
At first, you're going to learn about concepts like variables, 'if' statements, and outputting text,
and they may seem uninteresting. I think that most people who try to learn coding expect to be
changing high-level attributes quickly, e.g. "let's add a fiery sword into the game!" When you end
up learning about variables instead, it may not be obvious how this eventually gets you to the
point where you can add features to your game/program.

•

You probably won't be making very interesting programs for a little while (at least a month or
two); they'll more likely be small, console-based programs around math functions or simple
guessing games.

•

Googling error messages○

What are syntax errors?▪

What's an interpreter?▪

Etc.▪

Gaining general knowledge○

Programming has a lot to do with being self-sufficient•

Programming isn't necessarily for everyone, it can be too frustrating, boring, etc. However, I don't
think intelligence/skill/talent plays too much into this not-for-everyone mentality; if you keep at it,
you will eventually learn it!

•

You will likely learn many languages if you're going to keep programming○

Technology changes rapidly enough where the popularity of languages changes over time
(e.g. you may be forced to stop using your favorite language (cough FLASH))

○

If you want someone to pick a language for you, just go with Python to start with○

It doesn't really matter which programming language you learn first.•

Finishing hobby projects is rare. A lot of people wonder what the best technology or language is,
and I think the answer is almost always "whatever will keep you motivated".

•

Making basic progress ("am I learning?")○

Having fun○

Only focus on two things when you start out:•

Setting expectations

Studying○

Practice○

Talking to other people (teachers, coders, etc.)○

In general, it's no different from learning anything else:•

I haven't consumed many of them myself, so I can't vouch for them.○

As mentioned earlier, learning self-sufficiency is important! Do a quick search for "awesome
Python/JavaScript/Haskell resources".

○

More specifically, there are lots of resources out there (books, sites, tutorials). I've intentionally
removed specific resources from this document for two reasons:

•

If the scope of the project is too large, then it can quickly lead to being demotivated, so pick
something that you think is feasible.

○

Reinventing the wheel is amazing for learning because it lets you focus on a smaller scope.
For example, if you wanted to learn game programming by making your own game, you now
have two tasks: designing a game and learning how to develop that game. If you instead
recreate an existing game like Tetris or Pong, then you can focus solely on the code. The
only caveat here is relatively obvious: don't claim other people's work as your own.

○

When it comes to practicing, try to come up with a project that is slightly beyond your current skill
level.

•

How to learn programming

Adam13531's advice for how to learn programming
Saturday, May 2, 2020 1:46 PM

 Misc Page 1

https://github.com/vhf/free-programming-books/blob/master/free-programming-books.md

only caveat here is relatively obvious: don't claim other people's work as your own.
At first, coming up with project ideas is just a matter of combining the last two bullet points:
pick a project you like, then tackle a small portion of it. E.g. rather than trying to make all of
Pokémon, maybe you can just make NPCs walk around.

○

StackOverflow is a good place to start for almost ANY basic programming question (e.g.
"how do I add to an array in JavaScript?" or "what does 'syntax error' mean?")

○

How to search effectively for the solution to your problems•

Take notes○

Test out programs for yourself○

Learning more interactively•

Debugging - the basics of this are placing breakpoints and inspecting variables. Most modern
languages have an easy way to debug them (e.g. Visual Studio for C++, PyCharm for Python,
browsers for JavaScript).

•

Describe the problem○

Describe the expected outcome○

Provide only as much code as is needed to reproduce the problem○

How to break down your problem into the smallest possible repro (http://sscce.org/)•

Things to learn ASAP

You haven't fixed a bug until you've fully understood it. The reason why this is so important is
because when you come across a bug, you immediately make a bunch of assumptions. Maybe the
bug is that an image isn't showing on-screen, and your initial hunch is "the image file doesn't
exist". You look in the folder that should contain the image, and you see it there. Then you think,
"maybe one of my libraries got updated and that's having trouble rendering the image". You
investigate that and make some changes, and in the process, the bug is solved, but you don't
know why. If you stop there, it's possible that the bug still exists but that you don't realize it. In
this particular example, let's say that the bug was caused by trying to access the file on a Tuesday
for some reason. You're clearly going to encounter this bug again, but you'll assume you dealt with
it. That's why it's so important to understand the root cause of a bug.

•

Where else might this bug exist in my code?○

How will I prevent myself from hitting this bug in the future?○

What techniques/knowledge did I learn that could help me find any bug faster in the future?
For example, maybe you learned that logging is helpful or that you tend to make typos in
filenames.

○

Whenever you find [and eventually fix] a bug, you should ask yourself these questions:•

Bugs

 Misc Page 2

http://sscce.org/

