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Abstract

Major cloud computing operators provide powerful monitoring
tools to understand the current (and prior) state of the distributed
systems deployed in their infrastructure. While such tools provide a
detailed monitoring mechanism at scale, they also pose a significant
challenge for the application developers/operators to transform the
huge space of monitored metrics into useful insights. These insights
are essential to build effective management tools for improving the
efficiency, resiliency, and dependability of distributed systems.

This paper reports on our experience with building and deploy-
ing S1EVE—a platform to derive actionable insights from monitored
metrics in distributed systems. SIEVE builds on two core compo-
nents: a metrics reduction framework, and a metrics dependency
extractor. More specifically, SIEVE first reduces the dimensionality
of metrics by automatically filtering out unimportant metrics by
observing their signal over time. Afterwards, SIEVE infers metrics
dependencies between distributed components of the system using
a predictive-causality model by testing for Granger Causality.

We implemented SIEVE as a generic platform and deployed it for
two microservices-based distributed systems: OpenStack and Share-
Latex. Our experience shows that (1) SIEVE can reduce the number
of metrics by at least an order of magnitude (10 — 100x), while pre-
serving the statistical equivalence to the total number of monitored
metrics; (2) SIEVE can dramatically improve existing monitoring
infrastructures by reducing the associated overheads over the en-
tire system stack (CPU—80%, storage—90%, and network—50%);
(3) Lastly, SIEVE can be effective to support a wide-range of work-
flows in distributed systems—we showcase two such workflows:
Orchestration of autoscaling, and Root Cause Analysis (RCA). This
technical report is an extended version of our conference publica-
tion [87].

1 Introduction

Most distributed systems are constantly monitored to understand
their current (and prior) states. The main purpose of monitoring is
to gain actionable insights that would enable a developer/operator
to take appropriate actions to better manage the deployed system.
Such insights are commonly used to manage the health and resource
requirements as well as to investigate and recover from failures
(root cause identification). For these reasons, monitoring is a crucial
part of any distributed system deployment.

All major cloud computing operators provide a monitoring infras-
tructure for application developers (e.g., Amazon CloudWatch [2],
Azure Monitor [13], Google StackDriver [5]). These platforms pro-
vide infrastructure to monitor a large number (hundreds or thou-
sands) of various application-specific and system-level metrics as-
sociated with a cloud application. Although such systems feature
scalable measurement and storage frameworks to conduct moni-
toring at scale, they leave the task of transforming the monitored
metrics into usable knowledge to the developers. Unfortunately,

this transformation becomes difficult with the increasing size and
complexity of the application.

In this paper, we share our experience on: How can we derive
actionable insights from the monitored metrics in distributed systems?
In particular, given a large number of monitored metrics across
different components (or processes) in a distributed system, we
want to design a platform that can derive actionable insights from
the monitored metrics. This platform could be used to support a
wide-range of use cases to improve the efficiency, resiliency, and
reliability of distributed systems.

In this work, we focus on microservices-based distributed sys-
tems because they have become the de-facto way to design and
deploy modern day large-scale web applications [51]. The microser-
vices architecture is an ideal candidate for our study for two reasons:
First, microservices-based applications have a large number of dis-
tributed components (hundreds to thousands [48, 59]) with complex
communication patterns, each component usually exporting several
metrics for the purposes of debugging, performance diagnosis, and
application management. Second, microservices-based applications
are developed at a rapid pace: new features are being continuously
integrated and deployed. Every new update may fix some existing
issues, introduce new features, but can also introduce a new bug.
With this rapid update schedule, keeping track of the changes in
the application as a whole with effects propagating to other compo-
nents becomes critical for reliability, efficiency, and management
purposes.

The state-of-the-art management infrastructures either rely on
ad hoc techniques or custom application-specific tools. For instance,
prior work in this space has mostly focused on analyzing message-
level traces (instead of monitored metrics) to generate a causal
model of the application to debug performance issues [33, 45]. Al-
ternatively, developers usually create and use custom tools to ad-
dress the complexity of understanding the application as a whole.
For example, Netflix developed several application-specific tools
for such purposes [8, 48] by instrumenting the entire application.
These approaches require either complicated instrumentation or
sophisticated techniques to infer happens-before relationships (for
the causal model) by analyzing message trace timestamps, making
them inapplicable for broader use.

This paper presents our experience with designing and building
SIEVE, a system that can utilize an existing monitoring infrastruc-
ture (i.e., without changing the monitored information) to infer
actionable insights for application management. SIEVE takes a data-
driven approach to enable better management of microservices-
based applications. At its core, SIEVE is composed of two key mod-
ules: (1) a metric reduction engine that reduces the dimensionality
of the metric space by filtering out metrics that carry redundant
information, (2) a metric dependency extractor that builds a causal
model of the application by inferring causal relationships between
metrics associated with different components.



Module (1) enables SIEVE to identify “relevant” metrics for a given
application management task. For instance, it might be sufficient
to monitor only a few metrics associated with error states of the
application instead of the entire set when monitoring the health
of the application. It is important to also note that reducing the
metric space has implications for deployment costs: frameworks
like Amazon CloudWatch use a per-metric charging model, and
not identifying relevant metrics can significantly drive up the cost
related to monitoring the application.

Module (2) is crucial for inferring actionable insights because it
is able to automatically infer complex application dependencies. In
a rapidly updating application, the ability to observe such complex
dependencies and how they may change is important for keeping
one’s understanding of the application as a whole up-to-date. Such
up-to-date information can be helpful for developers to quickly
react to any problem that may arise during deployment.

We implemented SIEVE as a generic platform, and deployed it
with two microservices-based distributed systems: ShareLatex [23]
and OpenStack [28]. Our experience shows that (1) SIEVE can re-
duce the number of monitored metrics by an order of magnitude
(10 — 100x), while preserving the statistical equivalence to the total
number of monitored metrics. In this way, the developers/operators
can focus on the important metrics that actually matter. (2) SIEVE
can dramatically improve the efficiency of existing metrics monitor-
ing infrastructures by reducing the associated overheads over the
entire system stack (CPU—80%, storage—90%, and network—50%).
This is especially important for systems deployed in a cloud infras-
tructure, where the monitoring infrastructures (e.g. AWS Cloud-
Watch) charge customers for monitoring resources. And finally, (3)
SIEVE can be employed for supporting a wide-range of workflows.
We showcase two such case-studies: In the first case study, we use
ShareLatex [23] and show how SIEVE can help developers orches-
trate autoscaling of microservices-based applications. In the second
case study, we use OpenStack [28] and show how developers can
take advantage of SIEVE’s ability to infer complex dependencies
across various components in microservices for Root Cause Analy-
sis (RCA). SIEVE’s source code with the full experimentation setup
is publicly available: https://sieve-microservices.github.io/.

2 Overview

In this section, we first present some background on microservices-
based applications and our motivation to focus on them. Afterwards,
we present our goals, design overview, and its possible use cases.

2.1 Background and Motivation

Microservices-based applications consist of loosely-coupled dis-
tributed components (or processes) that communicate via well-
defined interfaces. Designing and building applications in this way
increases modularity, so that developers can work on different
components and maintain them independently. These advantages
make the microservices architecture the de facto design choice for
large-scale web applications [51].

While increasing modularity, such an approach to developing
software can also increase the application complexity: As the num-
ber of components increases, the interconnections between compo-
nents also increases. Furthermore, each component usually exports
several metrics for the purposes of debugging, performance diag-
nosis, and application management. Therefore, understanding the

Table 1. Number of metrics exposed by microservices.

Microservices Number of metrics
Netflix [61] ~ 2,000,000
Quantcast [14] ~ 2,000,000
Uber [16] ~ 500,000,000
ShareLatex [23] 889
OpenStack [18, 20] 17,608

dependencies between the components and utilizing these depen-
dencies with the exported metrics becomes a challenging task. As
a result, understanding how the application performs as a whole
becomes increasingly difficult.

Typical microservices-based applications are composed of hun-
dreds of components [48, 59]. Table 1 shows real-world microservices-
based applications that have tens of thousands of metrics and hun-
dreds of components. We experimented with two such applications,
ShareLatex [23] and OpenStack [19], each having several thousands
of metrics and order of tens of components. The metrics in these
applications come from all layers of the application like hardware
counters, resource usage, business metrics or application-specific
metrics.

To address this data overload issue, developers of microservices-
based applications usually create ad hoc tools. For example, applica-
tion programmers at Netflix developed several application-specific
tools for such purposes [8, 48]. These tools, however, require the
application under investigation to be instrumented, so that the
communication pattern between components can be established
by following requests coming into the application. This kind of in-
strumentation requires coordination among developers of different
components, which can be a limiting factor for modularity.

Major cloud computing operators also provide monitoring tools
for recording all metric data from all components. For example,
Amazon CloudWatch [2], Azure Monitor [13], and Google Stack-
Driver [5]. These monitoring tools aid in visualizing and processing
metric data in real-time (i.e., for performance observation) or af-
ter an issue with the application (i.e., for debugging). These tools,
however, either use a few system metrics that are hand-picked by
developers based on experience, or simply record all metric data
for all the components.

Relying on past experience may not always be effective due to
the increasing complexity of a microservices-based application. On
the other hand, recording all metric data can create significant
monitoring overhead in the network and storage, or in the case
of running the application in a cloud infrastructure (e.g., AWS), it
can incur costs due to the provider charging the customers (e.g.,
CloudWatch). For these reasons, it is important to understand the
dependencies between the components of a microservice-based
application. Ideally, this process should not be intrusive to the
application. Finally, it should help the developers to identify and
minimize the critical components and metrics to monitor.

2.2 Design Goals
While designing SIEVE, we set the following goals.
e Generic: Many tools for distributed systems have specific
goals, including performance debugging, root cause analysis

and orchestration. Most of the time, these tools are custom-
built for the application in consideration and target a certain
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Figure 1. High level steps of SIEVE.

goal. Our goal is to design a generic platform that can be
used for a wide-range of workflows.

o Automatic: The sheer number of metrics prohibits manual
inspection. On the other hand, designing a generic system
to help developers in many use cases might require man-
ually adjusting some parameters for each use case. Our
tool should be as automated as possible while reducing the
number of metrics and extracting their relationships. How-
ever, we leave the utilization of our platform’s output to the
developers, who may have different goals.

o Efficient: Our platform’s operation should be as efficient
as possible. Minimizing analysis time becomes important
when considering distributed systems, such as microservices-
based applications.

Assumptions. While developing SIEVE, we made two assumptions.

e We assume that the developers can supply a workload gen-
erator for the application under investigation. This assump-
tion should be reasonable and less demanding for developers
than fully instrumenting each component and/or figuring
out relationships across all metrics.

o Itis possible for specific use cases to have additional assump-
tions. For example, a root cause analysis scenario would
require knowing a faulty and non-faulty (correct) version
of the application.

2.3 S1EVE Overview

The underlying intuition behind S1EVE is two-fold: Firstly, in the
metric dimension, some metrics of a component may behave with
similar patterns as other metrics of that component. Secondly, in
the component dimension, there are dependencies between com-
ponents. As a result, monitoring all metrics of all components at
runtime may be unnecessary and inefficient (as components are
not independent).

In this paper, we present SIEVE to reduce this complexity by sys-
tematically analyzing the application to filter collected metrics and
to build a dependency graph across components. To showcase the
generality of this dependency graph and its benefits, we then utilize
SIEVE to orchestrate autoscaling of the ShareLatex [23] application—
an online collaboration tool, and to perform Root Cause Analysis
(RCA) in OpenStack [28]—a cloud management software (§4).

At a high level, SIEVE’s design follows three steps as shown in
Figure 1.

Step #1: Load the application. SIEVE uses an application-specific
load generator to stress the application under investigation. This
load generator can be provided by the application developers. For
example, OpenStack already uses a load generator named Rally
[21]. During the load, SIEVE records the communications among
components to obtain a call graph. This recording does not require

any modifications to the application code. In addition, SIEVE records
all exposed metrics by all components. Note that this recording
only happens during the creation of the call graph and not during
runtime.

Step #2: Reduce metrics. After collecting the metrics, SIEVE ana-
lyzes each component and organizes its metrics into fewer groups
via clustering, so that similar-behaving metrics are clustered to-
gether. After clustering, SIEVE picks a representative metric from
each cluster. These representative metrics as well as their clusters
in a sense characterize each component.

Step #3: Identify dependencies. In this step, SIEVE explores the
possibilities of one component’s representative metrics affecting
another component’s metrics using a pairwise comparison method:
each representative metric of one component is compared with each
representative metric of another component. SIEVE uses the call
graph obtained in Step 1 to choose the components to be compared
(i.e., components directly communicating) and the representative
metrics determined in Step 2. As a result, the search space is signif-
icantly reduced compared to the naive approach of comparing all
components with every other component using all metrics.

If SIEVE determines that there is a relationship between a metric
of one component and another metric of another component, a
dependency edge between these components is created using the
corresponding metrics. The direction of the edge depends on which
component is affecting the other.

2.4 Potential Use Cases

We envision SIEVE can be useful to the developers or operators
of distributed systems to build a wide-range of management tools
to improve the efficiency, reliability, and resiliency of distributed
systems. Each of these cases might require some tweaks and specific
knowledge about the application. Nevertheless, we think that the
output of SIEVE can be a starting point. In Section 4, we showcase
two of these use cases with two different applications.

Orchestration and autoscaling of components. The pairwise
investigation of representative metrics of components produces the
dependencies across components. By definition, the dependency
graph shows the order of bottlenecked components. As a result of
this graph, developers can have a better understanding of which
components need to be scaled out first, meaning that the number
of monitored components can be reduced. Furthermore, the depen-
dencies show the metrics that are affected, meaning that one only
needs to monitor a limited set of metrics rather than every metric
exported by these components. In combination, these reductions
are reflected in the monitoring overhead. Also, scaling decisions
are based on fewer components and metrics, so that potentially
conflicting scaling decisions can be avoided.



Root cause analysis. It is possible that updates can introduce bugs
and problems into the application. Changing dependency graphs
(i.e., after updates) may indicate that the problem got introduced
during a particular update that caused the dependency graph to
change. Identifying such changes will be useful in debugging the
application by pointing to the root cause of the problem.

Performance diagnosis. Similar to the root cause analysis sce-
nario, the resource-usage profile of a component may change after
an update. Even if the interfaces between the components may
stay the same, the update may address a previously unknown bug,
introduce a new feature and/or implement the same functionality
in a more efficient and/or a different way. Such changes can have
effects on other parts of the application, and the complexity of the
application may render these effects not easily foreseeable. The
dependency graph can be utilized to understand the overall effect
on the application the update can have.

Placement decisions. When scaling decisions are made, the resource-

usage profiles of components become important, because compo-
nents with similar resource-usage profiles may create contention
(e.g., two components may be CPU-bound). As a result, placing a
new instance of a component on a computer where other instances
of the same component or instances of another component with
a similar resource-usage profile run may not yield the additional
benefit of the extra instance. The dependency graph lists which
metrics are affected in a component under load. This information
can be used to extract resource-usage profiles of components to
avoid such contention during scale-up events.

3 Design

In this section, we detail the three steps of SIEVE.

3.1 Load the Application

For our systematic analysis, we first run the application under
various load conditions. This loading serves two purposes: First,
the load exposes a number of metrics from the application as well
as the infrastructure it runs on. These metrics are then used to
identify potential relationships across components. Second, the
load also enables us to obtain a call graph, so that we can identify
the components that communicate with each other. The call graph is
later used to reduce the amount of computation required to identify
the inter-component relationships (§3.3). The load test is intended
to be run in an offline step and not in production.

Obtaining metrics. During the load of the application, we record
metrics as time series. There are two types of metrics that we can
leverage for our analysis: First, there are system metrics that are
obtained from the underlying operating system. These metrics
report the resource usage of a microservice component, and are
usually related to the hardware resources on a host. Examples
include usages in CPU, memory, network and disk I/O.

Second, there are application-level metrics. Application devel-
opers often add application-specific metrics (e.g., number of active
users, response time of a request in a component). Commonly-used
components (e.g., databases, load balancers) and certain language
runtimes (e.g., Java) may provide statistics about specific operations
(e.g., query times, request counts, duration of garbage collection).

Obtaining the call graph. Generally speaking, applications us-
ing a microservices architecture communicate via well-defined

interfaces similar to remote procedure calls. We model these com-
munications between the components as a directed graph, where
the vertices represent the microservice components and the edges
point from the caller to the callee providing the service.

By knowing which components communicate directly, we can
reduce the number of component pairs we need to check to see
whether they have a relation (see Section 3.3). Although it is pos-
sible to manually track this information for smaller-sized applica-
tions, this process becomes quickly difficult and error-prone with
increasing number of components.

There are several ways to understand which microservice com-
ponents are communicating with each other. One can instrument
the application, so that each request can be traced from the point it
enters the application to the point where the response is returned
to the user. Dapper [84] from Google and Atlas [48, 61] from Netflix
rely on instrumenting their RPC middleware to trace requests.

Another method to obtain communicating components is to mon-
itor network traffic between hosts running those components using
a tool like tepdump. After obtaining the traffic, one can map the
exchanged packets to the components via their source/destination
addresses. This method can produce communicating component
pairs by parsing all network packets, adding significant computa-
tional overhead and increasing the analysis time. Furthermore, it
is possible that many microservice components are deployed onto
the same host (e.g., using containers), making the packet parsing
difficult due to network address translation on the host machine.

One can also observe system calls related to network opera-
tions via APIs such as ptrace() [31]. However, this approach adds a
lot of context switches between the tracer and component under
observation.

S1EVE employs sysdig to obtain the communicating pairs. sys-
dig[24] is a recent project providing a new method to observe
system calls in a more efficient way. Utilizing a kernel module, sys-
dig provides system calls as an event stream to a user application.
The event stream also contains information about the monitored
processes, so that network calls can be mapped to microservice
components, even if they are running in containers. Furthermore,
it enables extraction of the communication peer via user-defined
filters. Employing sysdig, we avoid the shortcomings of the above
approaches: 1) We do not need to instrument the application, which
makes our system more generally applicable, 2) We add little over-
head to obtain the call graph of an application for our analysis (see
Section 6.1.3).

3.2 Reduce Metrics

The primary goal of exporting metrics is to understand the per-
formance of applications, orchestrating them and debugging them.

While the metrics exported by the application developers or commonly-

used microservice components may be useful for these purposes,
it is often the case that the developers have little idea regarding
which ones are going to be most useful. Developers from different
backgrounds may have different opinions: a developer specializing
in network communications may deem network I/O as the most im-
portant metric to consider, whereas a developer with a background
on algorithms may find CPU usage more valuable. As a result of
these varying opinions, often times many metrics are exported.
While it may look like there is no harm in exporting as much in-
formation as possible about the application, it can create problems.
Manually investigating the obtained metrics from a large number



of components becomes increasingly difficult with the increasing
number of metrics and components [38]. This complexity reflects
on the decisions that are needed to control and maintain the ap-
plication. In addition, the overhead associated with the collection
and storage of these metrics can quickly create problems. In fact,
Amazon CloudWatch [2] charges its customers for the reporting of
the metrics they export. As a result, the more metrics an application
has to export, the bigger the cost the developers would have to
bear.

One observation we make is that some metrics strongly correlate
with each other and it might not be necessary to consider all of
them when making decisions about the control of the application.
For example, some application metrics might be strongly correlated
with each other due to the redundancy in choosing which metrics to
export by the developers. It is also possible that different subsystems
in the same component report similar information (e.g., overall
memory vs. heap usage of a process). In addition, some system
metrics may offer clues regarding the application’s state: increased
network I/O may indicate an increase in the number of requests.

The direct outcome of this observation is that it should be possi-
ble to reduce the dimensionality of the metrics the developers have
to consider. As such, the procedure to enable this reduction should
happen with minimal user effort and scale with increased numbers
of metrics.

To achieve these requirements, SIEVE uses a clustering approach
named k-Shape [76] with a pre-filtering step. While other approaches
such as principal component analysis (PCA) [52] and random pro-
jections [75] can also be used for dimensionality reduction, these
approaches either produce results that are not easily interpreted
by developers (i.e., PCA) or sacrifice accuracy to achieve perfor-
mance and have stability issues producing different results across
runs (i.e., random projections). On the other hand, clustering re-
sults can be visually inspected by developers, who can also use any
application-level knowledge to validate their correctness. Addition-
ally, clustering can also uncover hidden relationships which might
not have been obvious.

Filtering unvarying metrics. Before we use k-Shape, we first
filter metrics with constant trend or low variance (var < 0.002).
These metrics cannot provide any new information regarding the
relationships across components, because they are not changing
according to the load applied to the application. Removing these
metrics also enables us to improve the clustering results.

k-Shape clustering. k-Shape is a recent clustering algorithm that
scales linearly with the number of metrics. It uses a novel distance
metric called shape-based distance (SBD). SBD is based on a nor-
malized form of cross correlation (NCC) [76]. Cross correlation is
calculated using Fast Fourier Transformation and normalized using
the geometric mean of the autocorrelation of each individual met-
ric’s time series. Given two time series vectors, ¥ and 7, SBD will
take the position w, when sliding ¥ over y, where the normalized
cross correlation maximizes.

SBD(X, 1) = 1 — max,, (NCCy (%, 7)) (1)

Because k-Shape uses a distance metric based on the shape of
the investigated time series, it can detect similarities in two time
series, even if one lags the other in the time dimension. This fea-
ture is important to determine relationships across components in
microservices-based applications because a change in one metric

in one component may not reflect on another component’s met-
rics immediately (e.g., due to the network delay of calls between
components).

Additionally, k-Shape is robust against distortion in amplitude
because data is normalized via z-normalization (z = %) before
being processed. This feature is especially important because differ-
ent metrics may have different units and thus, may not be directly
comparable.

k-Shape works by initially assigning time series to clusters ran-
domly. In every iteration, it computes new cluster centroids ac-
cording to SBD with the assigned time series. These centroids are
then used to update the assignment for the next iteration until the
clusters converge (i.e., the assignments do not change).

We make three adjustments to employ k-Shape in SIEVE. First, we
preprocess the collected time series to be compatible with k-Shape.
k-Shape expects the observations to be equidistantly distributed
in the time domain. However, during the load of the application,
timeouts or lost packets can cause gaps between the measurements.

To reconstruct missing data, we use spline interpolation of the
third order (cubic). A spline is defined piecewise by polynomial
functions. Compared to other methods such as averages of previous
values or linear interpolation, spline interpolation provides a higher
degree of smoothness. It therefore introduces less distortion to
the characteristics of a time-series [69]. Additionally, monitoring
systems retrieve metrics at different points in time and need to be
discretized to match each other. In order to increase the matching
accuracy, we discretize using 500ms instead of the original 2s used
in the original k-Shape paper [76].

Our second adjustment is to change the initial assignments
of metric time series to clusters. To increase clustering perfor-
mance and reduce the convergence overhead, we pre-cluster met-
rics according to their name similarity (e.g., Jaro distance [63])
and use these clusters as the initial assignment instead of the de-
fault random assignment. This adjustment is reasonable given that
many developers use naming conventions when exporting met-
rics relating to the same component or resource in question (e.g.,
“cpu_usage", “cpu_usage_percentile"). The number of iterations to
converge should decrease compared to the random assignment,
because similar names indicate similar metrics. Note that this ad-
justment is only for performance reasons; the convergence of the
k-Shape clustering does not require any knowledge of the vari-
able names and would not be affected even with a random initial
assignment.

During the clustering process, k-Shape requires the number of
clusters to be previously determined. In an application with sev-
eral components, each of which having various number of metrics,
pre-determining the ideal number of clusters may not be straight-
forward. Our final adjustment is to overcome this limitation: we
iteratively vary the number of clusters used by k-Shape and pick
the number that gives the best silhouette value [81], which is a
technique to determine the quality of the clusters. The silhouette
value is —1 when the assignment is wrong and 1 when it is a per-
fect assignment [32]. We use the SBD as a distance measure in the
silhouette computation.

In practice, experimenting with a small number of clusters is
sufficient. For our applications, seven clusters per component was
sufficient, where each component had up to 300 metrics.



Representative metrics. After the clustering, each microservice
component will have one or more clusters of metrics. The number of
clusters will most likely be much smaller than the number of metrics
belonging to that component. Once these clusters are obtained,
SIEVE picks one representative metric from each cluster. To pick the
representative metric from each cluster, SIEVE determines the SBD
between each metric and the corresponding centroid of the cluster.
The metric with the lowest metric is chosen as the representative
metric for this cluster.

The high-level idea is that the behavior of the cluster will match
this representative metric; otherwise, the rest of the metrics in the
cluster would not have been in the same cluster as this metric. The
set of representative metrics of a component can then be used to
describe a microservice component’s behavior. These representative
metrics are then used in conjunction with the call graph obtained
in Section 3.1 to identify and understand the relationships across
components.

3.3 Identify Dependencies

To better understand an application, we need to find dependencies
across its components. A naive way of accomplishing this goal
would be to compare all components with each other using all
possible metrics. One can clearly see that with the increasing num-
ber of components and metrics, this would not yield an effective
solution.

In the previous section, we described how one can reduce the
number of metrics one has to consider in this pairwise comparison
by clustering and obtaining the representative metrics of each com-
ponent. Still, comparing all pairs of components using this reduced
set of metrics may be inefficient and redundant considering the
number of components in a typical microservices-based application
(e.g., tens or hundreds).

SIEVE uses the call graph obtained in Section 3.1 to reduce the
number of components that need to be investigated in a pairwise
fashion. For each component, we do pairwise comparisons using
each representative metric of its clusters with each of its neighbour-
ing components (i.e., callees) and their representative metrics.

SIEVE utilizes Granger Causality tests [57] in this pairwise com-
parison. Granger Causality tests are useful in determining whether
a time series can be useful in predicting another time series: In a
microservices-based application, the component interactions closely
follow the path a request takes inside the application. As a result,
these interactions can be predictive of the changes in the metrics
of the components in the path. Granger Causality tests offer a sta-
tistical approach in understanding the relationships across these
components. Informally, Granger Causality is defined as follows.
If a metric X is Granger-causing another metric Y, then we can
predict Y better by using the history of both X and Y compared to
only using the history of Y [54].

To utilize Granger Causality tests in SIEVE, we built two linear
models using the ordinary least-square method [35]. First, we com-
pare each metric X; with another metric Y;. Second, we compare
each metric X; with the time-lagged version of the other metric Y;:
Y;-Lag- Covering the cases with a time lag is important because the
load in one component may not be reflected on another component
until the second component receives API calls and starts processing
them.

SIEVE utilizes short delays to build the time-lagged versions
of metrics. The reason is that microservices-based applications

typically run in the same data center and their components com-
municate over a LAN, where typical round-trip times are in the
order of milliseconds. SIEVE uses a conservative delay of 500ms for
unforeseen delays.

To apply the Granger Causality tests and check whether the past
values of metric X can predict the future values of metric Y, both
models are compared via the F-test [70]. The null hypothesis (i.e.,
X does not granger-cause Y) is rejected if the p-value is below a
critical value.

However, one has to consider various properties of the time se-
ries. For example, the F-test requires the time series to be normally
distributed. The load generation used in Section 3.1 can be adjusted
to accommodate this requirement. Also, the F-test might find spuri-
ous regressions when non-stationary time series are included [56].
Non-stationary time series (e.g., monotonically increasing counters
for CPU and network interfaces) can be found using the Augmented
Dickey-Fuller test [58]. For these time series, the first difference
is taken and then used in the Granger Causality tests. Although
longer trends may be lost due to the first difference, accumulating
metrics such as counters do not present interesting relationships
for our purposes.

After applying the Granger Causality test to each component’s
representative metrics with its neighbouring component’s repre-
sentative metrics, we obtain a graph. In this graph, we draw an edge
between microservice components, if one metric in one component
Granger-causes another metric in a neighbouring component. This
edge represents the dependency between these two components
and its direction is determined by Granger causality.

While Granger Causality tests are useful in determining predic-
tive causality across microservice components, it has some limi-
tations that we need to consider. For example, it does not cover
instantaneous relationships between two variables. More impor-
tantly, it might reveal spurious relationships, if important variables
are missing in the system: if both X and Y depend on a third variable
Z that is not considered, any relationship found between X and Y
may not be useful. Fortunately, an indicator of such a situation is
that both metrics will Granger-cause each other (i.e., a bidirectional
edge in the graph). SIEVE filters these edges out.

4 Applications

In this section, we describe two use cases to demonstrate SIEVE’s
ability to handle different workflows. In particular, using SIEVE’s
base design, we implemented 1) an orchestration engine for au-
toscaling and applied it to ShareLatex [23], and 2) a root cause
analysis (RCA) engine and applied it to OpenStack [19].

4.1 Orchestration of Autoscaling

For the autoscaling case study, we used ShareLatex [23]—a popular

collaborative LaTeX editor. ShareLatex is structured as a microservices-

based application, delegating tasks to multiple well-defined compo-
nents that include a KV-store, load balancer, two databases and 11
node.js based components.

SIEVE’s pairwise investigation of representative metrics of com-
ponents produces the dependencies across components. By leverag-
ing this dependency graph, our autoscaling engine helps developers
to make more informed decisions regarding which components and
metrics are more critical to monitor. As a result, developers can
generate scaling rules with the goal of adjusting the number of
active component instances, depending on real-time workload.
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Figure 2. SIEVE’s root cause analysis methodology.

More specifically, we use SIEVE’s dependency graph and ex-
tract (1) guiding metrics (i.e., metrics to use in a scaling rule), (2)
scaling actions (i.e., actions associated with reacting to varying
loads by increasing/decreasing the number of instances subject
to minimum/maximum thresholds), and (3) scaling conditions (i.e.,
conditions based on a guiding metric triggering the corresponding
scaling action). Below, we explain how we use SIEVE to generate a
scaling rule:

#1: Metric. We pick a metric m that appears the most in Granger
Causality relations between components.

#2: Scaling actions. In our case study, we restrict scaling actions
to scale in/out actions, with increments/decrements of a single
component instance (+/—1).

#3: Conditions. The scale in/out thresholds are defined from the
values of m according to a Service Level Agreement (SLA) condition.
For ShareLatex, such an SLA condition can be to keep 90% of all
request latencies below 1000ms. The thresholds for m are iteratively
refined during the application loading phase.

4.2 Root Cause Analysis

For the root cause analysis (RCA) case study, we used OpenStack [19,
28], a popular open-source cloud management software. OpenStack
is structured as a microservices-based application with a typical
deployment of ~10 (or more) individual components, each often
divided into multiple sub-components [83]. Due to its scale and
complexity, OpenStack is susceptible to faults and performance
issues, often introduced by updates to its codebase.

In microservices-based applications such as Openstack, com-
ponents can be updated quite often [62], and such updates can
affect other application components. If relationships between com-
ponents are complex, such effects may not be easily foreseeable,
even when inter-component interfaces are unchanged (e.g., if the
density of inter-component relationships is high or if the activation
of relationships is selective depending on the component’s state
and inputs). SIEVE’s dependency graph can be used to understand
the update’s overall effect on the application: changing dependency
graphs can indicate potential problems introduced by an update.
By identifying such changes, SIEVE can help developers identify
the root cause of the problem.

Our RCA engine leverages SIEVE to generate a list of possible
root causes of an anomaly in the monitored application. More
specifically, the RCA engine compares the dependency graphs of
two different versions of an application: (1) a correct version; and
(2) a faulty version. Similarly to [64, 66], we assume that the system
anomaly (but not its cause) has been observed and the correct and
faulty versions have been identified. The result of this comparison
is a list of {component, metric list} pairs: the component item points
to a component as a possible source for the issue, whereas the

Table 2. Description of dependency graph differences considered
by the root cause analysis engine.

Scoping level Differences of interest

Present in F version, not in C (new)

Component metrics ] . - ;
P Present in C version, not in F (discarded)

Clusters Cluster includes new/discarded metrics

New/discarded edge between similar clusters
Different time-lag between similar clusters
Includes clusters w/ new/discarded metrics

Dep. graph edges

metric list shows the metrics in that component potentially related
to the issue, providing a more fine-grained view. With the help of
this list, developers can reduce the complexity of their search for
the root cause.

Figure 2 shows the five steps involved in the comparison. At
each step, we extract and analyze SIEVE’s outputs at three different
granularity levels: metrics, clusters, and dependency graph edges.
The levels and corresponding differences of interest are described
in Table 2. We describe the steps in more detail below.

#1: Metric analysis. This step analyzes the presence or absence
of metrics between C and F versions. If a metric m is present in
both C and F, it intuitively represents the maintenance of healthy
behavior associated with m. As such, these metrics are filtered out
of this step. Conversely, the appearance of a new metric (or the
disappearance of a previously existing metric) between versions is
likely to be related with the anomaly.

#2: Component rankings. In this step, we use the results of step
1 to rank components according to their novelty score (i.e., total
number of new or discarded metrics), producing an initial group of
interesting components for RCA.

#3: Cluster analysis: novelty & similarity. Clusters aggregate
component metrics which exhibit similar behavior over time. The
clusters with new or discarded metrics should be more interesting
for RCA compared to the unchanged clusters of that component
(with some exceptions, explained below). For a given component,
we compute the novelty scores of its clusters as the sum of the num-
ber of new and discarded metrics, and produce a list of {component,
metric list} pairs, where the metric list considers metrics from the
clusters with higher novelty scores.

In addition, we track the similarity of a component’s clusters
between C and F versions (or vice-versa). This is done to identify
two events: (1) appearance (or disappearance) of edges between
versions; and (2) attribute changes in relationships maintained
between C and F versions (e.g., a change in Granger causality
time lag). An edge between clusters x and y (belonging to com-
ponents A and B, respectively) is said to be ‘maintained between
versions’ if their respective metric compositions do not change
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and S(Mf’c) x S(Mg,’F). M;?,C and M?,,F are the metric compo-
sitions of clusters x and x” of component A, in the C and F versions,
respectively. S is some measure of cluster similarity (defined below).
Both events — (1) and (2) — can be an indication of an anomaly, be-
cause one would expect edges between clusters with high similarity
to be maintained between versions.

We compute the cluster similarity score, S, according to a modified
form of the Jaccard similarity coefficient

A A
IMAL N M
§=—t T )
IME]

significantly between C and F versions, i.e. if S (Mf o) @ SM

To eliminate the penalty imposed by new metrics added to the
faulty cluster, we only consider the contents of the correct cluster
in the denominator (instead of the union of M;.AC and M}A‘F)

#4: Edge filtering. To further reduce the list of { component, metric
list} pairs, we examine the relationships between components and
clusters identified in steps 2 and 3. We identify three events:

1. Edges involving (at least) one cluster with a high novelty
score
2. Appearance or disappearance of edges between clusters
with high similarity
3. Changes in time lag in edges between clusters with high
similarity
Event 1 isolates metrics related to edges which include at least
one ‘novel’ cluster. Events 2 and 3 isolate clusters which are main-
tained between C and F versions, but become interesting for RCA
due to a change in their relationship. Novelty and similarity scores
are computed as in step 3. We define thresholds for ‘high’ novelty
and similarity scores.

#5: Final rankings. We present a final list of { component, metric
list} pairs. The list is ordered by component, following the rank
given in step 2. The metric list items include the metrics identified
at steps 3 and 4.

5 Implementation

We next describe the implementation details of SIEVE. Our system
implementation, including used software versions, is published at
https://sieve-microservices.github.io. For load generation, SIEVE
requires an application-specific load generator. We experimented
with two microservices-based applications: ShareLatex [23] and
OpenStack [19, 28]. For ShareLatex, we developed our own load

generator using Locust [11], a Python-based distributed load gen-
eration tool to simulate virtual users in the application (1,041 LoC).
For OpenStack, we used Rally [21], the official benchmark suite
from OpenStack.

For metric collection, SIEVE uses Telegraf [25] to collect appli-
cation/system metrics and stores them in InfluxDB [7]. Telegraf
seamlessly integrates with InfluxDB, supports metrics of commonly-
used components (e.g., Docker, RabbitMQ, memcached) and can
run custom scripts for collection of additional metrics exposed by
application APIs (e.g., [20]). With this setup, SIEVE can store any
time-series metrics exposed by microservice components.

For the call graph extraction, SIEVE leverages sysdig call tracer [24]
to obtain which microservice components communicate with each
other. We wrote custom scripts to record network system calls
with source and destination IP addresses on every machine hosting
the components (457 LoC). These IP addresses are then mapped
to the components using the cluster manager’s service discovery
mechanism.

We implemented SIEVE’s data analytics techniques in Python
(2243 LoC) including metric filtering, clustering based on k-Shape,
and Granger Causality. The analysis can also be distributed across
multiple machines for scalability.

Lastly, we also implemented two case studies based on the SIEVE
infrastructure: autoscaling in ShareLatex (720 LoC) and RCA in
OpenStack (507 LoC). For our autoscaling engine, we employed
Kapacitor [9] to stream metrics from InfluxDB in real-time and to
install our scaling rules using its user-defined functions. For the
RCA engine, we implemented two modules in Python: one module
extracts metric clustering data (125 LoC) and the other module (382
LoC) compares clustering data and dependency graphs.

6 Evaluation

Our evaluation answers the following questions:

1. How effective is the general SIEVE framework? (§6.1)
2. How effective is SIEVE for autoscaling? (§6.2)
3. How effective is SIEVE for root cause analysis? (§6.3)

6.1 Sieve Evaluation

Before we evaluate S1EVE with the case studies, we evaluate SIEVE’s
general properties: (a) the robustness of clustering; (b) the effective-
ness of metric reduction; and (c) the monitoring overhead incurred
by SIEVE’s infrastructure.
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Figure 4. Average no. of metrics after SIEVE’s reduction.

Experimental setup. We ran our measurements on a 10 node
cluster, every node with a 4-core Xeon E5405 processor, 8 GB DDR2-
RAM and a 500GB HDD. For the general experiments, we loaded
ShareLatex using SIEVE five times with random workloads. The
random workloads also help to validate whether the model stays
consistent, if no assumption about the workload is made.

6.1.1 Robustness

We focus on two aspects to evaluate SIEVE’s robustness. First, we in-
vestigate the consistency of clustering across different runs. Second,
we try to validate whether the metrics in a cluster indeed belong
together.

Consistency. To evaluate consistency, we compare cluster assign-
ments produced in different measurements. A common metric to
compare cluster assignments is Adjusted Mutual Information (AMI)
score [88]. AMI is normalized against a random assignment and
ranges from zero to one: If AMI is equal to one, both clusters match
perfectly. Random assignments will be close to zero.

Figure 3 shows the AMI of cluster assignments for individual
components for three independent measurements. To reduce the
selection bias we apply randomized workload in a controlled envi-
ronment. As a result, they should constitute a worst-case perfor-
mance for the clustering. Our measurements show that the average
AMI is 0.597, which is better than random assignments. Based on
these measurements, we conclude the clusterings are consistent.

Validity. To evaluate the validity of the clusters, we choose three
criteria: (1) Is there a common visible pattern between metrics in
one cluster? (2) Do metrics in a cluster belong together assuming
application knowledge? (3) Are the shape-based distances between
metrics and their cluster centroid below a threshold (i.e., 0.3)?

We choose three clusters with different Silhouette scores (high,
medium, low). According to the above criteria, we conclude the
clustering algorithm can determine similar metrics. For example,
application metrics such as HTTP request times and correspond-
ing database queries are clustered together. Similar to consistency,
higher Silhouette scores indicate that the clusters are more mean-
ingful and potentially more useful for the developers. We omit the
details for brevity.

6.1.2 Effectiveness

The purpose of clustering is to reduce the number of metrics ex-
posed by the system without losing much information about the
system behavior. To evaluate how effective our clustering is in
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Figure 5. Completion time for HT TP requests when using tcpdump,
sysdig or native (i.e., no monitoring).

Table 3. InfluxDB overhead before SiEve’s reduction of metrics.

Metric Before After Reduction
CPU time [s] 045G  0.085G 812 %
DB size [KB] 5888  36.0 938 %
Network in [MB] 11.1 2.3 79.3 %
Network out [KB] 15.1 7.4 50.7 %

reducing the number of metrics, we compare the results of the
clustering with the actual number of metrics in the application. We
identified 889 unique metrics within ShareLatex, meaning that an
operator would have to understand and filter these metrics. SIEVE’s
clustering reduces this number to 65 (averaged across five runs).
Figure 4 shows the reduction in the number of metrics for the indi-
vidual components in ShareLatex. Note that this measurement is
with high Silhouette scores for the clusters, which implies that the
metrics reduction does not affect the quality of the clusters.

6.1.3 Monitoring Overhead

We evaluate SIEVE’s overhead based on two aspects. First, we com-
pare different techniques for obtaining the call graph and show how
our approach fairs. Second, we investigate the overhead incurred
by the application by comparing the monitoring overhead with and
without using SIEVE.

Overheads. To measure the monitoring overhead during the load-
ing stage, we run an experiment with 10K HTTP requests for a
small static file using Apache Benchmark [12] on an Nginx web
server [15]. Because the computational overhead for serving such
a file is low, this experiment shows the worst-case performance
for sysdig and tcpdump. Figure 5 shows the time it takes to com-
plete the experiment. While tcpdump incurs a lower overhead than
sysdig (i.e., 7% vs. 22%), it provides less context regarding the com-
ponent generating the request and requires more knowledge about
the network topology to obtain the call graph. sysdig provides all
this information without much additional overhead.

Gains. To show the gains during the runtime of the application after
using SIEVE, we compare the computation, storage and network
usage for the metrics collected during the five measurements. We
store all collected metrics in InfluxDB and measure the respective
resource usage. We then repeat the same process using the metrics
found by SIEVE; thus, simulating a run with the reduced metrics.
Table 3 shows the relative usage of the respective resources with
SIEVE. SIEVE reduces the monitoring overhead for computation,
storage and network by 80%, 90% and 50%, respectively.



Table 4. Comparison between a traditional metric (CPU usage) and
SIEVE’s selection when used as autoscaling triggers.

Metric CPU usage Sieve Difference [%]
Mean CPU usage per com- 5.98 9.26 +54.82
ponent

SLA violations (out of 1400 188 70 -62.77
samples)

Number of scaling actions 32 21 -34.38

6.2 Case-study #1: Autoscaling

We next evaluate the effectiveness of SIEVE for the orchestration
of autoscaling in microservices.

Experimental setup. For the autoscaling case study, we used
ShareLatex [23] (as described in §4.1). We used 12 t2.large VM-
Instances on Amazon EC2 with 2 vCPUs, 8GB RAM and 20 GB
Amazon EBS storage. This number of instances were sufficient to
stress-test all components of the application. The VM instances
were allocated statically during experiments as Docker containers.
We created a Docker image for each ShareLatex component and
used Rancher [22] as the cluster manager to deploy our containers
across different hosts.

Dataset. We used a HTTP trace sample from soccer world cup
1998 [6] for an hour long trace. Note that the access pattern and re-
quested resources in the world cup trace differs from the ShareLatex
application. However, we used the trace to map traffic patterns for
our application to generate a realistic spike workload. In particular,
sessions in the HTTP trace were identified by using the client IP.
Afterwards, we enqueued the sessions based on their timestamp,
where a virtual user was spawned for the duration of each session
and then stopped.

Results. We chose an SLA condition, such that 90th percentile of
all request latencies should be below 1000ms. Traditional tools, such
as Amazon AWS Auto Scaling [1], often use the CPU usage as the
default metric to trigger autoscaling. SIEVE identified an application
metric named http-requests_Project_id_GET_mean (Figure 6) as a
better metric for autoscaling than CPU usage.

To calculate the threshold values to trigger autoscaling, we used
a 5-minute sample from the peak load of our HTTP trace and
iteratively refined the values to stay within the SLA condition. As
a result, we found that the trigger thresholds for scaling up and
down while using the CPU usage metric should be 21% and 1%,
respectively. Similarly, for http-requests_Project_id_GET_mean, the
thresholds for scaling up and down should be 1400ms and 1120ms,
respectively.

After installing the scaling actions, we ran our one-hour trace.
Table 4 shows the comparison when using the CPU usage and
http-requests_Project_id_GET_mean for the scaling triggers. When
SIEVE’s selection of metric was used for autoscaling triggers, the
average CPU usage of each component was increased. There were
also fewer SLA violations and scaling actions.

6.3 Case-study #2: Root Cause Analysis

To evaluate the applicability of SIEVE to root cause analysis, we re-
produce two representative OpenStack anomalies, Launchpad bugs
#1533942 [29] and #1590179 [30]. We selected these issues because
they have well-documented root causes, providing an appropriate
ground truth, and allowing for the identification of ‘correct’ and

Figure 6. Relations between components based on Granger Causal-
ity in ShareLatex. The dashed lines denote relationships with metric
http-requests_Project_id_GET_mean.

‘faulty’ code versions. Moreover, these showcase SIEVE’s effective-
ness while analyzing two different types of bugs: (1) a crash in the
case of #1533942; and (2) performance regression (e.g. increase in
latency) in the case of #1590179. We compare the documented root
causes to the lists of root causes produced by our RCA engine.

6.3.1 Bug 1533942 : Failure to launch a VM

Bug #1533942 manifests itself as follows: when launching a new
VM instance using the command line interface, one gets the error
message ‘No valid host was found. There are not enough hosts avail-
able’ despite the availability of compute nodes. Without any other
directly observable output, the instance falls into ‘ERROR’ state and
fails. A similar failure is used as a representative case in [55, 83].

Root cause. The failure is caused by the crash of an agent in the
Neutron component, namely the Open vSwitch agent. The Open
vSwitch agent is responsible for setting up and managing virtual
networking for VM instances. The ultimate cause is traced to a
configuration error in OpenStack Kolla’s deployment scripts [29].

Experimental setup. We deployed OpenStack components as con-
tainerized microservices using Kolla [28]. We configured Kolla to
deploy 7 main OpenStack components along with 12 auxiliary
components. Some components can be sub-divided in several mi-
croservices and replicated among deployment hosts, for a total of 47
microservices. This information is summarized in Table 5. We use
OpenStack’s telemetry component (Ceilometer) to expose relevant
OpenStack-related metrics and extract them via Telegraf.

The Openstack versions used for the correct (C) and faulty (F)
versions are listed in Table 8. The configurations for the Kolla
deployments of each version are publicly available !, as well as the
monitoring infrastructure and evaluation scripts 2.

The infrastructure consists of two m4.xlarge Amazon EC2 VM
instances to run OpenStack components (16 vCPUs, 64 GB RAM
and 20 GB Amazon EBS storage) and three t2.medium VM instances
(2 vCPUs, 4GB RAM and 20 GB EBS storage) for the supporting
components (measurement, database and deployment).

!https://github.com/sieve-microservices/kolla
Zhttps://github.com/sieve-microservices/rca-evaluation
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Results. We expect the RCA engine’s outcome to include Neutron
component, along with metrics relating VM launches and network-
ing. The {component, metrics list} pairs with Neutron should be
ranked higher than others.

To generate load on OpenStack, we run the ‘boot_and_delete’
(B&D) task 100 times with the Rally benchmark suite [21], which
launches 5 VMs concurrently and deletes them after 15-25 seconds
(details about Rally tasks in Table 6). We apply this process to the
correct (C) and faulty (F) versions of OpenStack. For the faulty ver-
sion, the task fails as described above. We then apply the remaining
stages of SIEVE and feed the output to the RCA engine. For both
versions, the dependency graphs are composed by 16 components,
with 647 edges in the NF version, and 343 edges in the F version.
Below, we summarize the findings of RCA steps.

Steps #1 & #2: Metric analysis and component rankings. The
total number of unchanged metrics exceeds that of ‘novel’ metrics
(i.e., new and/or discarded) by an order of magnitude. Furthermore,
the initial component novelty ranking puts the Nova and Neutron
components (known to be directly related with the anomaly) within
the top 4 positions out of 16 (Table 7). This confirms the intuition
behind our approach: novel metrics are more likely to be related to
a failure.

Step #3: Cluster novelty & similarity. Computing the cluster
novelty scores shows that the novel metrics from step 1 are dis-
tributed over only 27 of the 67 clusters (Figure 7(a)), even conserva-
tively considering a cluster to be novel if it contains at least one new
or discarded metric. Considering only novel clusters reduces the
number of metrics and the number of edges for the developers to
analyze for the root cause in step 4. We also compute the similarity
scores for these novel clusters and use the similarity in the next
step.

Step #4: Edge filtering. By investigating the novel edges (i.e., new
or deleted) in the dependency graph, the developers can better
focus on understanding which component might be more relevant

to the root cause. Utilizing different cluster similarity scores en-
ables developers to filter out some of the edges that may not be
relevant. Figures 7(b & c) show the effect of different cluster simi-
larity thresholds for all components in Table 7 when filtering edges.
Without any similarity thresholds, there are 41 edges of interest,
corresponding to a set of 13 components, 29 clusters and 221 met-
rics that might be relevant to the root cause (Figure 7(c)). A higher
threshold reduces the number of the {component, metrics list} pairs:
filtering out clusters with inter-version similarity scores below 0.50,
there are 24 edges of interest, corresponding to 10 components, 16
clusters and 163 metrics.

Figure 8 shows the edges between the components at the top-
5 rows of Table 7, with a similarity threshold of 0.50. Note that
one component (i.e., Nova scheduler) was removed by the similar-
ity filter. Another interesting observation is that one of the new
edges includes a Nova API component cluster, in which the nova-
instances-in-state-ACTIVE metric is replaced with nova-instances-in-
state-ERROR. This change relates directly to the observed anomaly
(i.e., error in VM launch). The other end of this edge is a cluster
in the Neutron component, which aggregates metrics related to
VM networking, including a metric named neutron-ports-in-status-
DOWN. This observation indicates a causal relationship between
the VM failure and a VM networking issue, which is the true root
cause of the anomaly.

We also note that similarity a high threshold may filter out use-
ful information. For example, the Neutron component cluster with
the neutron-ports-in-status-DOWN metric is removed with similar-
ity thresholds above 0.60. We leave the study of this parameter’s
sensitivity to future work.

Step #5: Final rankings. The rightmost column on Table 7 shows
the final rankings, considering edge filtering step with a 0.50 sim-
ilarity threshold. Figure 8 shows a significant reduction in terms
of state to analyze (from a total of 16 components and 508 metrics
to 10 and 163, respectively) because of the exclusion of non-novel
clusters. For example, for Nova API, the number of metrics reduces
from 59 to 20, for Neutron server from 42 to 22. Furthermore, our
method includes the Neutron component as one of the top 5 com-
ponents, and isolates an edge which is directly related with the true
root cause of the anomaly.

6.3.2 Bug 1590179 : Fernet token performance regression

The main symptom of bug #1590179 is a general decrease in the rate
at which Openstack processes user requests, in-between Openstack
‘Liberty’ and ‘Mitaka’ releases.

Root cause. As reported in [30], the issue is due to a 5X increase in
authentication token validation time. The ultimate cause of the bug



Table 5. Components deployed by Openstack Kolla during RCA
evaluation.

Component Purpose # Microservices
Nova VM computing 8
Neutron VM networking 6
Keystone Identity 3
Glance VM image manag. 2
Heat - 3
Horizon Web Ul 1
Ceilometer Telemetry 5
Heka Logging 3
Cron Job scheduling 3
Open vSwitch VM networking (aux.) 4
Elasticsearch Search engine 1
Kibana Data visualiz. 1

Memcached Auth. token caching
(among others)
Mariadb Openstack 1
parameter storage

RabbitMQ Message broker 1
MongoDB Ceilometer data storage 1
Telegraf Metric collection 1
InfluxDB . 1
PostgreSOL Metric storage 1
Totals - 47

is a change in the token caching strategy in-between Openstack
‘Liberty’ and ‘Mitaka’ releases.

In the context of Openstack, tokens represent the authenticated
identity of a specific requester (e.g. a system user) and grants au-
thorization for a specific Openstack action (e.g. starting a VM) [10].
Openstack supports different types of tokens, but this issue is par-
ticular to Fernet tokens [10], which do not require persistence in a
database: validation is based on symmetric encryption, with secret
keys kept by the Openstack identity component.

Experimental setup. Similarly to the bug #1533942 use case, we
deployed OpenStack components as containerized microservices us-
ing Kolla [28]. We deployed 7 Openstack components, along with 12
auxiliary components, as listed in Table 5. The Openstack versions
used for the correct (C) and faulty (F) versions are listed in Table 8.
The configurations for the Kolla deployments of each version are
publicly available 3, as well as the monitoring infrastructure and
evaluation scripts 4.

The infrastructure consists of 3 t2.large Amazon EC2 VM in-
stances to run OpenStack components (2 vCPUs, 8 GB RAM and 30
GB Amazon EBS storage) and 2 t2.medium VM instances (2 vCPUs,
4GB RAM and 30 GB EBS storage) for the supporting components
(metric collection and storage).

Results. Since this bug manifests itself as a general performance
degradation issue, we run the Rally tasks below to load 4 essential
Openstack components, thus giving us a reasonably large ‘search
space’ for RCA (details in Table 6):

e B&D: Same Rally task used in bug #1533942. Loads Open-
stack’s compute (Nova) and networking (Neutron) compo-
nents.

o AU&VT: Authenticates a stream of user’s tokens in Key-
stone, Openstack’s identity component. In hindsight, since

Shttps://github.com/sieve-microservices/kolla
“https://github.com/sieve-microservices/rca-evaluation

Table 6. Details about Rally tasks used in RCA evaluation.

Bug # Benchmark #Runs Concurr. Details
boot and delete VMs up for
1533942 (B&D) 100 5 15-25 sec
VMs up for
B&D % > 15-25 sec
authenticate user
and validate 100 5 -
1590179 token (AU&VT)
create and delete
networks 50 5 -
(C&DN)
create and delete Cirros 0.35
image (C&DI) 50 2 x86_64
image

Table 7. OpenStack components, sorted by the number of novel
metrics between correct (C) and faulty (F) versions.

Component Changed Total Final
(New/Discarded) (per component) ranking

Nova API 29 (7/22) 59 1
Nova libvirt 21 (0/21) 39 2
Nova scheduler 14 (7/7) 30 -
Neutron server 12 (2/10) 42 3
RabbitMQ 11 (5/6) 57 4
Neutron L3 agent 7(0/7) 39 5
Nova novncproxy 7(0/7) 12 -
Glance API 5 (0/5) 27 6
Neutron DHCP ag. 4(0/4) 35 7
Nova compute 3(0/3) 41 8
Glance registry 3 (0/3) 23 9
Haproxy 2(1/1) 14 10
Nova conductor 2(0/2) 29 -
Other 3 components 0(0/0) 59 -

Totals 113 (22/91) 508

the reported root cause of bug #1590179 is related to Key-
stone [30], this might appear as a ‘dishonest’ test. However,
we argue that Keystone is a central component of Open-
stack - as are the compute and networking components -
and as such a natural candidate for testing.

e C&DN: Creates and deletes network VM network resources.
Loads Openstack’s networking component - Neutron - as
well as related components (e.g. Open vSwitch).

e C&DI: Creates and deletes VM images. Loads Openstack’s
image component, Glance.

Metric analysis and component rankings. Table 9 shows that
solely based on metric novelty scores, the ‘authenticate user and
validade token’ (AU&VT) Rally task - which directly relates to to-
ken validation - ranks Memcached 2nd place as a possible root
cause (metric novelty rankings correspond to column ‘N’ in Table 9,
Memcached is ranked 1st after edge filtering, i.e. the ‘F’ column).
Other tasks rank Nova conosoleauth (B&D) and Neutron Open-
vSwitch agent (C&DN and C&DI) as 1st, which are unrelated to
bug #1590179 (at least not directly related to it, according to the
description given in [30]).
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Figure 9. AU&VT Rally task results: (a) cluster novelty score. (b) edge novelty score. (c) no. of components & clusters after edge filtering w/

varying thresholds.

Table 8. Openstack versions used in RCA evaluation.

Bug # Correctness Openstack ver. Comments
Adapted for Ceilometer
Correct (C) Mitaka (EOL) supportl(not available by
1533942 default)
Kolla 2.0.0.0b3 -
Mitaka (EOL) (1)
Faulty ) golazooobz -
Liberty (EOL) (1)
Correct (C) Adapted to Fernet tokens
1590179 Keystone 81.0 1 ced on blueprint in [26]2
Faulty (F) Mitaka (EOL) (1)

Keystone 9.0.2 2)

Still regarding metric novelty, Keystone - one of the Openstack
components directly related to bug #1590179 [30] - is lowly ranked
according to the AU&VT Rally task. This result is also intuitive:
since bug #1590179 relates to performance degradation, metrics
should not appear or disappear, rather their values should differ
in-between C and F versions, an effect which may be captured by
relationships in-between the clusters the metrics belong to.

Since we load Openstack with the ‘boot and delete’ (B&D) tasks
in both bugs #1533942 and #1590179, we can compare how the
rankings change between bugs, and verify if there is evidence of a
a dependency between the way in which the system is loaded and
the ‘metric novelty’ rankings produced by SIEVE. As shown in Ta-
ble 10, the average change in rank is ~ 5 positions, providing initial
evidence about the lack of such dependency. Further validation of
this dependency is left to future work.

Edge filtering. The edge novelty statistics results for the AU&VT
task - depicted in Figures 9(b) - are of particular interest, since it
directly loads Openstack with a task related to bug #1590179.

The edge filtering step identifies 10 new edges no inter-version
cluster similarity threshold is applied. These reduce to 2 once the
similarity threshold is raised to 0.5. The 2 new edges are between
the following components: RabbitMQ > Nova conductor and Mem-
cached > Nova libvirt. The Memcached metrics associated with the
edge are not related to cache access metrics, e.g. cache hits or misses.
The single edge isolated due to a causality ‘lag change’ pertains
to a relationship between RabbitMQ and and Nova libvirt, with
no apparent relation to the bug. None of the filtered relationships
involves Keystone, and as such metrics such as ‘keystone identity
authenticate success rate’, which are known to be related to the
bug.

Final rankings. In the case of the AU&VT task, Memcached -
which effectively is related to the bug - is ranked 1st after the
edge filtering steps. However, none of the metrics filtered in the
edge filtering steps seems to directly relate to bug #1590179. Also,
an intuitive isolation of lag changes in edges involving Keystone
clusters did not occur. Further experimentation is required to assess
S1EVE’s effectiveness for RCA of performance degradation issues
(as opposed to crashes, such as bug #1533942) such bug #1590179.

7 Related Work

Scalable Monitoring. With the increasing number of metrics ex-
posed by distributed cloud systems, the scalability of the monitoring
process becomes crucial. Meng et al. [73] optimize monitoring scal-
ability by choosing appropriate monitoring window lengths and
adjusting the monitoring intensity at runtime. Canali et al. [42]
achieve scalability by clustering metric data. A fuzzy logic approach
is used to speed up clustering, and thus obtain data for decision
making within shorter periods. Rodrigues et al. [46] explore the
trade-off between timeliness and the scalability in cloud monitor-
ing, and analyze the mutual influence between these two aspects
based on the monitoring parameters. Our work is complementary
to existing monitoring systems since SIEVE aims to improve the
efficiency by monitoring less number of metrics.

Distributed Debugging. Systems like Dapper [84] and Pip [80]
require the developers to instrument the application to obtain its
causal model. X-trace [50] uses a modified network stack to propa-
gate useful information about the application. In contrast, SIEVE
does not modify the application code to obtain the call/dependency
graph of the application.

Systems such as Fay [49] and DTrace [43] enable developers to
dynamically inject debugging requests by developers and require
no initial logs of metrics. Pivot Tracing [72] combines dynamic
instrumentation with causality tracing. SIEVE can complement these
approaches, because it can provide information about interesting
components and metrics, so that the developers can focus their
efforts to understand them better. Furthermore, SIEVE’s dependency
graph is a general tool that can not only be used for debugging, but
also for other purposes such as orchestration [89-91].

Data provenance [37, 53, 86] is another technique that can be
used to trace the dataflow in the system. SIEVE can also leverage
the existing provenance tools to derive the dependence graph.
Metric reduction. Reducing the size and dimensionality of the
bulk of metric data exposed by complex distributed systems is
essential for its understanding. Common techniques include sam-
pling, and data clustering via k-means and k-medoids. Kollios et



Table 9. Bug #151590179 results: OpenStack components, sorted by the number of novel metrics between correct (C) and faulty (F) versions,
for different Rally tasks. Metric novelty rankings correspond to column ‘N’, final rankings (after edge filtering steps) correspond to column ‘F’.
Components which are ranked 1st according to the ‘metric (N)ovelty’ ranking are underlined, those ranked 1st after edge filtering (‘(F)inal’

rankings) are emphasized in bold.

Rally tasks
Component AU&VT B&D C&DN C&DI
(C)hanged  (T)otal Rankings

(New/Disc.) N F C T N F C T N F C T N F
Neutron OvSwitch 42 (15/27) 53 1 - 0 (0/0) 38 14 - 40 (14/26) 52 1 1 42 (15/27) 53 1 -
Memcached 15 (14/1) 30 2 1 6 (4/2) 33 5 3 7 (3/3) 33 10 4 5 (4/1) 31 11 3
Nova API 10 (10/0) 25 3 - 3 (3/0) 44 10 o6 20 (15/5) 32 3 - 18 (13/5) 30 3 1
Nova conductor 9(0/9) 15 4 2 2 (2/0) 30 12 7 27 (0/27) 33 2 - 0 (0/0) 6 18 -
Nova libvirt 8 (0/8) 17 5 3 2 (2/0) 39 13 8 7 (1/6) 17 8 - 12 (6/6) 23 5 2
Neutron server 6 (6/0) 21 5 - 12(5/7) 52 2 1 6 (4/2) 34 11 5 18(13/5) 30 4 -
Neutron L3 agent 4(0/4) 19 7 - 6 (4/2) 46 4 - 0 (0/0) 15 16 - 2 (2/0) 15 13 -

Nova SSH 3 (3/0) 3 8 A - - 3 (3/0) 3 14 - - (1) - -
Glance registry 3(1/2) 45 9 0 (0/0) 30 17 - 7 (7/0) 7 9 - 8 (8/0) 8 7 -
RabbitMQ 3 (3/0) 3 10 4 4(2/2) 63 6 4 8 (8/0) 54 6 2 10 (9/1) 57 6 3
Neutron DHCP ag, 2 (2/0) 15 11 0 (0/0) 2 15 9 0 (0/0) 15 18 - 0 (0/0) 15 17 -
Nova compute 2(0/2) 19 12 - 0 (0/0) 45 16 - 6 (2/4) 23 12 - 2(0/2) 19 14 -
Nova novncproxy 1(1/0) 4 13 - 3(0/3) 17 11 - 8(7/1) 12 7 8 (8/0) 13 8 -
Nova scheduler 0 (0/0) 6 14 - 4(1/3) 31 8 - 14 (14/0) 14 5 0 (0/0) 14 15 -
Nova consoleauth 0 (0/0) 6 15 - 18 (4/14) 36 1 - 0(0/0) 6 17 - 5 (5/0) 20 10 -
Keystone 0 (0/0) 36 16 - 3 (6/2) 2 3 2 2(1/1) 37 15 7 0 (0/0) 36 16 -
Neutron metadata ag. 0 (0/0) 16 17 - 0 (0/0) 24 18 - 16 (16/0) 16 4 - 20 (20/0) 20 2 -
Glance API -1 - 8 - 4 (0/4) 3 7 5 5 (5/0) 15 13 6 6 (6/0) 6 9 -
Totals 103 (50/53) 332 - - 76 (34/42) 657 - - 136 (61/75) 378 - - 128 (81/47) 392 - -

Table 10. Change in ‘metric novelty’ rankings for bugs #1533942
and #1590179, considering the ‘boot and delete’ Rally task.

Rank (bug #) .
Component 1533942 ( 1 5%0179 Ranking change
Nova API 1 10 -9
Nova libvirt 2 11 -11
Nova scheduler 3 8 -5
Neutron server 4 2 +2
RabbitMQ 5 6 -1
Neutron L3 agent 6 4 +2
Nova novncproxy 7 11 -4
Glance API 8 7 +1
Neutron DHCP ag. 9 15 -6
Nova compute 10 16 -6
Glance registry 11 17 -6
Nova conductor 13 12 +1
Keystone 15 3 +12

al. [67] employ biased sampling to capture the local density of
datasets. Sampling based approaches argues for approximate com-
puting [68, 77, 78] to enable a systematic trade-off between the
accuracy, and efficiency to collect and compute on the metrics.
Zhou et al. [94] simply use random sampling due to its simplicity
and low complexity. Ng et al. [74] improved the k-medoid method
and made it more effective and efficient. Ding et al. [47] rely on
clustering over sampled data to reduce clustering time.

SIEVE’s approach is unique because of its two-step approach:
(1) we first cluster time series to identify the internal dependency
between any given metrics and then (2) infer the causal relations

among time series. Essentially, SIEVE uses two steps of data reduc-
tion for better reduction. Furthermore, SIEVE’s time series process-
ing method extracts other useful information such as the time delay
of the causal relationship, which can be leveraged in different use
cases (e.g., root cause analysis).

Orchestration of autoscaling. Current techniques for autoscal-
ing can be broadly classified into four categories [71]: (i) static and
threshold-based rules (offered by most cloud computing providers [3,
4,17, 27]); (ii) queuing theory [34, 60, 93]; (iii) reinforcement learn-
ing [79, 85, 92]; and (iv) time series analysis [44, 65, 82]. Existing
systems using these techniques can benefit from the selection of
better metrics and/or from the dependencies between components.
In this regard, our work is complementary to these techniques: it
is intended to provide the developers with knowledge about the
application as a whole. In our case study, we showed the benefits
of SIEVE for an autoscaling engine using threshold-based rules.

Root Cause Analysis (RCA). Large and complex distributed sys-
tems are susceptible to anomalies, whose root causes are often hard
to diagnose [62]. Jiang et al. [64] compare “healthy" and “faulty”
metric correlation maps, searching broken correlations. In contrast,
SIEVE leverages Granger causality instead of simple correlation,
allowing for richer causality inference (e.g., causality direction,
time lag between metrics). MonitorRank [66] uses metric collection
for RCA in a service-oriented architecture. It only analyzes pre-
established (component, metric) relations according to a previously-
generated call graph. SIEVE also uses a call graph, but does not fix
metric relations between components, for a richer set of potential
root causes. There are other application-specific solutions for RCA
(e.g., Hansel [83], Gretel [55]). In contrast, SIEVE uses a general
approach for understanding the complexity of microservices-based
applications that can support RCA as well as other use cases.



8 Experience and Lessons Learned

While developing SIEVE, we set ourselves ambitious design goals
(described in §2.2). However, we learned the following lessons while
designing and deploying SIEVE for real-world applications.

Lesson#1. When we first designed SIEVE, we were envisioning
a dependency graph that was clearly showing the relationships
between components (e.g., a tree). As a result, not only would the
number of metrics that needed to be monitored be reduced, but
also the number of components: one would only need to observe
the root(s) of the dependency graph, and make the actions of the
dependent components according to the established relationships
between the root(s) and them. Such a dependency graph would give
the orchestration scenario a huge benefit. Unfortunately, our expe-
rience has shown us that the relationships between components
are usually not linear, making the dependency graph more complex.
Also, there was no obvious root. Consequently, we had to adjust
our thinking and utilize some application knowledge regarding
components and their relations with others. Nevertheless, in our
experience, SIEVE provides the developer with a good starting point
to improve their workflows.

Lesson#2. SIEVE is designed for “blackbox” monitoring of the eval-
uated application, where SIEVE can collect and analyze generic
system metrics that are exposed by the infrastructure (e.g., CPU
usage, disk I/O, network bandwidth). However, in our experience,
a system for monitoring and analyzing an application should also
consider application-specific metrics (e.g., request latency, number
of error messages) to build effective management tools. Fortunately,
many microservices applications we analyzed already export such
metrics. However, given the number of components and exported
metrics, this fact can easily create an “information overload” for the
application developers. In fact, the main motivation of SIEVE was
to deal with this “information overload”. Our experience showed
that SIEVE can still monitor the application in the blackbox mode
(i.e., no instrumentation to the application), but also overcome the
barrage of application-specific metrics.

Lesson#3. To adapt to the application workload variations, SIEVE
needs to build a robust model for the evaluated application. This re-
quires a workload generator that can stress-test the application thor-
oughly. To meet this requirement, there are three approaches: (1) In
many cases the developers already supply an application-specific
workload generator. For instance, we employed the workload gen-
erator shipped with the OpenStack distribution. (2) For cases where
we did not have an existing workload generator, we implemented
a custom workload generator for the evaluated application. For
example, we built a workload generator for ShareLatex. Although
we were able to faithfully simulate user actions in ShareLatex, such
an approach might not be feasible for some applications. Having
the ability to utilize existing production traces (e.g., by replaying
the trace or by reproducing similar traces) or working in an online
fashion to generate the model of the application would certainly
help S1EVE. Custom workload generation can then be used to close
the gaps in the model for certain workload conditions not covered
by the existing traces. (3) We could also explore some principled
approaches for automatic workload generation, such as symbolic
execution in distributed systems [36].

9 Conclusion and Future Work

This paper reports on our experiences with designing and building
SIEVE, a platform to automatically derive actionable insights from
monitored metrics in distributed systems. SIEVE achieves this goal
by automatically reducing the amount of metrics and inferring inter-
component dependencies. Our general approach is independent
of the application, and can be deployed in an unsupervised mode
without prior knowledge of the time series of metrics. We showed
that SIEVE’s resulting model is consistent, and can be applied for
common use cases such as autoscaling and root-cause debugging.

An interesting research challenge for the future would be to
integrate SIEVE into the continuous integration pipeline of an appli-
cation development. In this scenario, the dependency graph can be
updated incrementally [39-41], which would speed up the analytics
part. In this way, the developers would be able to get real-time pro-
file updates of their infrastructure. Another challenge is to utilize
already existing traffic to generate the dependency graph without
requiring the developers to load the system. Using existing traffic
would alleviate the burden of developers to supply a workload gen-
erator. On the other hand, existing traffic traces might not always
capture the stress points of the application. A hybrid approach,
in which workload generation is only used for these corner cases,
might help to overcome this problem.

Software availability. The source code of SIEVE is publicly avail-
able: https://sieve-microservices.github.io/.

Acknowledgments. We would like to thank Amazon AWS for
providing the required infrastructure to run the experiments.
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