenInfected(this, infectingOrganism);
}
/**
* Calculates the resulting speeds after a collision between two organisms, following
* physical rules.
*
* @param org The other organism in the collision.
* @param p Intersection point between the organisms.
* @param l Line that has collided. Of the two lines, this is the one that collided
* on the center, not on the vertex.
* @param thisOrganism true if l is a line of this organism, false if l is a line of org.
*/
private final void touchMove(Organism org, Point2D.Double p, Line2D l, boolean thisOrganism) {
// Distance vector between centers of mass and p
double rapx = p.x - _dCenterX;
double rapy = p.y - _dCenterY;
double rbpx = p.x - org._dCenterX;
double rbpy = p.y - org._dCenterY;
// Speeds of point p in the body A and B, before collision.
double vap1x = dx - dtheta * rapy + hasGrown*rapx/10d;
double vap1y = dy + dtheta * rapx + hasGrown*rapy/10d;
double vbp1x = org.dx - org.dtheta * rbpy;
double vbp1y = org.dy + org.dtheta * rbpx;
// Relative speeds between the two collision points.
double vab1x = vap1x - vbp1x;
double vab1y = vap1y - vbp1y;
// Normal vector to the impact line
//First: perpendicular vector to the line
double nx = l.getY1() - l.getY2();
double ny = l.getX2() - l.getX1();
//Second: normalize, modulus 1
double modn = Math.sqrt(nx * nx + ny * ny);
nx /= modn;
ny /= modn;
/*Third: of the two possible normal vectors we need the one that points to the
* outside; we choose the one that its final point is the nearest to the center
* of the other line.
*/
if (thisOrganism) {
if ((p.x+nx-org._dCenterX)*(p.x+nx-org._dCenterX)+(p.y+ny-org._dCenterY)*(p.y+ny-org._dCenterY) <
(p.x-nx-org._dCenterX)*(p.x-nx-org._dCenterX)+(p.y-ny-org._dCenterY)*(p.y-ny-org._dCenterY)) {
nx = -nx;
ny = -ny;
}
} else {
if ((p.x+nx-_dCenterX)*(p.x+nx-_dCenterX)+(p.y+ny-_dCenterY)*(p.y+ny-_dCenterY) >
(p.x-nx-_dCenterX)*(p.x-nx-_dCenterX)+(p.y-ny-_dCenterY)*(p.y-ny-_dCenterY)) {
nx = -nx;
ny = -ny;
}
}
// This is the j in the parallel axis theorem
double j = (-(1+Utils.ELASTICITY) * (vab1x * nx + vab1y * ny)) /
(1/_mass + 1/org._mass + Math.pow(rapx * ny - rapy * nx, 2) / _I +
Math.pow(rbpx * ny - rbpy * nx, 2) / org._I);
// Final speed
dx = Utils.between(dx + j*nx/_mass, -Utils.MAX_VEL, Utils.MAX_VEL);
dy = Utils.between(dy + j*ny/_mass, -Utils.MAX_VEL, Utils.MAX_VEL);
org.dx = Utils.between(org.dx - j*nx/org._mass, -Utils.MAX_VEL, Utils.MAX_VEL);
org.dy = Utils.between(org.dy - j*ny/org._mass, -Utils.MAX_VEL, Utils.MAX_VEL);
dtheta = Utils.between(dtheta + j * (rapx * ny - rapy * nx) / _I, -Utils.MAX_ROT, Utils.MAX_ROT);
org.dtheta = Utils.between(org.dtheta - j * (rbpx * ny - rbpy * ny) / org._I, -Utils.MAX_ROT, Utils.MAX_ROT);
}
/**
* Checks if the organism is inside the world. If it is not, calculates its
* speed after the collision with the world border.
* This calculation should be updated to follow the parallel axis theorem, just
* like the collision between two organisms.
*
* @return true if the organism is inside the world, false otherwise.
*/
private final boolean isInsideWorld() {
// Check it is inside the world
if (x<0 || y<0 || x+width>=_world.getWidth() || y+height>=_world.getHeight()) {
// Adjust direction
if (x < 0 || x + width >= _world.getWidth())
dx = -dx;
if (y < 0 || y + height >= _world.getHeight())
dy = -dy;
dtheta = 0;
return false;
}
return true;
}
/**
* Moves the organism and rotates it.
*
* @param offsetx displacement on the x axis.
* @param offsety displacement on the y axis.
* @param offsettheta rotation degree.
*/
private final void offset(double offsetx, double offsety, double offsettheta) {
_dCenterX += offsetx; _dCenterY += offsety; _theta += offsettheta;
_centerX = (int)_dCenterX; _centerY = (int)_dCenterY;
}
/**
* Finds if two organism are touching and if so applies the effects of the
* collision.
*
* @param org The organism to check for collisions.
* @return true if the two organisms are touching, false otherwise.
*/
public final boolean contact(Organism org) {
int i,j;
ExLine2DDouble line = new ExLine2DDouble();
ExLine2DDouble bline = new ExLine2DDouble();
// Check collisions for all segments
for (i = _segments-1; i >= 0; i--) {
// Consider only segments with modulus greater than 1
if (_m[i]>=1) {
line.setLine(x1[i]+_centerX, y1[i]+_centerY, x2[i]+_centerX, y2[i]+_centerY);
// First check if the line intersects the bounding box of the other organism
if (org.intersectsLine(line)) {
// Do the same for the other organism's segments.
for (j = org._segments-1; j >= 0; j--) {
if (org._m[j]>=1) {
bline.setLine(org.x1[j] + org._centerX, org.y1[j] + org._centerY,
org.x2[j] + org._centerX, org.y2[j] + org._centerY);
if (intersectsLine(bline) && line.intersectsLine(bline)) {
// If we found two intersecting segments, apply effects
touchEffects(org,i,j,true);
// Intersection point
Point2D.Double intersec= line.getIntersection(bline);
/* touchMove needs to know which is the line that collides from the middle (not
* from a vertex). Try to guess it by finding the vertex nearest to the
* intersection point.
*/
double dl1, dl2, dbl1, dbl2;
dl1 = intersec.distanceSq(line.getP1());
dl2 = intersec.distanceSq(line.getP2());
dbl1 = intersec.distanceSq(bline.getP1());
dbl2 = intersec.distanceSq(bline.getP2());
// Use this to send the best choice to touchMove
if (Math.min(dl1, dl2) < Math.min(dbl1, dbl2))
touchMove(org,intersec,bline,false);
else
touchMove(org,intersec,line,true);
// Find only one collision to speed up.
return true;
}
}
}
}
}
}
return false;
}
/**
* Applies the effects produced by two touching segments.
*
* @param org The organism which is touching.
* @param seg Index of this organism's segment.
* @param oseg Index of the other organism's segment.
* @param firstCall Indicates if this organism is the one that has detected the collision
* or this method is called by this same method in the other organism.
*/
private final void touchEffects(Organism org, int seg, int oseg, boolean firstCall) {
if ((_parentID == org._ID || _ID == org._parentID) && org.alive)
return;
double takenEnergy = 0;
switch (getTypeColor(_segColor[seg])) {
case RED:
// Red segment: try to get energy from the other organism
// If the other segment is blue, it acts as a shield
switch (getTypeColor(org._segColor[oseg])) {
case BLUE:
if (org.useEnergy(Utils.BLUE_ENERGY_CONSUMPTION)) {
org.setColor(Color.BLUE);
} else {
// Doesn't have energy to use the shield
if (useEnergy(Utils.RED_ENERGY_CONSUMPTION)) {
// Get energy depending on segment length
takenEnergy = Utils.between(_m[seg] * Utils.ORGANIC_OBTAINED_ENERGY, 0, org._energy);
// The other organism will be shown in yellow
org.setColor(Color.YELLOW);
}
}
break;
case RED:
if (useEnergy(Utils.RED_ENERGY_CONSUMPTION)) {
// Get energy depending on segment length
takenEnergy = Utils.between(_m[seg] * Utils.ORGANIC_OBTAINED_ENERGY, 0, org._energy);
// The other organism will be shown in red
org.setColor(Color.RED);
}
break;
default:
if (useEnergy(Utils.RED_ENERGY_CONSUMPTION)) {
// Get energy depending on segment length
takenEnergy = Utils.between(_m[seg] * Utils.ORGANIC_OBTAINED_ENERGY, 0, org._energy);
// The other organism will be shown in yellow
org.setColor(Color.YELLOW);
}
}
// energy interchange
org._energy -= takenEnergy;
_energy += takenEnergy;
double CO2freed = takenEnergy * Utils.ORGANIC_SUBS_PRODUCED;
useEnergy(CO2freed);
// This organism will be shown in red
setColor(Color.RED);
break;
case WHITE:
// White segment: try to infect the other organism
switch (getTypeColor(org._segColor[oseg])) {
case BLUE:
if (org.useEnergy(Utils.BLUE_ENERGY_CONSUMPTION)) {
setColor(Color.WHITE);
org.setColor(Color.BLUE);
} else {
if (org._infectedGeneticCode != _geneticCode) {
if (useEnergy(Utils.WHITE_ENERGY_CONSUMPTION)) {
org.infectedBy(this);
org.setColor(Color.YELLOW);
setColor(Color.WHITE);
}
}
}
break;
case BROWN:
break;
default:
if (org._infectedGeneticCode != _geneticCode) {
if (useEnergy(Utils.WHITE_ENERGY_CONSUMPTION)) {
org.infectedBy(this);
org.setColor(Color.YELLOW);
setColor(Color.WHITE);
}
}
}
break;
case GRAY:
switch (getTypeColor(org._segColor[oseg])) {
case BLUE:
if (org.useEnergy(Utils.BLUE_ENERGY_CONSUMPTION)) {
org.setColor(Color.BLUE);
setColor(Color.GRAY);
} else {
if (useEnergy(Utils.GRAY_ENERGY_CONSUMPTION)) {
org.die(this);
setColor(Color.GRAY);
}
}
break;
case BROWN:
break;
default:
if (useEnergy(Utils.GRAY_ENERGY_CONSUMPTION)) {
org.die(this);
setColor(Color.GRAY);
}
}
break;
}
// Check if the other organism has died
if (org.isAlive() && org._energy < Utils.tol) {
org.die(this);
}
if (firstCall)
org.touchEffects(this, oseg, seg, false);
}
/*
* Perd velocitat pel fregament.
*/
private final void rubbingFramesEffects() {
dx *= Utils.RUBBING;
if (Math.abs(dx) < Utils.tol) dx=0;
dy *= Utils.RUBBING;
if (Math.abs(dy) < Utils.tol) dy = 0;
dtheta *= Utils.RUBBING;
if (Math.abs(dtheta) < Utils.tol) dtheta = 0;
}
/*
* Perd el cost de manteniment dels segments
* Aplica l'efecte de cadascun dels segments
*/
private final void segmentsFrameEffects() {
if (alive) {
int i;
// Energy obtained through photosynthesis
double photosynthesis = 0;
_nChildren = 1;
for (i=_segments-1; i>=0; i--) {
// Manteniment
switch (getTypeColor(_segColor[i])) {
// Segments cilis
case CYAN:
if (Utils.random.nextInt(100)<8 && useEnergy(Utils.CYAN_ENERGY_CONSUMPTION)) {
dx=Utils.between(dx+12d*(x2[i]-x1[i])/_mass, -Utils.MAX_VEL, Utils.MAX_VEL);
dy=Utils.between(dy+12d*(y2[i]-y1[i])/_mass, -Utils.MAX_VEL, Utils.MAX_VEL);
dtheta=Utils.between(dtheta+Utils.randomSign()*_m[i]*Math.PI/_I, -Utils.MAX_ROT, Utils.MAX_ROT);
}
break;
// Segments fotosint�tics
case GREEN:
if (useEnergy(Utils.GREEN_ENERGY_CONSUMPTION))
photosynthesis += _m[i];
break;
// Segments que obtenen energia de subs1
// Segments relacionats amb la fertilitat
case YELLOW:
_nChildren++;
break;
}
}
// Photosynthesis process
//Get sun's energy
_energy += _world.photosynthesis(photosynthesis);
}
}
private static final int NOCOLOR=-1;
private static final int GREEN=0;
private static final int RED=1;
private static final int CYAN=2;
private static final int BLUE=3;
private static final int MAGENTA=4;
private static final int PINK=5;
private static final int ORANGE=6;
private static final int WHITE=7;
private static final int GRAY=8;
private static final int YELLOW=9;
private static final int BROWN=10;
private static final int getTypeColor(Color c) {
if (c.equals(Color.RED) || c.equals(Utils.ColorDARK_RED))
return RED;
if (c.equals(Color.GREEN) || c.equals(Utils.ColorDARK_GREEN))
return GREEN;
if (c.equals(Color.CYAN) || c.equals(Utils.ColorDARK_CYAN))
return CYAN;
if (c.equals(Color.BLUE) || c.equals(Utils.ColorDARK_BLUE))
return BLUE;
if (c.equals(Color.MAGENTA) || c.equals(Utils.ColorDARK_MAGENTA))
return MAGENTA;
if (c.equals(Color.PINK) || c.equals(Utils.ColorDARK_PINK))
return PINK;
if (c.equals(Color.ORANGE) || c.equals(Utils.ColorDARK_ORANGE))
return ORANGE;
if (c.equals(Color.WHITE) || c.equals(Utils.ColorDARK_WHITE))
return WHITE;
if (c.equals(Color.GRAY) || c.equals(Utils.ColorDARK_GRAY))
return GRAY;
if (c.equals(Color.YELLOW) || c.equals(Utils.ColorDARK_YELLOW))
return YELLOW;
if (c.equals(Utils.ColorBROWN))
return BROWN;
return NOCOLOR;
}
private final void setColor(Color c) {
_color = c;
_framesColor = 10;
}
public BufferedImage getImage() {
BufferedImage image = new BufferedImage(width,height,BufferedImage.TYPE_INT_RGB);
Graphics2D g = image.createGraphics();
g.setBackground(Color.BLACK);
g.clearRect(0,0,width,height);
for (int i=_segments-1; i>=0; i--) {
g.setColor(_segColor[i]);
g.drawLine(x1[i] -x + _centerX, y1[i] - y + _centerY, x2[i] - x + _centerX, y2[i] - y+_centerY);
}
return image;
}
}
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.