CODAPPS
Coding Cheatsheet

Clément Levallois

Version 1.0, last modified

Table of Contents

Variables and objects
String variables store text
Integer variables store round numbers
Float and Double variables store decimals
Long stores big round numbers

Boolean stores true / false values

Objects: to create and store a variety of things

Methods
Creating (defining) a method
Classes
If... conditional statements
conditional statements for numbers
conditional statements about text
conditional statements about several items
Loops
ArrayLists

T OO O Ul R R W NNDNDNDN R R,

em

lyon
early business
makers school

Variables and objects

General rules:

» The type of the variable (String, Long, Boolean...) start with a capital letter.

 variable names start without a capital letter.

String variables store text

Creating a String variable and giving it a value

String title = "Welcome to my app"; @

@ Don’t forget the double quotes " "!

Integer variables store round numbers

Creating an Integer variable and giving it a value

Integer classSize = 32;
int anotherClassSize = 25; @

@ int is like Integer. It takes less memory but is sometimes less convenient to use. Also, note: no
double quote!! Double quotes are just for String.

Float and Double variables store decimals
Double is like Float but can store decimals with a lot more precision

Creating Float and Double variables

Float pi = 3.14f; @
Double piVeryPrecise = 3.141592653589793238462643383279502884197169d; @

@ Don’t forget the f letter at the end of your number. float or Float can be used, float takes less
memory than Float.

@ Don’t forget the d letter at the end of your number. double or Double can be used, double takes less
memory than Double.

Long stores big round numbers
Long is like Integer but can store bigger numbers

Creating a Long variable

Long millisecondsSincelastMonth = 3644340304304141; @

® Don’t forget the 1 letter at the end of your number. long or Long can be used, long takes less
memory than Long but can be inconvenient to use.

Boolean stores true / false values
This seems not very useful but actually we use it quite often

Creating a Boolean variable

Boolean hasAStudentCard = true; @

@ A classic mistake is to write "true" (with double quotes, which is incorrect). Boolean values are
true or false without double quotes " ". boolean can be used instead of Boolean: less memory but
also less convenient to use in some cases.

Objects: to create and store a variety of things
A variety of objects exist - use them to create and store things

Creating an Object storing a Date
Date dateStartOfTheGame; @

dateStart0fTheGame = new Date(); @
Date dateEndOfTheGame = new Date(); ®

@ An object dateStart0fTheGame of type Date is declared. It is null at the moment.
@ dateStart0fTheGame is instantiated: an instance of it is created.

® Shortcut: a variable can be declared and instantiated in one line of code.

Methods

Creating (defining) a method

Creating a method adding the VAT to a price

private Float addFrenchVAT(Float priceWithoutVAT) { @

Float priceWithVAT; @
//the regular rate of the VAT in France is 20% so we multiply the price by 1.20 to

find the new price ®
priceWithVAT = priceWithoutVAT * 1.20; @

return priceWithVAT; @
HO,

@ title of the method you create, then the method start at the opening curly brace {.

@ the method itself

® an explanation, not some code! The line starts with // to show this is some explanations for
humans like you and me, not some code in our app.

@ this closing curly brace signals the end of the definition of the method.

Creating a method which returns nothing

Float price = 5.99f; @
private void addFrenchVAT() { @
price = price * 1.20; ®
} @
@ we have created a variable named price
@ now we define a method like the one before in this lesson, except that:

* Float has been replaced by void, which is an English term meaning "nothing"

* it has no parameter: there is nothing in the parenthesis ()

® the method does one thing: it multiplies the value of the variable price by 1.20

@ this is the end of the method. There is no "return" statement.

Classes

A class is just a file in your app. It contains the variables and the methods that you want. It looks
like:

A simple example of what a class looks like
package net.clementlevallois.codapps.myfirstapp @
public class Form1 { @
Integer scorePlayer; @

public void addOneToScore() {
scorePlayer = scorePlayer + 1;

}
} @

@ a class always starts with the name of the package where it belongs

@ the name of the class (Form1) should have the same name as your file where it is writte (here the
file would be Form1.java)

® this is a variable which can be used anywhere in the class.

@ don’t forget the closing curly brace of the class!

Instantiating a Form in MyApplication.java

public void start() {
Form1 myForm1 = new Form1(); @®
myForm1.show(); @

@ We instantiate our Form1

@ And now we can use methods of this Form1. Here, we use the method show() which has for
effect to display the Form on screen.

Another common way to instantiate an object is this one:

Getting the present time and storing it in a variable

public void start() {
LocalTime timeNow = LocalTime.now(); @

}

@ This stores the time at the moment when this line of code is executed, in the variable timeNow

If... conditional statements

conditional statements for numbers

Different kinds of conditional statements about numbers

Float priceltemInEuros;
priceltemInEuros = 5.99f;
Label productlLabel = new Label();
if (priceltemInEuros < 6) {
productlLabel.setText("cheap product!");
}
if (priceltemInEuros == 5.99) { @
productlabel.setText("the price is exactly 5.99");
}
if (priceltemInEuros != 5.99) { @
productlabel.setText("the price is different from 5.99");
}
if (priceltemInEuros =< 6) {
productlabel.setText("the price is under or equal to 6!");
+
if (priceltemInEuros >= 7) {
productlabel.setText("the price is above or equal to 6!");

}

conditional statements about text
It would be a mistake to write:

Mistake! Don’t do this!

"Tristan";
"Tristan";

String playerName
String playerName2

if (playerNamel == playerName2) { @®
messagelabel.setText("the two players have the same name!");

}

@ Using == to compare two Strings is incorrect.
* Your build will not fail, but even if the two players have the same name it might say it’s false!

» when comparing two String, you should do like below:

Different kinds of conditional statements about text

"Tristan";
"Touni";

String playerName1l
String playerName2

if (playerName1l.equals(playerName2)) {
messagelabel.setText("the two players have the same name!");

}
if (!playerNamel.equals(playerName2)) { @

messagelabel.setText("the two players have different names!");

}

@ note the ! in front

conditional statements about several items

A statement with two conditions which need both to be true

Float priceltemInEuros;

priceltemInEuros = 5.99f;

Label productlLabel = new Label();

if (priceltemInEuros < 6 & priceltem > 2) { @
productlabel.setText("relatively cheap product!");

}

@ the & means "and". The two conditions: priceltemInEuros < 6 and priceltem > 2 both need to be
true for the statement productlLabel.setText("relatively cheap product!"); to be executed.

A statement with two conditions where just either one of the two needs to be true

Float priceltemInEuros;

priceltemInEuros = 5.99f;

Label productLabel = new Label();

if (priceltemInEuros < 6 | priceltem > 2) { @
productlabel.setText("relatively cheap product!");

}

@ the | means "or". Just one of the two conditions: priceltemInEuros < 6 or priceltem > 2 needs to
be true for the statement productlabel.setText("relatively cheap product!"); to be executed.

Loops
Writing a loop
for (int i = 0; i<100; i = i+1){

System.out.println("I looped " + i) +" times.";

}

A loop with several ifs inside

for (int i = 0; i<100; i = i+1){
System.out.println("I looped " + i + " times.");
if (i ==20) {
System.out.println("We just started the loops. This is going to be a long
journey.");

¥
if (i == 50) {
System.out.println("Half way already!");
}
if (i ==99) {
System.out.println("This was the last loop. Bye!");
}

}

ArrayLists

Creating a list and adding objects to it

ArrayList<Balloon> balloons = new ArrayList();
for (int i = 0; 1<20000;1 = i+1){
Balloon myBalloon = new Balloon();
balloons.add(myBalloon);
}

Looping through a list to show the names of all players

for (String player: playerNames) { @
Label myLabel = new Label();
mylLabel.setText(player);
myForm.add(myLabel)

}

@ here we assume that we had created before an ArrayList of player names.

	CODAPPS: Coding Cheatsheet
	Table of Contents
	Variables and objects
	String variables store text
	Integer variables store round numbers
	Float and Double variables store decimals
	Long stores big round numbers
	Boolean stores true / false values
	Objects: to create and store a variety of things

	Methods
	Creating (defining) a method

	Classes
	If…​ conditional statements
	conditional statements for numbers
	conditional statements about text
	conditional statements about several items

	Loops
	ArrayLists

