Open Source Python Natural Language Processing (NLP) Tools

Python Natural Language Processing (NLP) Tools

View 187 business solutions

Browse free open source Python Natural Language Processing (NLP) Tools and projects below. Use the toggles on the left to filter open source Python Natural Language Processing (NLP) Tools by OS, license, language, programming language, and project status.

  • Passwordless Authentication and Passwordless Security Icon
    Passwordless Authentication and Passwordless Security

    Identity is everything. Protect it with Duo.

    It’s no secret — passwords can be a real headache, both for the people who use them and the people who manage them. Over time, we’ve created hundreds of passwords, it’s easy to lose track of them and they’re easily compromised. Fortunately, passwordless authentication is becoming a feasible reality for many businesses. Duo can help you get there.
    Get a Free Trial
  • Comprehensive Cybersecurity to Safeguard Your Organization | SOCRadar Icon
    Comprehensive Cybersecurity to Safeguard Your Organization | SOCRadar

    See what hackers already know about your organization – and stop them from getting in.

    Protect your organization from cyber threats with SOCRadar’s cutting-edge threat intelligence. Gain 360° visibility into your digital assets, monitor the dark web, and stay ahead of hackers with real-time insights. Start for free and transform your cybersecurity today.
    Free Trial
  • 1
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. It's blazing fast, easy to install and comes with a simple and productive API.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 2
    Ciphey

    Ciphey

    Decrypt encryptions without knowing the key or cipher

    Fully automated decryption/decoding/cracking tool using natural language processing & artificial intelligence, along with some common sense. You don't know, you just know it's possibly encrypted. Ciphey will figure it out for you. Ciphey can solve most things in 3 seconds or less. Ciphey aims to be a tool to automate a lot of decryptions & decodings such as multiple base encodings, classical ciphers, hashes or more advanced cryptography. If you don't know much about cryptography, or you want to quickly check the ciphertext before working on it yourself, Ciphey is for you. The technical part. Ciphey uses a custom-built artificial intelligence module (AuSearch) with a Cipher Detection Interface to approximate what something is encrypted with. And then a custom-built, customizable natural language processing Language Checker Interface, which can detect when the given text becomes plaintext.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    HanLP

    HanLP

    Han Language Processing

    HanLP is a multilingual Natural Language Processing (NLP) library composed of a series of models and algorithms. Built on TensorFlow 2.0, it was designed to advance state-of-the-art deep learning techniques and popularize the application of natural language processing in both academia and industry. HanLP is capable of lexical analysis (Chinese word segmentation, part-of-speech tagging, named entity recognition), syntax analysis, text classification, and sentiment analysis. It comes with pretrained models for numerous languages including Chinese and English. It offers efficient performance, clear structure and customizable features, with plenty more amazing features to look forward to on the roadmap.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers unified experience to explore state-of-the-art models spanning across domains such as CV, NLP, Speech, Multi-Modality, and Scientific-computation. Model contributors of different areas can integrate models into the ModelScope ecosystem through the layered APIs, allowing easy and unified access to their models. Once integrated, model inference, fine-tuning, and evaluations can be done with only a few lines of code.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Superlinked

    Superlinked

    Superlinked is a Python framework for AI Engineers

    Superlinked is a Python framework designed for AI engineers to build high-performance search and recommendation applications that combine structured and unstructured data.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Text Generation Inference

    Text Generation Inference

    Large Language Model Text Generation Inference

    Text Generation Inference is a high-performance inference server for text generation models, optimized for Hugging Face's Transformers. It is designed to serve large language models efficiently with optimizations for performance and scalability.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Detoxify

    Detoxify

    Trained models & code to predict toxic comments

    Detoxify is a deep learning-based tool for detecting and filtering toxic language in online conversations, leveraging Transformer models for high accuracy.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    ExtractThinker

    ExtractThinker

    ExtractThinker is a Document Intelligence library for LLMs

    ExtractThinker is a tool designed to facilitate the extraction and analysis of information from various data sources, aiding in data processing and knowledge discovery.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • 10
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    torchtext

    torchtext

    Data loaders and abstractions for text and NLP

    We recommend Anaconda as a Python package management system. Please refer to pytorch.org for the details of PyTorch installation. LTS versions are distributed through a different channel than the other versioned releases. Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses. To build torchtext from source, you need git, CMake and C++11 compiler such as g++. When building from source, make sure that you have the same C++ compiler as the one used to build PyTorch. A simple way is to build PyTorch from source and use the same environment to build torchtext. If you are using the nightly build of PyTorch, check out the environment it was built with conda (here) and pip (here). Text classification: SST2, AG_NEWS, SogouNews, DBpedia, YelpReviewPolarity, YelpReviewFull, YahooAnswers, AmazonReviewPolarity, AmazonReviewFull, IMDB, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community, we-media, and online earning community, with a QQ group of more than 10,000 people and at least 10,000 subscribers. The number of Github Stars exceeds 60k, and it ranks in the top 100 of all Github organizations. The daily up of all its websites exceeds 4k, and the peak of Alexa ranking is 20k. Our core members are certified as CSDN blog experts and short-book programmers as excellent authors. We have established ApacheCN, a non-profit document, and tutorial translation project.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Transformers-Interpret

    Transformers-Interpret

    Model explainability that works seamlessly with Hugging Face

    Transformers-Interpret is an interpretability tool for Transformer-based NLP models, providing insights into attention mechanisms and feature importance.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    API-for-Open-LLM

    API-for-Open-LLM

    Openai style api for open large language models

    API-for-Open-LLM is a lightweight API server designed for deploying and serving open large language models (LLMs), offering a simple way to integrate LLMs into applications.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    AutoGPTQ

    AutoGPTQ

    An easy-to-use LLMs quantization package with user-friendly apis

    AutoGPTQ is an implementation of GPTQ (Quantized GPT) that optimizes large language models (LLMs) for faster inference by reducing their computational footprint while maintaining accuracy.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    DeepPavlov makes it easy for beginners and experts to create dialogue systems. The best place to start is with user-friendly tutorials. They provide quick and convenient introduction on how to use DeepPavlov with complete, end-to-end examples. No installation needed. Guides explain the concepts and components of DeepPavlov. Follow step-by-step instructions to install, configure and extend DeepPavlov framework for your use case. DeepPavlov is an open-source framework for chatbots and virtual assistants development. It has comprehensive and flexible tools that let developers and NLP researchers create production-ready conversational skills and complex multi-skill conversational assistants. Use BERT and other state-of-the-art deep learning models to solve classification, NER, Q&A and other NLP tasks. DeepPavlov Agent allows building industrial solutions with multi-skill integration via API services.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    DELTA is a deep learning-based end-to-end natural language and speech processing platform. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train, develop, and deploy NLP and/or speech models. Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. Uniform I/O interfaces and no changes for new models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Dragonfire

    Dragonfire

    The open-source virtual assistant for Ubuntu based Linux distributions

    Dragonfire is the open-source virtual assistant project for Ubuntu-based Linux distributions. Her main objective is to serve as a command and control interface to the helmet user. So that you will be able to give orders just by using your voice commands and your eye movements. That makes the helmet handsfree. We are planning to ship Dragonfire as a preinstalled software package on DragonOS Linux Distribution. DragonOS will be a Linux distribution specially designed for the helmet. It will contain various software packages for controlling the helmet. It will be the first of its kind. Dragonfire uses Mozilla DeepSpeech to understand your voice commands and Festival Speech Synthesis System to handle text-to-speech tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    KoNLPy

    KoNLPy

    Python package for Korean natural language processing

    KoNLPy is a natural language processing (NLP) library for the Korean language, offering tokenization, morphological analysis, and named entity recognition.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Lingua-Py

    Lingua-Py

    The most accurate natural language detection library for Python

    Its task is simple: It tells you which language some text is written in. This is very useful as a preprocessing step for linguistic data in natural language processing applications such as text classification and spell checking. Other use cases, for instance, might include routing e-mails to the right geographically located customer service department, based on the e-mails' languages. Language detection is often done as part of large machine learning frameworks or natural language processing applications. In cases where you don't need the full-fledged functionality of those systems or don't want to learn the ropes of those, a small flexible library comes in handy.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    SetFit

    SetFit

    Efficient few-shot learning with Sentence Transformers

    SetFit is an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers. It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    TextBlob

    TextBlob

    TextBlob is a Python library for processing textual data

    Simple, Pythonic, text processing, Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both. Supports word inflection (pluralization and singularization) and lemmatization, as well as spelling correction. Add new models or languages through extensions. Also, it comes with a WordNet integration. If you only intend to use TextBlob’s default models (no model overrides), you can pass the lite argument. This downloads only those corpora needed for basic functionality. TextBlob is also available as a conda package.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.