
Learning Apache Spark with Python

Wenqiang Feng

December 05, 2021

CONTENTS

1 Preface 3
1.1 About . 3
1.2 Motivation for this tutorial . 4
1.3 Copyright notice and license info . 4
1.4 Acknowledgement . 5
1.5 Feedback and suggestions . 5

2 Why Spark with Python ? 7
2.1 Why Spark? . 7
2.2 Why Spark with Python (PySpark)? . 9

3 Configure Running Platform 11
3.1 Run on Databricks Community Cloud . 11
3.2 Configure Spark on Mac and Ubuntu . 18
3.3 Configure Spark on Windows . 20
3.4 PySpark With Text Editor or IDE . 21
3.5 PySparkling Water: Spark + H2O . 29
3.6 Set up Spark on Cloud . 30
3.7 PySpark on Colaboratory . 31
3.8 Demo Code in this Section . 31

4 An Introduction to Apache Spark 33
4.1 Core Concepts . 33
4.2 Spark Components . 34
4.3 Architecture . 36
4.4 How Spark Works? . 36

5 Programming with RDDs 37
5.1 Create RDD . 37
5.2 Spark Operations . 41
5.3 rdd.DataFrame vs pd.DataFrame . 43

6 Statistics and Linear Algebra Preliminaries 61
6.1 Notations . 61
6.2 Linear Algebra Preliminaries . 61
6.3 Measurement Formula . 63

i

6.4 Confusion Matrix . 64
6.5 Statistical Tests . 65

7 Data Exploration 67
7.1 Univariate Analysis . 67
7.2 Multivariate Analysis . 80

8 Data Manipulation: Features 87
8.1 Feature Extraction . 87
8.2 Feature Transform . 96
8.3 Feature Selection . 116
8.4 Unbalanced data: Undersampling . 117

9 Regression 119
9.1 Linear Regression . 119
9.2 Generalized linear regression . 133
9.3 Decision tree Regression . 142
9.4 Random Forest Regression . 151
9.5 Gradient-boosted tree regression . 159

10 Regularization 167
10.1 Ordinary least squares regression . 167
10.2 Ridge regression . 168
10.3 Least Absolute Shrinkage and Selection Operator (LASSO) 168
10.4 Elastic net . 168

11 Classification 169
11.1 Binomial logistic regression . 169
11.2 Multinomial logistic regression . 181
11.3 Decision tree Classification . 194
11.4 Random forest Classification . 206
11.5 Gradient-boosted tree Classification . 217
11.6 XGBoost: Gradient-boosted tree Classification . 218
11.7 Naive Bayes Classification . 219

12 Clustering 233
12.1 K-Means Model . 233

13 RFM Analysis 247
13.1 RFM Analysis Methodology . 248
13.2 Demo . 250
13.3 Extension . 256

14 Text Mining 263
14.1 Text Collection . 263
14.2 Text Preprocessing . 271
14.3 Text Classification . 274
14.4 Sentiment analysis . 280
14.5 N-grams and Correlations . 287

ii

14.6 Topic Model: Latent Dirichlet Allocation . 287

15 Social Network Analysis 305
15.1 Introduction . 306
15.2 Co-occurrence Network . 306
15.3 Appendix: matrix multiplication in PySpark . 310
15.4 Correlation Network . 312

16 ALS: Stock Portfolio Recommendations 313
16.1 Recommender systems . 314
16.2 Alternating Least Squares . 315
16.3 Demo . 315

17 Monte Carlo Simulation 323
17.1 Simulating Casino Win . 324
17.2 Simulating a Random Walk . 326

18 Markov Chain Monte Carlo 335
18.1 Metropolis algorithm . 336
18.2 A Toy Example of Metropolis . 336
18.3 Demos . 337

19 Neural Network 345
19.1 Feedforward Neural Network . 345

20 Automation for Cloudera Distribution Hadoop 349
20.1 Automation Pipeline . 349
20.2 Data Clean and Manipulation Automation . 349
20.3 ML Pipeline Automation . 352
20.4 Save and Load PipelineModel . 353
20.5 Ingest Results Back into Hadoop . 353

21 Wrap PySpark Package 355
21.1 Package Wrapper . 355
21.2 Pacakge Publishing on PyPI . 357

22 PySpark Data Audit Library 359
22.1 Install with pip . 359
22.2 Install from Repo . 359
22.3 Uninstall . 359
22.4 Test . 360
22.5 Auditing on Big Dataset . 367

23 Zeppelin to jupyter notebook 371
23.1 How to Install . 371
23.2 Converting Demos . 372

24 My Cheat Sheet 377

iii

25 JDBC Connection 381
25.1 JDBC Driver . 381
25.2 JDBC read . 382
25.3 JDBC write . 383
25.4 JDBC temp_view . 383

26 Databricks Tips 385
26.1 Display samples . 385
26.2 Auto files download . 385
26.3 Working with AWS S3 . 389
26.4 delta format . 403
26.5 mlflow . 403

27 PySpark API 405
27.1 Stat API . 405
27.2 Regression API . 411
27.3 Classification API . 430
27.4 Clustering API . 450
27.5 Recommendation API . 465
27.6 Pipeline API . 470
27.7 Tuning API . 472
27.8 Evaluation API . 477

28 Main Reference 483

Bibliography 485

Python Module Index 487

Index 489

iv

Learning Apache Spark with Python

Welcome to my Learning Apache Spark with Python note! In this note, you will learn a wide array of
concepts about PySpark in Data Mining, Text Mining, Machine Learning and Deep Learning. The PDF
version can be downloaded from HERE.

CONTENTS 1

Learning Apache Spark with Python

2 CONTENTS

CHAPTER

ONE

PREFACE

1.1 About

1.1.1 About this note

This is a shared repository for Learning Apache Spark Notes. The PDF version can be downloaded from
HERE. The first version was posted on Github in ChenFeng ([Feng2017]). This shared repository mainly
contains the self-learning and self-teaching notes from Wenqiang during his IMA Data Science Fellowship.
The reader is referred to the repository https://github.com/runawayhorse001/LearningApacheSpark for more
details about the dataset and the .ipynb files.

In this repository, I try to use the detailed demo code and examples to show how to use each main functions.
If you find your work wasn’t cited in this note, please feel free to let me know.

Although I am by no means an data mining programming and Big Data expert, I decided that it would be
useful for me to share what I learned about PySpark programming in the form of easy tutorials with detailed
example. I hope those tutorials will be a valuable tool for your studies.

The tutorials assume that the reader has a preliminary knowledge of programming and Linux. And this
document is generated automatically by using sphinx.

1.1.2 About the author

• Wenqiang Feng

– Director of Data Science and PhD in Mathematics

– University of Tennessee at Knoxville

– Email: von198@gmail.com

• Biography

Wenqiang Feng is the Director of Data Science at American Express (AMEX). Prior to his time at
AMEX, Dr. Feng was a Sr. Data Scientist in Machine Learning Lab, H&R Block. Before joining
Block, Dr. Feng was a Data Scientist at Applied Analytics Group, DST (now SS&C). Dr. Feng’s
responsibilities include providing clients with access to cutting-edge skills and technologies, including
Big Data analytic solutions, advanced analytic and data enhancement techniques and modeling.

3

https://github.com/runawayhorse001/LearningApacheSpark
https://mingchen0919.github.io/learning-apache-spark/index.html
https://www.ima.umn.edu/2016-2017/SW1.23-3.10.17
https://github.com/runawayhorse001/LearningApacheSpark
http://sphinx.pocoo.org
mailto:von198@gmail.com

Learning Apache Spark with Python

Dr. Feng has deep analytic expertise in data mining, analytic systems, machine learning algorithms,
business intelligence, and applying Big Data tools to strategically solve industry problems in a cross-
functional business. Before joining DST, Dr. Feng was an IMA Data Science Fellow at The Institute
for Mathematics and its Applications (IMA) at the University of Minnesota. While there, he helped
startup companies make marketing decisions based on deep predictive analytics.

Dr. Feng graduated from University of Tennessee, Knoxville, with Ph.D. in Computational Mathe-
matics and Master’s degree in Statistics. He also holds Master’s degree in Computational Mathematics
from Missouri University of Science and Technology (MST) and Master’s degree in Applied Mathe-
matics from the University of Science and Technology of China (USTC).

• Declaration

The work of Wenqiang Feng was supported by the IMA, while working at IMA. However, any opin-
ion, finding, and conclusions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of the IMA, UTK, DST, HR & Block and AMEX.

1.2 Motivation for this tutorial

I was motivated by the IMA Data Science Fellowship project to learn PySpark. After that I was impressed
and attracted by the PySpark. And I foud that:

1. It is no exaggeration to say that Spark is the most powerful Bigdata tool.

2. However, I still found that learning Spark was a difficult process. I have to Google it and identify
which one is true. And it was hard to find detailed examples which I can easily learned the full
process in one file.

3. Good sources are expensive for a graduate student.

1.3 Copyright notice and license info

This Learning Apache Spark with Python PDF file is supposed to be a free and living document, which
is why its source is available online at https://runawayhorse001.github.io/LearningApacheSpark/pyspark.
pdf. But this document is licensed according to both MIT License and Creative Commons Attribution-
NonCommercial 2.0 Generic (CC BY-NC 2.0) License.

When you plan to use, copy, modify, merge, publish, distribute or sublicense, Please see the terms of
those licenses for more details and give the corresponding credits to the author.

4 Chapter 1. Preface

https://www.ima.umn.edu/2016-2017/SW1.23-3.10.17
https://runawayhorse001.github.io/LearningApacheSpark/pyspark.pdf
https://runawayhorse001.github.io/LearningApacheSpark/pyspark.pdf
https://github.com/runawayhorse001/LearningApacheSpark/blob/master/LICENSE
https://creativecommons.org/licenses/by-nc/2.0/legalcode
https://creativecommons.org/licenses/by-nc/2.0/legalcode

Learning Apache Spark with Python

1.4 Acknowledgement

At here, I would like to thank Ming Chen, Jian Sun and Zhongbo Li at the University of Tennessee at
Knoxville for the valuable discussion and thank the generous anonymous authors for providing the detailed
solutions and source code on the internet. Without those help, this repository would not have been possible
to be made. Wenqiang also would like to thank the Institute for Mathematics and Its Applications (IMA) at
University of Minnesota, Twin Cities for support during his IMA Data Scientist Fellow visit and thank TAN
THIAM HUAT and Mark Rabins for finding the typos.

A special thank you goes to Dr. Haiping Lu, Lecturer in Machine Learning at Department of Computer
Science, University of Sheffield, for recommending and heavily using my tutorial in his teaching class and
for the valuable suggestions.

1.5 Feedback and suggestions

Your comments and suggestions are highly appreciated. I am more than happy to receive corrections, sug-
gestions or feedbacks through email (von198@gmail.com) for improvements.

1.4. Acknowledgement 5

https://www.ima.umn.edu/
https://twin-cities.umn.edu/
http://staffwww.dcs.shef.ac.uk/people/H.Lu/
mailto:von198@gmail.com

Learning Apache Spark with Python

6 Chapter 1. Preface

CHAPTER

TWO

WHY SPARK WITH PYTHON ?

Chinese proverb

Sharpening the knife longer can make it easier to hack the firewood – old Chinese proverb

I want to answer this question from the following two parts:

2.1 Why Spark?

I think the following four main reasons from Apache Spark™ official website are good enough to convince
you to use Spark.

1. Speed

Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

Apache Spark has an advanced DAG execution engine that supports acyclic data flow and in-memory
computing.

Fig. 1: Logistic regression in Hadoop and Spark

2. Ease of Use

Write applications quickly in Java, Scala, Python, R.

7

http://spark.apache.org/

Learning Apache Spark with Python

Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it
interactively from the Scala, Python and R shells.

3. Generality

Combine SQL, streaming, and complex analytics.

Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning,
GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application.

Fig. 2: The Spark stack

4. Runs Everywhere

Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including
HDFS, Cassandra, HBase, and S3.

8 Chapter 2. Why Spark with Python ?

Learning Apache Spark with Python

Fig. 3: The Spark platform

2.2 Why Spark with Python (PySpark)?

No matter you like it or not, Python has been one of the most popular programming languages.

2.2. Why Spark with Python (PySpark)? 9

Learning Apache Spark with Python

Fig. 4: KDnuggets Analytics/Data Science 2017 Software Poll from kdnuggets.

10 Chapter 2. Why Spark with Python ?

http://www.kdnuggets.com/2017/05/poll-analytics-data-science-machine-learning-software-leaders.html

CHAPTER

THREE

CONFIGURE RUNNING PLATFORM

Chinese proverb

Good tools are prerequisite to the successful execution of a job. – old Chinese proverb

A good programming platform can save you lots of troubles and time. Herein I will only present how to
install my favorite programming platform and only show the easiest way which I know to set it up on Linux
system. If you want to install on the other operator system, you can Google it. In this section, you may learn
how to set up Pyspark on the corresponding programming platform and package.

3.1 Run on Databricks Community Cloud

If you don’t have any experience with Linux or Unix operator system, I would love to recommend you to
use Spark on Databricks Community Cloud. Since you do not need to setup the Spark and it’s totally free
for Community Edition. Please follow the steps listed below.

1. Sign up a account at: https://community.cloud.databricks.com/login.html

11

https://community.cloud.databricks.com/login.html

Learning Apache Spark with Python

2. Sign in with your account, then you can creat your cluster(machine), table(dataset) and
notebook(code).

12 Chapter 3. Configure Running Platform

Learning Apache Spark with Python

3. Create your cluster where your code will run

3.1. Run on Databricks Community Cloud 13

Learning Apache Spark with Python

4. Import your dataset

14 Chapter 3. Configure Running Platform

Learning Apache Spark with Python

3.1. Run on Databricks Community Cloud 15

Learning Apache Spark with Python

Note: You need to save the path which appears at Uploaded to DBFS: /File-
Store/tables/05rmhuqv1489687378010/. Since we will use this path to load the dataset.

5. Create your notebook

16 Chapter 3. Configure Running Platform

Learning Apache Spark with Python

After finishing the above 5 steps, you are ready to run your Spark code on Databricks Community Cloud. I
will run all the following demos on Databricks Community Cloud. Hopefully, when you run the demo code,
you will get the following results:

+---+-----+-----+---------+-----+
|_c0| TV|Radio|Newspaper|Sales|
+---+-----+-----+---------+-----+
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9
+---+-----+-----+---------+-----+
only showing top 5 rows

root
|-- _c0: integer (nullable = true)
|-- TV: double (nullable = true)
|-- Radio: double (nullable = true)
|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

3.1. Run on Databricks Community Cloud 17

Learning Apache Spark with Python

3.2 Configure Spark on Mac and Ubuntu

3.2.1 Installing Prerequisites

I will strongly recommend you to install Anaconda, since it contains most of the prerequisites and support
multiple Operator Systems.

1. Install Python

Go to Ubuntu Software Center and follow the following steps:

a. Open Ubuntu Software Center

b. Search for python

c. And click Install

Or Open your terminal and using the following command:

sudo apt-get install build-essential checkinstall
sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev

libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev
sudo apt-get install python
sudo easy_install pip
sudo pip install ipython

3.2.2 Install Java

Java is used by many other softwares. So it is quite possible that you have already installed it. You can by
using the following command in Command Prompt:

java -version

Otherwise, you can follow the steps in How do I install Java for my Mac? to install java on Mac and use the
following command in Command Prompt to install on Ubuntu:

sudo apt-add-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

3.2.3 Install Java SE Runtime Environment

I installed ORACLE Java JDK.

Warning: Installing Java and Java SE Runtime Environment steps are very important, since
Spark is a domain-specific language written in Java.

18 Chapter 3. Configure Running Platform

https://www.anaconda.com/download/
https://java.com/en/download/help/mac_install.xml
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html

Learning Apache Spark with Python

You can check if your Java is available and find it’s version by using the following command in Command
Prompt:

java -version

If your Java is installed successfully, you will get the similar results as follows:

java version "1.8.0_131"
Java(TM) SE Runtime Environment (build 1.8.0_131-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)

3.2.4 Install Apache Spark

Actually, the Pre-build version doesn’t need installation. You can use it when you unpack it.

a. Download: You can get the Pre-built Apache Spark™ from Download Apache Spark™.

b. Unpack: Unpack the Apache Spark™ to the path where you want to install the Spark.

c. Test: Test the Prerequisites: change the direction spark-#.#.#-bin-hadoop#.#/
bin and run

./pyspark

Python 2.7.13 |Anaconda 4.4.0 (x86_64)| (default, Dec 20 2016,
→˓23:05:08)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more
→˓information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.
→˓properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR,
use setLogLevel(newLevel).
17/08/30 13:30:12 WARN NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where
→˓applicable
17/08/30 13:30:17 WARN ObjectStore: Failed to get database global_
→˓temp,
returning NoSuchObjectException
Welcome to

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/

/__ / .__/_,_/_/ /_/_\ version 2.1.1
/_/

Using Python version 2.7.13 (default, Dec 20 2016 23:05:08)
SparkSession available as 'spark'.

3.2. Configure Spark on Mac and Ubuntu 19

http://spark.apache.org/downloads.html

Learning Apache Spark with Python

3.2.5 Configure the Spark

a. Mac Operator System: open your bash_profile in Terminal

vim ~/.bash_profile

And add the following lines to your bash_profile (remember to change the path)

add for spark
export SPARK_HOME=your_spark_installation_path
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
export PATH=$PATH:$SPARK_HOME/bin
export PYSPARK_DRIVER_PYTHON="jupyter"
export PYSPARK_DRIVER_PYTHON_OPTS="notebook"

At last, remember to source your bash_profile

source ~/.bash_profile

b. Ubuntu Operator Sysytem: open your bashrc in Terminal

vim ~/.bashrc

And add the following lines to your bashrc (remember to change the path)

add for spark
export SPARK_HOME=your_spark_installation_path
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
export PATH=$PATH:$SPARK_HOME/bin
export PYSPARK_DRIVE_PYTHON="jupyter"
export PYSPARK_DRIVE_PYTHON_OPTS="notebook"

At last, remember to source your bashrc

source ~/.bashrc

3.3 Configure Spark on Windows

Installing open source software on Windows is always a nightmare for me. Thanks for Deelesh Mandloi.
You can follow the detailed procedures in the blog Getting Started with PySpark on Windows to install the
Apache Spark™ on your Windows Operator System.

20 Chapter 3. Configure Running Platform

http://deelesh.github.io/pyspark-windows.html

Learning Apache Spark with Python

3.4 PySpark With Text Editor or IDE

3.4.1 PySpark With Jupyter Notebook

After you finishing the above setup steps in Configure Spark on Mac and Ubuntu, then you should be good
to write and run your PySpark Code in Jupyter notebook.

3.4.2 PySpark With PyCharm

After you finishing the above setup steps in Configure Spark on Mac and Ubuntu, then you should be good
to add the PySpark to your PyCharm project.

1. Create a new PyCharm project

3.4. PySpark With Text Editor or IDE 21

Learning Apache Spark with Python

2. Go to Project Structure

Option 1: File -> Settings -> Project: -> Project Structure

Option 2: PyCharm -> Preferences -> Project: -> Project Structure

22 Chapter 3. Configure Running Platform

Learning Apache Spark with Python

3. Add Content Root: all ZIP files from $SPARK_HOME/python/lib

3.4. PySpark With Text Editor or IDE 23

Learning Apache Spark with Python

24 Chapter 3. Configure Running Platform

Learning Apache Spark with Python

4. Run your script

3.4.3 PySpark With Apache Zeppelin

After you finishing the above setup steps in Configure Spark on Mac and Ubuntu, then you should be good
to write and run your PySpark Code in Apache Zeppelin.

3.4. PySpark With Text Editor or IDE 25

Learning Apache Spark with Python

3.4.4 PySpark With Sublime Text

After you finishing the above setup steps in Configure Spark on Mac and Ubuntu, then you should be good
to use Sublime Text to write your PySpark Code and run your code as a normal python code in Terminal.

python test_pyspark.py

Then you should get the output results in your terminal.

26 Chapter 3. Configure Running Platform

Learning Apache Spark with Python

3.4.5 PySpark With Eclipse

If you want to run PySpark code on Eclipse, you need to add the paths for the External Libraries for your
Current Project as follows:

1. Open the properties of your project

3.4. PySpark With Text Editor or IDE 27

Learning Apache Spark with Python

2. Add the paths for the External Libraries

And then you should be good to run your code on Eclipse with PyDev.

28 Chapter 3. Configure Running Platform

Learning Apache Spark with Python

3.5 PySparkling Water: Spark + H2O

1. Download Sparkling Water from: https://s3.amazonaws.com/h2o-release/sparkling-water/
rel-2.4/5/index.html

2. Test PySparking

unzip sparkling-water-2.4.5.zip
cd ~/sparkling-water-2.4.5/bin
./pysparkling

If you have a correct setup for PySpark, then you will get the following results:

Using Spark defined in the SPARK_HOME=/Users/dt216661/spark environmental
→˓property

Python 3.7.1 (default, Dec 14 2018, 13:28:58)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
2019-02-15 14:08:30 WARN NativeCodeLoader:62 - Unable to load native-hadoop
→˓library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".

(continues on next page)

3.5. PySparkling Water: Spark + H2O 29

https://s3.amazonaws.com/h2o-release/sparkling-water/rel-2.4/5/index.html
https://s3.amazonaws.com/h2o-release/sparkling-water/rel-2.4/5/index.html

Learning Apache Spark with Python

(continued from previous page)

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.
→˓properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
→˓setLogLevel(newLevel).
2019-02-15 14:08:31 WARN Utils:66 - Service 'SparkUI' could not bind on port
→˓4040. Attempting port 4041.
2019-02-15 14:08:31 WARN Utils:66 - Service 'SparkUI' could not bind on port
→˓4041. Attempting port 4042.
17/08/30 13:30:12 WARN NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
17/08/30 13:30:17 WARN ObjectStore: Failed to get database global_temp,
returning NoSuchObjectException
Welcome to

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/

/__ / .__/_,_/_/ /_/_\ version 2.4.0
/_/

Using Python version 3.7.1 (default, Dec 14 2018 13:28:58)
SparkSession available as 'spark'.

3. Setup pysparkling with Jupyter notebook

Add the following alias to your bashrc (Linux systems) or bash_profile (Mac system)

alias sparkling="PYSPARK_DRIVER_PYTHON="ipython" PYSPARK_DRIVER_PYTHON_OPTS=
→˓ "notebook" /~/~/sparkling-water-2.4.5/bin/pysparkling"

4. Open pysparkling in terminal

sparkling

3.6 Set up Spark on Cloud

Following the setup steps in Configure Spark on Mac and Ubuntu, you can set up your own cluster on the
cloud, for example AWS, Google Cloud. Actually, for those clouds, they have their own Big Data tool. You
can run them directly whitout any setting just like Databricks Community Cloud. If you want more details,
please feel free to contact with me.

30 Chapter 3. Configure Running Platform

Learning Apache Spark with Python

3.7 PySpark on Colaboratory

Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud.

3.7.1 Installation

!pip install pyspark

3.7.2 Testing

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

df = spark.sparkContext\
.parallelize([(1, 2, 3, 'a b c'),

(4, 5, 6, 'd e f'),
(7, 8, 9, 'g h i')])\

.toDF(['col1', 'col2', 'col3','col4'])

df.show()

Output:

+----+----+----+-----+
|col1|col2|col3| col4|
+----+----+----+-----+
1	2	3	a b c
4	5	6	d e f
7	8	9	g h i
+----+----+----+-----+

3.8 Demo Code in this Section

The Jupyter notebook can be download from installation on colab.

• Python Source code

set up SparkSession
from pyspark.sql import SparkSession

spark = SparkSession \

(continues on next page)

3.7. PySpark on Colaboratory 31

https://colab.research.google.com/drive/15LvijFl1gFoazvWlPxGFbYUl43KubrW1#scrollTo=mGHjEx_yixDx

Learning Apache Spark with Python

(continued from previous page)

.builder \

.appName("Python Spark SQL basic example") \

.config("spark.some.config.option", "some-value") \

.getOrCreate()

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("/home/feng/Spark/Code/data/Advertising.csv
→˓",header=True)

df.show(5)
df.printSchema()

32 Chapter 3. Configure Running Platform

CHAPTER

FOUR

AN INTRODUCTION TO APACHE SPARK

Chinese proverb

Know yourself and know your enemy, and you will never be defeated – idiom, from Sunzi’s Art of War

4.1 Core Concepts

Most of the following content comes from [Kirillov2016]. So the copyright belongs to Anton Kirillov. I
will refer you to get more details from Apache Spark core concepts, architecture and internals.

Before diving deep into how Apache Spark works, lets understand the jargon of Apache Spark

• Job: A piece of code which reads some input from HDFS or local, performs some computation on the
data and writes some output data.

• Stages: Jobs are divided into stages. Stages are classified as a Map or reduce stages (Its easier to
understand if you have worked on Hadoop and want to correlate). Stages are divided based on com-
putational boundaries, all computations (operators) cannot be Updated in a single Stage. It happens
over many stages.

• Tasks: Each stage has some tasks, one task per partition. One task is executed on one partition of data
on one executor (machine).

• DAG: DAG stands for Directed Acyclic Graph, in the present context its a DAG of operators.

• Executor: The process responsible for executing a task.

• Master: The machine on which the Driver program runs

• Slave: The machine on which the Executor program runs

33

http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/

Learning Apache Spark with Python

4.2 Spark Components

1. Spark Driver

• separate process to execute user applications

• creates SparkContext to schedule jobs execution and negotiate with cluster manager

2. Executors

• run tasks scheduled by driver

• store computation results in memory, on disk or off-heap

• interact with storage systems

3. Cluster Manager

• Mesos

34 Chapter 4. An Introduction to Apache Spark

Learning Apache Spark with Python

• YARN

• Spark Standalone

Spark Driver contains more components responsible for translation of user code into actual jobs executed
on cluster:

• SparkContext

– represents the connection to a Spark cluster, and can be used to create RDDs, accu-
mulators and broadcast variables on that cluster

• DAGScheduler

– computes a DAG of stages for each job and submits them to TaskScheduler deter-
mines preferred locations for tasks (based on cache status or shuffle files locations)
and finds minimum schedule to run the jobs

• TaskScheduler

– responsible for sending tasks to the cluster, running them, retrying if there are failures,
and mitigating stragglers

• SchedulerBackend

– backend interface for scheduling systems that allows plugging in different implemen-
tations(Mesos, YARN, Standalone, local)

• BlockManager

– provides interfaces for putting and retrieving blocks both locally and remotely into
various stores (memory, disk, and off-heap)

4.2. Spark Components 35

Learning Apache Spark with Python

4.3 Architecture

4.4 How Spark Works?

Spark has a small code base and the system is divided in various layers. Each layer has some responsibilities.
The layers are independent of each other.

The first layer is the interpreter, Spark uses a Scala interpreter, with some modifications. As you enter
your code in spark console (creating RDD’s and applying operators), Spark creates a operator graph. When
the user runs an action (like collect), the Graph is submitted to a DAG Scheduler. The DAG scheduler
divides operator graph into (map and reduce) stages. A stage is comprised of tasks based on partitions of
the input data. The DAG scheduler pipelines operators together to optimize the graph. For e.g. Many map
operators can be scheduled in a single stage. This optimization is key to Sparks performance. The final
result of a DAG scheduler is a set of stages. The stages are passed on to the Task Scheduler. The task
scheduler launches tasks via cluster manager. (Spark Standalone/Yarn/Mesos). The task scheduler doesn’t
know about dependencies among stages.

36 Chapter 4. An Introduction to Apache Spark

CHAPTER

FIVE

PROGRAMMING WITH RDDS

Chinese proverb

If you only know yourself, but not your opponent, you may win or may lose. If you know neither
yourself nor your enemy, you will always endanger yourself – idiom, from Sunzi’s Art of War

RDD represents Resilient Distributed Dataset. An RDD in Spark is simply an immutable distributed
collection of objects sets. Each RDD is split into multiple partitions (similar pattern with smaller sets),
which may be computed on different nodes of the cluster.

5.1 Create RDD

Usually, there are two popular ways to create the RDDs: loading an external dataset, or distributing a
set of collection of objects. The following examples show some simplest ways to create RDDs by using
parallelize() fucntion which takes an already existing collection in your program and pass the same
to the Spark Context.

1. By using parallelize() function

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

df = spark.sparkContext.parallelize([(1, 2, 3, 'a b c'),
(4, 5, 6, 'd e f'),
(7, 8, 9, 'g h i')]).toDF(['col1', 'col2', 'col3','col4'])

Then you will get the RDD data:

df.show()

+----+----+----+-----+

(continues on next page)

37

Learning Apache Spark with Python

(continued from previous page)

|col1|col2|col3| col4|
+----+----+----+-----+
1	2	3	a b c
4	5	6	d e f
7	8	9	g h i
+----+----+----+-----+

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

myData = spark.sparkContext.parallelize([(1,2), (3,4), (5,6), (7,8), (9,10)])

Then you will get the RDD data:

myData.collect()

[(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)]

2. By using createDataFrame() function

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

Employee = spark.createDataFrame([
('1', 'Joe', '70000', '1'),
('2', 'Henry', '80000', '2'),
('3', 'Sam', '60000', '2'),
('4', 'Max', '90000', '1')],
['Id', 'Name', 'Sallary','DepartmentId']

)

Then you will get the RDD data:

+---+-----+-------+------------+
| Id| Name|Sallary|DepartmentId|
+---+-----+-------+------------+
1	Joe	70000	1
2	Henry	80000	2
3	Sam	60000	2
4	Max	90000	1
+---+-----+-------+------------+

38 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

3. By using read and load functions

a. Read dataset from .csv file

set up SparkSession
from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("/home/feng/Spark/Code/data/Advertising.csv",
→˓header=True)

df.show(5)
df.printSchema()

Then you will get the RDD data:

+---+-----+-----+---------+-----+
|_c0| TV|Radio|Newspaper|Sales|
+---+-----+-----+---------+-----+
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9
+---+-----+-----+---------+-----+
only showing top 5 rows

root
|-- _c0: integer (nullable = true)
|-- TV: double (nullable = true)
|-- Radio: double (nullable = true)
|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

Once created, RDDs offer two types of operations: transformations and actions.

b. Read dataset from DataBase

set up SparkSession
from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \

(continues on next page)

5.1. Create RDD 39

Learning Apache Spark with Python

(continued from previous page)

.getOrCreate()

User information
user = 'your_username'
pw = 'your_password'

Database information
table_name = 'table_name'
url = 'jdbc:postgresql://##.###.###.##:5432/dataset?user='+user+'&
→˓password='+pw
properties ={'driver': 'org.postgresql.Driver', 'password': pw,'user
→˓': user}

df = spark.read.jdbc(url=url, table=table_name,
→˓properties=properties)

df.show(5)
df.printSchema()

Then you will get the RDD data:

+---+-----+-----+---------+-----+
|_c0| TV|Radio|Newspaper|Sales|
+---+-----+-----+---------+-----+
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9
+---+-----+-----+---------+-----+
only showing top 5 rows

root
|-- _c0: integer (nullable = true)
|-- TV: double (nullable = true)
|-- Radio: double (nullable = true)
|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

Note: Reading tables from Database needs the proper drive for the corresponding Database. For example,
the above demo needs org.postgresql.Driver and you need to download it and put it in jars folder
of your spark installation path. I download postgresql-42.1.1.jar from the official website and put
it in jars folder.

C. Read dataset from HDFS

from pyspark.conf import SparkConf
from pyspark.context import SparkContext
from pyspark.sql import HiveContext

(continues on next page)

40 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

(continued from previous page)

sc= SparkContext('local','example')
hc = HiveContext(sc)
tf1 = sc.textFile("hdfs://cdhstltest/user/data/demo.CSV")
print(tf1.first())

hc.sql("use intg_cme_w")
spf = hc.sql("SELECT * FROM spf LIMIT 100")
print(spf.show(5))

5.2 Spark Operations

Warning: All the figures below are from Jeffrey Thompson. The interested reader is referred to pyspark
pictures

There are two main types of Spark operations: Transformations and Actions [Karau2015].

Note: Some people defined three types of operations: Transformations, Actions and Shuffles.

5.2. Spark Operations 41

https://github.com/jkthompson/pyspark-pictures
https://github.com/jkthompson/pyspark-pictures

Learning Apache Spark with Python

5.2.1 Spark Transformations

Transformations construct a new RDD from a previous one. For example, one common transformation is
filtering data that matches a predicate.

5.2.2 Spark Actions

Actions, on the other hand, compute a result based on an RDD, and either return it to the driver program or
save it to an external storage system (e.g., HDFS).

42 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

5.3 rdd.DataFrame vs pd.DataFrame

5.3.1 Create DataFrame

1. From List

my_list = [['a', 1, 2], ['b', 2, 3],['c', 3, 4]]
col_name = ['A', 'B', 'C']

:: Python Code:

caution for the columns=
pd.DataFrame(my_list,columns= col_name)
#
spark.createDataFrame(my_list, col_name).show()

:: Comparison:

+---+---+---+
| A| B| C|

A B C +---+---+---+
0 a 1 2 | a| 1| 2|
1 b 2 3 | b| 2| 3|
2 c 3 4 | c| 3| 4|

+---+---+---+

Attention: Pay attentation to the parameter columns= in pd.DataFrame. Since the default value
will make the list as rows.

:: Python Code:

caution for the columns=
pd.DataFrame(my_list, columns= col_name)
#
pd.DataFrame(my_list, col_name)

:: Comparison:

5.3. rdd.DataFrame vs pd.DataFrame 43

Learning Apache Spark with Python

A B C 0 1 2
0 a 1 2 A a 1 2
1 b 2 3 B b 2 3
2 c 3 4 C c 3 4

2. From Dict

d = {'A': [0, 1, 0],
'B': [1, 0, 1],
'C': [1, 0, 0]}

:: Python Code:

pd.DataFrame(d)for
Tedious for PySpark
spark.createDataFrame(np.array(list(d.values())).T.tolist(),list(d.keys())).
→˓show()

:: Comparison:

+---+---+---+
| A| B| C|

A B C +---+---+---+
0 0 1 1 | 0| 1| 1|
1 1 0 0 | 1| 0| 0|
2 0 1 0 | 0| 1| 0|

+---+---+---+

5.3.2 Load DataFrame

1. From DataBase

Most of time, you need to share your code with your colleagues or release your code for Code Review or
Quality assurance(QA). You will definitely do not want to have your User Information in the code.
So you can save them in login.txt:

runawayhorse001
PythonTips

and use the following code to import your User Information:

#User Information
try:

login = pd.read_csv(r'login.txt', header=None)
user = login[0][0]
pw = login[0][1]
print('User information is ready!')

except:
print('Login information is not available!!!')

(continues on next page)

44 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

(continued from previous page)

#Database information
host = '##.###.###.##'
db_name = 'db_name'
table_name = 'table_name'

:: Comparison:

conn = psycopg2.connect(host=host, database=db_name, user=user, password=pw)
cur = conn.cursor()

sql = """
select *
from {table_name}
""".format(table_name=table_name)

dp = pd.read_sql(sql, conn)

connect to database
url = 'jdbc:postgresql://'+host+':5432/'+db_name+'?user='+user+'&password='+pw
properties ={'driver': 'org.postgresql.Driver', 'password': pw,'user': user}
ds = spark.read.jdbc(url=url, table=table_name, properties=properties)

Attention: Reading tables from Database with PySpark needs the proper drive for the corresponding
Database. For example, the above demo needs org.postgresql.Driver and you need to download it and
put it in jars folder of your spark installation path. I download postgresql-42.1.1.jar from the official
website and put it in jars folder.

2. From .csv

:: Comparison:

pd.DataFrame dp: DataFrame pandas
dp = pd.read_csv('Advertising.csv')
#rdd.DataFrame. dp: DataFrame spark
ds = spark.read.csv(path='Advertising.csv',
sep=',',
encoding='UTF-8',
comment=None,

header=True,
inferSchema=True)

3. From .json

Data from: http://api.luftdaten.info/static/v1/data.json

dp = pd.read_json("data/data.json")
ds = spark.read.json('data/data.json')

:: Python Code:

5.3. rdd.DataFrame vs pd.DataFrame 45

http://api.luftdaten.info/static/v1/data.json

Learning Apache Spark with Python

dp[['id','timestamp']].head(4)
#
ds[['id','timestamp']].show(4)

:: Comparison:

+----------+------------------
→˓-+

| id|
→˓timestamp|

id timestamp +----------+------------------
→˓-+
0 2994551481 2019-02-28 17:23:52 |2994551481|2019-02-28
→˓17:23:52|
1 2994551482 2019-02-28 17:23:52 |2994551482|2019-02-28
→˓17:23:52|
2 2994551483 2019-02-28 17:23:52 |2994551483|2019-02-28
→˓17:23:52|
3 2994551484 2019-02-28 17:23:52 |2994551484|2019-02-28
→˓17:23:52|

+----------+------------------
→˓-+

only showing top 4 rows

5.3.3 First n Rows

:: Python Code:

dp.head(4)
#
ds.show(4)

:: Comparison:

+-----+-----+---------+-----+
| TV|Radio|Newspaper|Sales|

TV Radio Newspaper Sales +-----+-----+---------+-----+
0 230.1 37.8 69.2 22.1 |230.1| 37.8| 69.2| 22.1|
1 44.5 39.3 45.1 10.4 | 44.5| 39.3| 45.1| 10.4|
2 17.2 45.9 69.3 9.3 | 17.2| 45.9| 69.3| 9.3|
3 151.5 41.3 58.5 18.5 |151.5| 41.3| 58.5| 18.5|

+-----+-----+---------+-----+
only showing top 4 rows

46 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

5.3.4 Column Names

:: Python Code:

dp.columns
#
ds.columns

:: Comparison:

Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
['TV', 'Radio', 'Newspaper', 'Sales']

5.3.5 Data types

:: Python Code:

dp.dtypes
#
ds.dtypes

:: Comparison:

TV float64 [('TV', 'double'),
Radio float64 ('Radio', 'double'),
Newspaper float64 ('Newspaper', 'double'),
Sales float64 ('Sales', 'double')]
dtype: object

5.3.6 Fill Null

my_list = [['male', 1, None], ['female', 2, 3],['male', 3, 4]]
dp = pd.DataFrame(my_list,columns=['A', 'B', 'C'])
ds = spark.createDataFrame(my_list, ['A', 'B', 'C'])
#
dp.head()
ds.show()

:: Comparison:

+------+---+----+
| A| B| C|

A B C +------+---+----+
0 male 1 NaN | male| 1|null|
1 female 2 3.0 |female| 2| 3|
2 male 3 4.0 | male| 3| 4|

+------+---+----+

:: Python Code:

5.3. rdd.DataFrame vs pd.DataFrame 47

Learning Apache Spark with Python

dp.fillna(-99)
#
ds.fillna(-99).show()

:: Comparison:

+------+---+----+
| A| B| C|

A B C +------+---+----+
0 male 1 -99 | male| 1| -99|
1 female 2 3.0 |female| 2| 3|
2 male 3 4.0 | male| 3| 4|

+------+---+----+

5.3.7 Replace Values

:: Python Code:

caution: you need to chose specific col
dp.A.replace(['male', 'female'],[1, 0], inplace=True)
dp
#caution: Mixed type replacements are not supported
ds.na.replace(['male','female'],['1','0']).show()

:: Comparison:

+---+---+----+
| A| B| C|

A B C +---+---+----+
0 1 1 NaN | 1| 1|null|
1 0 2 3.0 | 0| 2| 3|
2 1 3 4.0 | 1| 3| 4|

+---+---+----+

5.3.8 Rename Columns

1. Rename all columns

:: Python Code:

dp.columns = ['a','b','c','d']
dp.head(4)
#
ds.toDF('a','b','c','d').show(4)

:: Comparison:

+-----+----+----+----+
| a| b| c| d|

(continues on next page)

48 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

(continued from previous page)

a b c d +-----+----+----+----+
0 230.1 37.8 69.2 22.1 |230.1|37.8|69.2|22.1|
1 44.5 39.3 45.1 10.4 | 44.5|39.3|45.1|10.4|
2 17.2 45.9 69.3 9.3 | 17.2|45.9|69.3| 9.3|
3 151.5 41.3 58.5 18.5 |151.5|41.3|58.5|18.5|

+-----+----+----+----+
only showing top 4 rows

2. Rename one or more columns

mapping = {'Newspaper':'C','Sales':'D'}

:: Python Code:

dp.rename(columns=mapping).head(4)
#
new_names = [mapping.get(col,col) for col in ds.columns]
ds.toDF(*new_names).show(4)

:: Comparison:

+-----+-----+----+----+
| TV|Radio| C| D|

TV Radio C D +-----+-----+----+----+
0 230.1 37.8 69.2 22.1 |230.1| 37.8|69.2|22.1|
1 44.5 39.3 45.1 10.4 | 44.5| 39.3|45.1|10.4|
2 17.2 45.9 69.3 9.3 | 17.2| 45.9|69.3| 9.3|
3 151.5 41.3 58.5 18.5 |151.5| 41.3|58.5|18.5|

+-----+-----+----+----+
only showing top 4 rows

Note: You can also use withColumnRenamed to rename one column in PySpark.

:: Python Code:

ds.withColumnRenamed('Newspaper','Paper').show(4

:: Comparison:

+-----+-----+-----+-----+
| TV|Radio|Paper|Sales|
+-----+-----+-----+-----+
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
151.5	41.3	58.5	18.5
+-----+-----+-----+-----+
only showing top 4 rows

5.3. rdd.DataFrame vs pd.DataFrame 49

Learning Apache Spark with Python

5.3.9 Drop Columns

drop_name = ['Newspaper','Sales']

:: Python Code:

dp.drop(drop_name,axis=1).head(4)
#
ds.drop(*drop_name).show(4)

:: Comparison:

+-----+-----+
| TV|Radio|

TV Radio +-----+-----+
0 230.1 37.8 |230.1| 37.8|
1 44.5 39.3 | 44.5| 39.3|
2 17.2 45.9 | 17.2| 45.9|
3 151.5 41.3 |151.5| 41.3|

+-----+-----+
only showing top 4 rows

5.3.10 Filter

dp = pd.read_csv('Advertising.csv')
#
ds = spark.read.csv(path='Advertising.csv',

header=True,
inferSchema=True)

:: Python Code:

dp[dp.Newspaper<20].head(4)
#
ds[ds.Newspaper<20].show(4)

:: Comparison:

+-----+-----+---------+-----+
| TV|Radio|Newspaper|Sales|

TV Radio Newspaper Sales +-----+-----+---------+-----+
7 120.2 19.6 11.6 13.2 |120.2| 19.6| 11.6| 13.2|
8 8.6 2.1 1.0 4.8 | 8.6| 2.1| 1.0| 4.8|
11 214.7 24.0 4.0 17.4 |214.7| 24.0| 4.0| 17.4|
13 97.5 7.6 7.2 9.7 | 97.5| 7.6| 7.2| 9.7|

+-----+-----+---------+-----+
only showing top 4 rows

:: Python Code:

50 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

dp[(dp.Newspaper<20)&(dp.TV>100)].head(4)
#
ds[(ds.Newspaper<20)&(ds.TV>100)].show(4)

:: Comparison:

+-----+-----+---------+-----+
| TV|Radio|Newspaper|Sales|

TV Radio Newspaper Sales +-----+-----+---------+-----+
7 120.2 19.6 11.6 13.2 |120.2| 19.6| 11.6| 13.2|
11 214.7 24.0 4.0 17.4 |214.7| 24.0| 4.0| 17.4|
19 147.3 23.9 19.1 14.6 |147.3| 23.9| 19.1| 14.6|
25 262.9 3.5 19.5 12.0 |262.9| 3.5| 19.5| 12.0|

+-----+-----+---------+-----+
only showing top 4 rows

5.3.11 With New Column

:: Python Code:

dp['tv_norm'] = dp.TV/sum(dp.TV)
dp.head(4)
#
ds.withColumn('tv_norm', ds.TV/ds.groupBy().agg(F.sum("TV")).collect()[0][0]).
→˓show(4)

:: Comparison:

+-----+-----+---------+-----+-
→˓-------------------+

| TV|Radio|Newspaper|Sales|
→˓ tv_norm|

TV Radio Newspaper Sales tv_norm +-----+-----+---------+-----+-
→˓-------------------+
0 230.1 37.8 69.2 22.1 0.007824 |230.1| 37.8| 69.2| 22.
→˓1|0.007824268493802813|
1 44.5 39.3 45.1 10.4 0.001513 | 44.5| 39.3| 45.1| 10.
→˓4|0.001513167961643...|
2 17.2 45.9 69.3 9.3 0.000585 | 17.2| 45.9| 69.3| 9.
→˓3|5.848649200061207E-4|
3 151.5 41.3 58.5 18.5 0.005152 |151.5| 41.3| 58.5| 18.
→˓5|0.005151571824472517|

+-----+-----+---------+-----+-
→˓-------------------+

only showing top 4 rows

:: Python Code:

5.3. rdd.DataFrame vs pd.DataFrame 51

Learning Apache Spark with Python

dp['cond'] = dp.apply(lambda c: 1 if ((c.TV>100)&(c.Radio<40)) else 2 if c.
→˓Sales> 10 else 3,axis=1)
#
ds.withColumn('cond',F.when((ds.TV>100)&(ds.Radio<40),1)\

.when(ds.Sales>10, 2)\

.otherwise(3)).show(4)

:: Comparison:

+-----+-----+---------+-----+-
→˓---+

|
→˓TV|Radio|Newspaper|Sales|cond|

TV Radio Newspaper Sales cond +-----+-----+---------+-----+-
→˓---+
0 230.1 37.8 69.2 22.1 1 |230.1| 37.8| 69.2| 22.1|
→˓ 1|
1 44.5 39.3 45.1 10.4 2 | 44.5| 39.3| 45.1| 10.4|
→˓ 2|
2 17.2 45.9 69.3 9.3 3 | 17.2| 45.9| 69.3| 9.3|
→˓ 3|
3 151.5 41.3 58.5 18.5 2 |151.5| 41.3| 58.5| 18.5|
→˓ 2|

+-----+-----+---------+-----+-
→˓---+

only showing top 4 rows

:: Python Code:

dp['log_tv'] = np.log(dp.TV)
dp.head(4)
#
import pyspark.sql.functions as F
ds.withColumn('log_tv',F.log(ds.TV)).show(4)

:: Comparison:

+-----+-----+---------+-----+-
→˓-----------------+

| TV|Radio|Newspaper|Sales|
→˓ log_tv|

TV Radio Newspaper Sales log_tv +-----+-----+---------+-----+-
→˓-----------------+
0 230.1 37.8 69.2 22.1 5.438514 |230.1| 37.8| 69.2| 22.1|
→˓ 5.43851399704132|
1 44.5 39.3 45.1 10.4 3.795489 | 44.5| 39.3| 45.1| 10.
→˓4|3.7954891891721947|
2 17.2 45.9 69.3 9.3 2.844909 | 17.2| 45.9| 69.3| 9.
→˓3|2.8449093838194073|
3 151.5 41.3 58.5 18.5 5.020586 |151.5| 41.3| 58.5| 18.5|
→˓5.020585624949423|

+-----+-----+---------+-----+-
→˓-----------------+ (continues on next page)

52 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

(continued from previous page)

only showing top 4 rows

:: Python Code:

dp['tv+10'] = dp.TV.apply(lambda x: x+10)
dp.head(4)
#
ds.withColumn('tv+10', ds.TV+10).show(4)

:: Comparison:

+-----+-----+---------+-----+-
→˓----+

|
→˓TV|Radio|Newspaper|Sales|tv+10|

TV Radio Newspaper Sales tv+10 +-----+-----+---------+-----+-
→˓----+
0 230.1 37.8 69.2 22.1 240.1 |230.1| 37.8| 69.2| 22.
→˓1|240.1|
1 44.5 39.3 45.1 10.4 54.5 | 44.5| 39.3| 45.1| 10.4|
→˓54.5|
2 17.2 45.9 69.3 9.3 27.2 | 17.2| 45.9| 69.3| 9.3|
→˓27.2|
3 151.5 41.3 58.5 18.5 161.5 |151.5| 41.3| 58.5| 18.
→˓5|161.5|

+-----+-----+---------+-----+-
→˓----+

only showing top 4 rows

5.3.12 Join

leftp = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']},
index=[0, 1, 2, 3])

rightp = pd.DataFrame({'A': ['A0', 'A1', 'A6', 'A7'],
'F': ['B4', 'B5', 'B6', 'B7'],
'G': ['C4', 'C5', 'C6', 'C7'],
'H': ['D4', 'D5', 'D6', 'D7']},
index=[4, 5, 6, 7])

lefts = spark.createDataFrame(leftp)
rights = spark.createDataFrame(rightp)

A B C D A F G H
0 A0 B0 C0 D0 4 A0 B4 C4 D4
1 A1 B1 C1 D1 5 A1 B5 C5 D5

(continues on next page)

5.3. rdd.DataFrame vs pd.DataFrame 53

Learning Apache Spark with Python

(continued from previous page)

2 A2 B2 C2 D2 6 A6 B6 C6 D6
3 A3 B3 C3 D3 7 A7 B7 C7 D7

1. Left Join

:: Python Code:

leftp.merge(rightp,on='A',how='left')
#
lefts.join(rights,on='A',how='left')

.orderBy('A',ascending=True).show()

:: Comparison:

+---+---+---+---+----+---
→˓-+----+

| A| B| C| D| F|
→˓G| H|

A B C D F G H +---+---+---+---+----+---
→˓-+----+
0 A0 B0 C0 D0 B4 C4 D4 | A0| B0| C0| D0| B4|
→˓C4| D4|
1 A1 B1 C1 D1 B5 C5 D5 | A1| B1| C1| D1| B5|
→˓C5| D5|
2 A2 B2 C2 D2 NaN NaN NaN | A2| B2| C2|
→˓D2|null|null|null|
3 A3 B3 C3 D3 NaN NaN NaN | A3| B3| C3|
→˓D3|null|null|null|

+---+---+---+---+----+---
→˓-+----+

2. Right Join

:: Python Code:

leftp.merge(rightp,on='A',how='right')
#
lefts.join(rights,on='A',how='right')

.orderBy('A',ascending=True).show()

:: Comparison:

+---+----+----+----+---+-
→˓--+---+

| A| B| C| D| F|
→˓ G| H|

A B C D F G H +---+----+----+----+---+-
→˓--+---+
0 A0 B0 C0 D0 B4 C4 D4 | A0| B0| C0| D0| B4|
→˓C4| D4|
1 A1 B1 C1 D1 B5 C5 D5 | A1| B1| C1| D1| B5|
→˓C5| D5|

(continues on next page)

54 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

(continued from previous page)

2 A6 NaN NaN NaN B6 C6 D6 | A6|null|null|null| B6|
→˓C6| D6|
3 A7 NaN NaN NaN B7 C7 D7 | A7|null|null|null| B7|
→˓C7| D7|

+---+----+----+----+---+-
→˓--+---+

3. Inner Join

:: Python Code:

leftp.merge(rightp,on='A',how='inner')
#
lefts.join(rights,on='A',how='inner')

.orderBy('A',ascending=True).show()

:: Comparison:

+---+---+---+---+---+---+---+
| A| B| C| D| F| G| H|

A B C D F G H +---+---+---+---+---+---+---+
0 A0 B0 C0 D0 B4 C4 D4 | A0| B0| C0| D0| B4| C4| D4|
1 A1 B1 C1 D1 B5 C5 D5 | A1| B1| C1| D1| B5| C5| D5|

+---+---+---+---+---+---+---+

4. Full Join

:: Python Code:

leftp.merge(rightp,on='A',how='outer')
#
lefts.join(rights,on='A',how='full')

.orderBy('A',ascending=True).show()

:: Comparison:

+---+----+----+----+----
→˓+----+----+

| A| B| C| D|
→˓F| G| H|

A B C D F G H +---+----+----+----+----
→˓+----+----+
0 A0 B0 C0 D0 B4 C4 D4 | A0| B0| C0| D0|
→˓B4| C4| D4|
1 A1 B1 C1 D1 B5 C5 D5 | A1| B1| C1| D1|
→˓B5| C5| D5|
2 A2 B2 C2 D2 NaN NaN NaN | A2| B2| C2|
→˓D2|null|null|null|
3 A3 B3 C3 D3 NaN NaN NaN | A3| B3| C3|
→˓D3|null|null|null|
4 A6 NaN NaN NaN B6 C6 D6 | A6|null|null|null|
→˓B6| C6| D6|

(continues on next page)

5.3. rdd.DataFrame vs pd.DataFrame 55

Learning Apache Spark with Python

(continued from previous page)

5 A7 NaN NaN NaN B7 C7 D7 | A7|null|null|null|
→˓B7| C7| D7|

+---+----+----+----+----
→˓+----+----+

5.3.13 Concat Columns

my_list = [('a', 2, 3),
('b', 5, 6),
('c', 8, 9),
('a', 2, 3),
('b', 5, 6),
('c', 8, 9)]

col_name = ['col1', 'col2', 'col3']
#
dp = pd.DataFrame(my_list,columns=col_name)
ds = spark.createDataFrame(my_list,schema=col_name)

col1 col2 col3
0 a 2 3
1 b 5 6
2 c 8 9
3 a 2 3
4 b 5 6
5 c 8 9

:: Python Code:

dp['concat'] = dp.apply(lambda x:'%s%s'%(x['col1'],x['col2']),axis=1)
dp
#
ds.withColumn('concat',F.concat('col1','col2')).show()

:: Comparison:

+----+----+----+------+
|col1|col2|col3|concat|

col1 col2 col3 concat +----+----+----+------+
0 a 2 3 a2 | a| 2| 3| a2|
1 b 5 6 b5 | b| 5| 6| b5|
2 c 8 9 c8 | c| 8| 9| c8|
3 a 2 3 a2 | a| 2| 3| a2|
4 b 5 6 b5 | b| 5| 6| b5|
5 c 8 9 c8 | c| 8| 9| c8|

+----+----+----+------+

56 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

5.3.14 GroupBy

:: Python Code:

dp.groupby(['col1']).agg({'col2':'min','col3':'mean'})
#
ds.groupBy(['col1']).agg({'col2': 'min', 'col3': 'avg'}).show()

:: Comparison:

+----+---------+---------+
col2 col3 |col1|min(col2)|avg(col3)|

col1 +----+---------+---------+
a 2 3 | c| 8| 9.0|
b 5 6 | b| 5| 6.0|
c 8 9 | a| 2| 3.0|

+----+---------+---------+

5.3.15 Pivot

:: Python Code:

pd.pivot_table(dp, values='col3', index='col1', columns='col2', aggfunc=np.
→˓sum)
#
ds.groupBy(['col1']).pivot('col2').sum('col3').show()

:: Comparison:

+----+----+----+----+
col2 2 5 8 |col1| 2| 5| 8|
col1 +----+----+----+----+
a 6.0 NaN NaN | c|null|null| 18|
b NaN 12.0 NaN | b|null| 12|null|
c NaN NaN 18.0 | a| 6|null|null|

+----+----+----+----+

5.3.16 Window

d = {'A':['a','b','c','d'],'B':['m','m','n','n'],'C':[1,2,3,6]}
dp = pd.DataFrame(d)
ds = spark.createDataFrame(dp)

:: Python Code:

dp['rank'] = dp.groupby('B')['C'].rank('dense',ascending=False)
#
from pyspark.sql.window import Window

(continues on next page)

5.3. rdd.DataFrame vs pd.DataFrame 57

Learning Apache Spark with Python

(continued from previous page)

w = Window.partitionBy('B').orderBy(ds.C.desc())
ds = ds.withColumn('rank',F.rank().over(w))

:: Comparison:

+---+---+---+----+
| A| B| C|rank|

A B C rank +---+---+---+----+
0 a m 1 2.0 | b| m| 2| 1|
1 b m 2 1.0 | a| m| 1| 2|
2 c n 3 2.0 | d| n| 6| 1|
3 d n 6 1.0 | c| n| 3| 2|

+---+---+---+----+

5.3.17 rank vs dense_rank

d ={'Id':[1,2,3,4,5,6],
'Score': [4.00, 4.00, 3.85, 3.65, 3.65, 3.50]}

#
data = pd.DataFrame(d)
dp = data.copy()
ds = spark.createDataFrame(data)

Id Score
0 1 4.00
1 2 4.00
2 3 3.85
3 4 3.65
4 5 3.65
5 6 3.50

:: Python Code:

dp['Rank_dense'] = dp['Score'].rank(method='dense',ascending =False)
dp['Rank'] = dp['Score'].rank(method='min',ascending =False)
dp
#
import pyspark.sql.functions as F
from pyspark.sql.window import Window
w = Window.orderBy(ds.Score.desc())
ds = ds.withColumn('Rank_spark_dense',F.dense_rank().over(w))
ds = ds.withColumn('Rank_spark',F.rank().over(w))
ds.show()

:: Comparison:

+---+-----+----------------+----------+
| Id|Score|Rank_spark_dense|Rank_spark|

Id Score Rank_dense Rank +---+-----+----------------+----------+

(continues on next page)

58 Chapter 5. Programming with RDDs

Learning Apache Spark with Python

(continued from previous page)

0 1 4.00 1.0 1.0 | 1| 4.0| 1| 1|
1 2 4.00 1.0 1.0 | 2| 4.0| 1| 1|
2 3 3.85 2.0 3.0 | 3| 3.85| 2| 3|
3 4 3.65 3.0 4.0 | 4| 3.65| 3| 4|
4 5 3.65 3.0 4.0 | 5| 3.65| 3| 4|
5 6 3.50 4.0 6.0 | 6| 3.5| 4| 6|

+---+-----+----------------+----------+

5.3. rdd.DataFrame vs pd.DataFrame 59

Learning Apache Spark with Python

60 Chapter 5. Programming with RDDs

CHAPTER

SIX

STATISTICS AND LINEAR ALGEBRA PRELIMINARIES

Chinese proverb

If you only know yourself, but not your opponent, you may win or may lose. If you know neither
yourself nor your enemy, you will always endanger yourself – idiom, from Sunzi’s Art of War

6.1 Notations

• m : the number of the samples

• n : the number of the features

• 𝑦𝑖 : i-th label

• 𝑦𝑖 : i-th predicted label

• 𝑦̄ = 1
𝑚

∑︀𝑚
𝑖=1 𝑦𝑖 : the mean of 𝑦.

• 𝑦 : the label vector.

• 𝑦̂ : the predicted label vector.

6.2 Linear Algebra Preliminaries

Since I have documented the Linear Algebra Preliminaries in my Prelim Exam note for Numerical Analysis,
the interested reader is referred to [Feng2014] for more details (Figure. Linear Algebra Preliminaries).

61

Learning Apache Spark with Python

Fig. 1: Linear Algebra Preliminaries

62 Chapter 6. Statistics and Linear Algebra Preliminaries

Learning Apache Spark with Python

6.3 Measurement Formula

6.3.1 Mean absolute error

In statistics, MAE (Mean absolute error) is a measure of difference between two continuous variables. The
Mean Absolute Error is given by:

MAE =
1

𝑚

𝑚∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|.

6.3.2 Mean squared error

In statistics, the MSE (Mean Squared Error) of an estimator (of a procedure for estimating an unobserved
quantity) measures the average of the squares of the errors or deviations—that is, the difference between the
estimator and what is estimated.

MSE =
1

𝑚

𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

6.3.3 Root Mean squared error

RMSE =
√

MSE =

⎯⎸⎸⎷ 1

𝑚

𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

6.3.4 Total sum of squares

In statistical data analysis the TSS (Total Sum of Squares) is a quantity that appears as part of a standard way
of presenting results of such analyses. It is defined as being the sum, over all observations, of the squared
differences of each observation from the overall mean.

TSS =

𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑦̄)2

6.3.5 Explained Sum of Squares

In statistics, the ESS (Explained sum of squares), alternatively known as the model sum of squares or sum
of squares due to regression.

The ESS is the sum of the squares of the differences of the predicted values and the mean value of the
response variable which is given by:

ESS =
𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑦̄)2

6.3. Measurement Formula 63

https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Total_sum_of_squares
https://en.wikipedia.org/wiki/Explained_sum_of_squares

Learning Apache Spark with Python

6.3.6 Residual Sum of Squares

In statistics, RSS (Residual sum of squares), also known as the sum of squared residuals (SSR) or the sum
of squared errors of prediction (SSE), is the sum of the squares of residuals which is given by:

RSS =
𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

6.3.7 Coefficient of determination 𝑅2

𝑅2 :=
𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 − RSS

TSS
.

Note: In general (𝑦𝑇 𝑦̄ = 𝑦̂𝑇 𝑦̄), total sum of squares = explained sum of squares + residual sum of squares,
i.e.:

TSS = ESS + RSS if and only if 𝑦𝑇 𝑦̄ = 𝑦̂𝑇 𝑦̄.

More details can be found at Partitioning in the general ordinary least squares model.

6.4 Confusion Matrix

Fig. 2: Confusion Matrix

6.4.1 Recall

Recall =
TP

TP+FN

64 Chapter 6. Statistics and Linear Algebra Preliminaries

https://en.wikipedia.org/wiki/Residual_sum_of_squares
https://en.wikipedia.org/wiki/Explained_sum_of_squares

Learning Apache Spark with Python

6.4.2 Precision

Precision =
TP

TP+FP

6.4.3 Accuracy

Accuracy =
TP+TN

Total

6.4.4 𝐹1-score

F1 =
2 * Recall * Precision

Recall + Precision

6.5 Statistical Tests

6.5.1 Correlational Test

• Pearson correlation: Tests for the strength of the association between two continuous variables.

• Spearman correlation: Tests for the strength of the association between two ordinal variables (does
not rely on the assumption of normal distributed data).

• Chi-square: Tests for the strength of the association between two categorical variables.

6.5.2 Comparison of Means test

• Paired T-test: Tests for difference between two related variables.

• Independent T-test: Tests for difference between two independent variables.

• ANOVA: Tests the difference between group means after any other variance in the outcome variable
is accounted for.

6.5.3 Non-parametric Test

• Wilcoxon rank-sum test: Tests for difference between two independent variables - takes into account
magnitude and direction of difference.

• Wilcoxon sign-rank test: Tests for difference between two related variables - takes into account mag-
nitude and direction of difference.

• Sign test: Tests if two related variables are different – ignores magnitude of change, only takes into
account direction.

6.5. Statistical Tests 65

Learning Apache Spark with Python

66 Chapter 6. Statistics and Linear Algebra Preliminaries

CHAPTER

SEVEN

DATA EXPLORATION

Chinese proverb

A journey of a thousand miles begins with a single step – idiom, from Laozi.

I wouldn’t say that understanding your dataset is the most difficult thing in data science, but it is really
important and time-consuming. Data Exploration is about describing the data by means of statistical and
visualization techniques. We explore data in order to understand the features and bring important features
to our models.

7.1 Univariate Analysis

In mathematics, univariate refers to an expression, equation, function or polynomial of only one variable.
“Uni” means “one”, so in other words your data has only one variable. So you do not need to deal with the
causes or relationships in this step. Univariate analysis takes data, summarizes that variables (attributes) one
by one and finds patterns in the data.

There are many ways that can describe patterns found in univariate data include central tendency (mean,
mode and median) and dispersion: range, variance, maximum, minimum, quartiles (including the interquar-
tile range), coefficient of variation and standard deviation. You also have several options for visualizing and
describing data with univariate data. Such as frequency Distribution Tables, bar Charts,
histograms, frequency Polygons, pie Charts.

The variable could be either categorical or numerical, I will demostrate the different statistical and visuliza-
tion techniques to investigate each type of the variable.

• The Jupyter notebook can be download from Data Exploration.

• The data can be download from German Credit.

67

_static/Data_exploration.ipynb
_static/german_credit.csv

Learning Apache Spark with Python

7.1.1 Numerical Variables

Describe

The describe function in pandas and spark will give us most of the statistical results, such as min,
median, max, quartiles and standard deviation. With the help of the user defined function,
you can get even more statistical results.

selected varables for the demonstration
num_cols = ['Account Balance','No of dependents']
df.select(num_cols).describe().show()

+-------+------------------+-------------------+
|summary| Account Balance| No of dependents|
+-------+------------------+-------------------+
count	1000	1000
mean	2.577	1.155
stddev	1.2576377271108936	0.36208577175319395
min	1	1
max	4	2
+-------+------------------+-------------------+

You may find out that the default function in PySpark does not include the quartiles. The following function
will help you to get the same results in Pandas

def describe_pd(df_in, columns, deciles=False):
'''
Function to union the basic stats results and deciles
:param df_in: the input dataframe
:param columns: the cloumn name list of the numerical variable
:param deciles: the deciles output

:return : the numerical describe info. of the input dataframe

:author: Ming Chen and Wenqiang Feng
:email: von198@gmail.com
'''

if deciles:
percentiles = np.array(range(0, 110, 10))

else:
percentiles = [25, 50, 75]

percs = np.transpose([np.percentile(df_in.select(x).collect(),
→˓percentiles) for x in columns])

percs = pd.DataFrame(percs, columns=columns)
percs['summary'] = [str(p) + '%' for p in percentiles]

spark_describe = df_in.describe().toPandas()
new_df = pd.concat([spark_describe, percs],ignore_index=True)
new_df = new_df.round(2)
return new_df[['summary'] + columns]

68 Chapter 7. Data Exploration

Learning Apache Spark with Python

describe_pd(df,num_cols)

+-------+------------------+-----------------+
|summary| Account Balance| No of dependents|
+-------+------------------+-----------------+
count	1000.0	1000.0
mean	2.577	1.155
stddev	1.2576377271108936	0.362085771753194
min	1.0	1.0
max	4.0	2.0
25%	1.0	1.0
50%	2.0	1.0
75%	4.0	1.0
+-------+------------------+-----------------+

Sometimes, because of the confidential data issues, you can not deliver the real data and your clients may
ask more statistical results, such as deciles. You can apply the follwing function to achieve it.

describe_pd(df,num_cols,deciles=True)

+-------+------------------+-----------------+
|summary| Account Balance| No of dependents|
+-------+------------------+-----------------+
count	1000.0	1000.0
mean	2.577	1.155
stddev	1.2576377271108936	0.362085771753194
min	1.0	1.0
max	4.0	2.0
0%	1.0	1.0
10%	1.0	1.0
20%	1.0	1.0
30%	2.0	1.0
40%	2.0	1.0
50%	2.0	1.0
60%	3.0	1.0
70%	4.0	1.0
80%	4.0	1.0
90%	4.0	2.0
100%	4.0	2.0
+-------+------------------+-----------------+

Skewness and Kurtosis

This subsection comes from Wikipedia Skewness.

In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution
of a real-valued random variable about its mean. The skewness value can be positive or negative, or unde-
fined.For a unimodal distribution, negative skew commonly indicates that the tail is on the left side of the
distribution, and positive skew indicates that the tail is on the right.

Consider the two distributions in the figure just below. Within each graph, the values on the right side of the

7.1. Univariate Analysis 69

https://en.wikipedia.org/wiki/Skewness

Learning Apache Spark with Python

distribution taper differently from the values on the left side. These tapering sides are called tails, and they
provide a visual means to determine which of the two kinds of skewness a distribution has:

1. negative skew: The left tail is longer; the mass of the distribution is concentrated on the right of the
figure. The distribution is said to be left-skewed, left-tailed, or skewed to the left, despite the fact that
the curve itself appears to be skewed or leaning to the right; left instead refers to the left tail being
drawn out and, often, the mean being skewed to the left of a typical center of the data. A left-skewed
distribution usually appears as a right-leaning curve.

2. positive skew: The right tail is longer; the mass of the distribution is concentrated on the left of the
figure. The distribution is said to be right-skewed, right-tailed, or skewed to the right, despite the fact
that the curve itself appears to be skewed or leaning to the left; right instead refers to the right tail
being drawn out and, often, the mean being skewed to the right of a typical center of the data. A
right-skewed distribution usually appears as a left-leaning curve.

This subsection comes from Wikipedia Kurtosis.

In probability theory and statistics, kurtosis (kyrtos or kurtos, meaning “curved, arching”) is a measure of the
“tailedness” of the probability distribution of a real-valued random variable. In a similar way to the concept
of skewness, kurtosis is a descriptor of the shape of a probability distribution and, just as for skewness, there
are different ways of quantifying it for a theoretical distribution and corresponding ways of estimating it
from a sample from a population.

from pyspark.sql.functions import col, skewness, kurtosis
df.select(skewness(var),kurtosis(var)).show()

+---------------------+---------------------+
|skewness(Age (years))|kurtosis(Age (years))|
+---------------------+---------------------+
| 1.0231743160548064| 0.6114371688367672|
+---------------------+---------------------+

Warning: Sometimes the statistics can be misleading!

70 Chapter 7. Data Exploration

https://en.wikipedia.org/wiki/Kurtosis

Learning Apache Spark with Python

F. J. Anscombe once said that make both calculations and graphs. Both sorts of output should be stud-
ied; each will contribute to understanding. These 13 datasets in Figure Same Stats, Different Graphs (the
Datasaurus, plus 12 others) each have the same summary statistics (x/y mean, x/y standard deviation, and
Pearson’s correlation) to two decimal places, while being drastically different in appearance. This work
describes the technique we developed to create this dataset, and others like it. More details and interesting
results can be found in Same Stats Different Graphs.

Fig. 1: Same Stats, Different Graphs

Histogram

Warning: Histograms are often confused with Bar graphs!

The fundamental difference between histogram and bar graph will help you to identify the two easily is that
there are gaps between bars in a bar graph but in the histogram, the bars are adjacent to each other. The
interested reader is referred to Difference Between Histogram and Bar Graph.

var = 'Age (years)'
x = data1[var]
bins = np.arange(0, 100, 5.0)

(continues on next page)

7.1. Univariate Analysis 71

https://www.autodeskresearch.com/publications/samestats
https://keydifferences.com/difference-between-histogram-and-bar-graph.html

Learning Apache Spark with Python

(continued from previous page)

plt.figure(figsize=(10,8))
the histogram of the data
plt.hist(x, bins, alpha=0.8, histtype='bar', color='gold',

ec='black',weights=np.zeros_like(x) + 100. / x.size)

plt.xlabel(var)
plt.ylabel('percentage')
plt.xticks(bins)
plt.show()

fig.savefig(var+".pdf", bbox_inches='tight')

var = 'Age (years)'
x = data1[var]
bins = np.arange(0, 100, 5.0)

(continues on next page)

72 Chapter 7. Data Exploration

Learning Apache Spark with Python

(continued from previous page)

##
hist, bin_edges = np.histogram(x,bins,

weights=np.zeros_like(x) + 100. / x.size)
make the histogram

fig = plt.figure(figsize=(20, 8))
ax = fig.add_subplot(1, 2, 1)

Plot the histogram heights against integers on the x axis
ax.bar(range(len(hist)),hist,width=1,alpha=0.8,ec ='black', color='gold')
Set the ticks to the middle of the bars
ax.set_xticks([0.5+i for i,j in enumerate(hist)])
Set the xticklabels to a string that tells us what the bin edges were
labels =['{}'.format(int(bins[i+1])) for i,j in enumerate(hist)]
labels.insert(0,'0')
ax.set_xticklabels(labels)
plt.xlabel(var)
plt.ylabel('percentage')

##

hist, bin_edges = np.histogram(x,bins) # make the histogram

ax = fig.add_subplot(1, 2, 2)
Plot the histogram heights against integers on the x axis
ax.bar(range(len(hist)),hist,width=1,alpha=0.8,ec ='black', color='gold')

Set the ticks to the middle of the bars
ax.set_xticks([0.5+i for i,j in enumerate(hist)])

Set the xticklabels to a string that tells us what the bin edges were
labels =['{}'.format(int(bins[i+1])) for i,j in enumerate(hist)]
labels.insert(0,'0')
ax.set_xticklabels(labels)
plt.xlabel(var)
plt.ylabel('count')
plt.suptitle('Histogram of {}: Left with percentage output;Right with count
→˓output'

.format(var), size=16)
plt.show()

fig.savefig(var+".pdf", bbox_inches='tight')

7.1. Univariate Analysis 73

Learning Apache Spark with Python

Sometimes, some people will ask you to plot the unequal width (invalid argument for histogram) of the bars.
You can still achieve it by the following trick.

var = 'Credit Amount'
plot_data = df.select(var).toPandas()
x= plot_data[var]

bins =[0,200,400,600,700,800,900,1000,2000,3000,4000,5000,6000,10000,25000]

hist, bin_edges = np.histogram(x,bins,weights=np.zeros_like(x) + 100. / x.
→˓size) # make the histogram

fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(1, 1, 1)
Plot the histogram heights against integers on the x axis
ax.bar(range(len(hist)),hist,width=1,alpha=0.8,ec ='black',color = 'gold')

Set the ticks to the middle of the bars
ax.set_xticks([0.5+i for i,j in enumerate(hist)])

Set the xticklabels to a string that tells us what the bin edges were
#labels =['{}k'.format(int(bins[i+1]/1000)) for i,j in enumerate(hist)]
labels =['{}'.format(bins[i+1]) for i,j in enumerate(hist)]
labels.insert(0,'0')
ax.set_xticklabels(labels)
#plt.text(-0.6, -1.4,'0')
plt.xlabel(var)
plt.ylabel('percentage')
plt.show()

74 Chapter 7. Data Exploration

Learning Apache Spark with Python

Box plot and violin plot

Note that although violin plots are closely related to Tukey’s (1977) box plots, the violin plot can show more
information than box plot. When we perform an exploratory analysis, nothing about the samples could be
known. So the distribution of the samples can not be assumed to a normal distribution and usually when you
get a big data, the normal distribution will show some out liars in box plot.

However, the violin plots are potentially misleading for smaller sample sizes, where the density plots can
appear to show interesting features (and group-differences therein) even when produced for standard normal
data. Some poster suggested the sample size should larger that 250. The sample sizes (e.g. n>250 or ideally
even larger), where the kernel density plots provide a reasonably accurate representation of the distributions,
potentially showing nuances such as bimodality or other forms of non-normality that would be invisible or
less clear in box plots. More details can be found in A simple comparison of box plots and violin plots.

x = df.select(var).toPandas()

fig = plt.figure(figsize=(20, 8))
ax = fig.add_subplot(1, 2, 1)
ax = sns.boxplot(data=x)

(continues on next page)

7.1. Univariate Analysis 75

https://figshare.com/articles/A_simple_comparison_of_box_plots_and_violin_plots/1544525

Learning Apache Spark with Python

(continued from previous page)

ax = fig.add_subplot(1, 2, 2)
ax = sns.violinplot(data=x)

7.1.2 Categorical Variables

Compared with the numerical variables, the categorical variables are much more easier to do the exploration.

Frequency table

from pyspark.sql import functions as F
from pyspark.sql.functions import rank,sum,col
from pyspark.sql import Window

window = Window.rowsBetween(Window.unboundedPreceding,Window.
→˓unboundedFollowing)
withColumn('Percent %',F.format_string("%5.0f%%\n",col('Credit_num')*100/
→˓col('total'))).\
tab = df.select(['age_class','Credit Amount']).\

groupBy('age_class').\
agg(F.count('Credit Amount').alias('Credit_num'),

F.mean('Credit Amount').alias('Credit_avg'),
F.min('Credit Amount').alias('Credit_min'),
F.max('Credit Amount').alias('Credit_max')).\

withColumn('total',sum(col('Credit_num')).over(window)).\
withColumn('Percent',col('Credit_num')*100/col('total')).\
drop(col('total'))

+---------+----------+------------------+----------+----------+-------+
|age_class|Credit_num| Credit_avg|Credit_min|Credit_max|Percent|
+---------+----------+------------------+----------+----------+-------+

(continues on next page)

76 Chapter 7. Data Exploration

Learning Apache Spark with Python

(continued from previous page)

45-54	120	3183.0666666666666	338	12612	12.0
<25	150	2970.733333333333	276	15672	15.0
55-64	56	3493.660714285714	385	15945	5.6
35-44	254	3403.771653543307	250	15857	25.4
25-34	397	3298.823677581864	343	18424	39.7
65+	23	3210.1739130434785	571	14896	2.3
+---------+----------+------------------+----------+----------+-------+

Pie plot

Data to plot
labels = plot_data.age_class
sizes = plot_data.Percent
colors = ['gold', 'yellowgreen', 'lightcoral','blue', 'lightskyblue','green',
→˓'red']
explode = (0, 0.1, 0, 0,0,0) # explode 1st slice

Plot
plt.figure(figsize=(10,8))
plt.pie(sizes, explode=explode, labels=labels, colors=colors,

autopct='%1.1f%%', shadow=True, startangle=140)

plt.axis('equal')
plt.show()

7.1. Univariate Analysis 77

Learning Apache Spark with Python

Bar plot

labels = plot_data.age_class
missing = plot_data.Percent
ind = [x for x, _ in enumerate(labels)]

plt.figure(figsize=(10,8))
plt.bar(ind, missing, width=0.8, label='missing', color='gold')

plt.xticks(ind, labels)
plt.ylabel("percentage")

plt.show()

78 Chapter 7. Data Exploration

Learning Apache Spark with Python

labels = ['missing', '<25', '25-34', '35-44', '45-54','55-64','65+']
missing = np.array([0.000095, 0.024830, 0.028665, 0.029477, 0.031918,0.037073,
→˓0.026699])
man = np.array([0.000147, 0.036311, 0.038684, 0.044761, 0.051269, 0.059542, 0.
→˓054259])
women = np.array([0.004035, 0.032935, 0.035351, 0.041778, 0.048437, 0.056236,
→˓0.048091])
ind = [x for x, _ in enumerate(labels)]

plt.figure(figsize=(10,8))
plt.bar(ind, women, width=0.8, label='women', color='gold',
→˓bottom=man+missing)
plt.bar(ind, man, width=0.8, label='man', color='silver', bottom=missing)
plt.bar(ind, missing, width=0.8, label='missing', color='#CD853F')

plt.xticks(ind, labels)
plt.ylabel("percentage")
plt.legend(loc="upper left")
plt.title("demo")

plt.show()

7.1. Univariate Analysis 79

Learning Apache Spark with Python

7.2 Multivariate Analysis

In this section, I will only demostrate the bivariate analysis. Since the multivariate analysis is the generation
of the bivariate.

7.2.1 Numerical V.S. Numerical

Correlation matrix

from pyspark.mllib.stat import Statistics
import pandas as pd

corr_data = df.select(num_cols)

col_names = corr_data.columns
features = corr_data.rdd.map(lambda row: row[0:])
corr_mat=Statistics.corr(features, method="pearson")

(continues on next page)

80 Chapter 7. Data Exploration

Learning Apache Spark with Python

(continued from previous page)

corr_df = pd.DataFrame(corr_mat)
corr_df.index, corr_df.columns = col_names, col_names

print(corr_df.to_string())

+--------------------+--------------------+
| Account Balance| No of dependents|
+--------------------+--------------------+
| 1.0|-0.01414542650320914|
|-0.01414542650320914| 1.0|
+--------------------+--------------------+

Scatter Plot

import seaborn as sns
sns.set(style="ticks")

df = sns.load_dataset("iris")
sns.pairplot(df, hue="species")
plt.show()

7.2. Multivariate Analysis 81

Learning Apache Spark with Python

7.2.2 Categorical V.S. Categorical

Pearson’s Chi-squared test

Warning: pyspark.ml.stat is only available in Spark 2.4.0.

from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import ChiSquareTest

data = [(0.0, Vectors.dense(0.5, 10.0)),
(0.0, Vectors.dense(1.5, 20.0)),
(1.0, Vectors.dense(1.5, 30.0)),
(0.0, Vectors.dense(3.5, 30.0)),

(continues on next page)

82 Chapter 7. Data Exploration

Learning Apache Spark with Python

(continued from previous page)

(0.0, Vectors.dense(3.5, 40.0)),
(1.0, Vectors.dense(3.5, 40.0))]

df = spark.createDataFrame(data, ["label", "features"])

r = ChiSquareTest.test(df, "features", "label").head()
print("pValues: " + str(r.pValues))
print("degreesOfFreedom: " + str(r.degreesOfFreedom))
print("statistics: " + str(r.statistics))

pValues: [0.687289278791,0.682270330336]
degreesOfFreedom: [2, 3]
statistics: [0.75,1.5]

Cross table

df.stat.crosstab("age_class", "Occupation").show()

+--------------------+---+---+---+---+
|age_class_Occupation| 1| 2| 3| 4|
+--------------------+---+---+---+---+
<25	4	34	108	4
55-64	1	15	31	9
25-34	7	61	269	60
35-44	4	58	143	49
65+	5	3	6	9
45-54	1	29	73	17
+--------------------+---+---+---+---+

Stacked plot

labels = ['missing', '<25', '25-34', '35-44', '45-54','55-64','65+']
missing = np.array([0.000095, 0.024830, 0.028665, 0.029477, 0.031918,0.037073,
→˓0.026699])
man = np.array([0.000147, 0.036311, 0.038684, 0.044761, 0.051269, 0.059542, 0.
→˓054259])
women = np.array([0.004035, 0.032935, 0.035351, 0.041778, 0.048437, 0.056236,
→˓0.048091])
ind = [x for x, _ in enumerate(labels)]

plt.figure(figsize=(10,8))
plt.bar(ind, women, width=0.8, label='women', color='gold',
→˓bottom=man+missing)
plt.bar(ind, man, width=0.8, label='man', color='silver', bottom=missing)
plt.bar(ind, missing, width=0.8, label='missing', color='#CD853F')

plt.xticks(ind, labels)
plt.ylabel("percentage")

(continues on next page)

7.2. Multivariate Analysis 83

Learning Apache Spark with Python

(continued from previous page)

plt.legend(loc="upper left")
plt.title("demo")

plt.show()

7.2.3 Numerical V.S. Categorical

Line Chart with Error Bars

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
%matplotlib inline

plt.rcParams['figure.figsize'] =(16,9)
plt.style.use('ggplot')

(continues on next page)

84 Chapter 7. Data Exploration

Learning Apache Spark with Python

(continued from previous page)

sns.set()

ax = sns.pointplot(x="day", y="tip", data=tips, capsize=.2)
plt.show()

Combination Chart

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
%matplotlib inline

plt.rcParams['figure.figsize'] =(16,9)
plt.style.use('ggplot')
sns.set()

#create list of months
Month = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June',

'July', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
#create list for made up average temperatures
Avg_Temp = [35, 45, 55, 65, 75, 85, 95, 100, 85, 65, 45, 35]
#create list for made up average percipitation %
Avg_Percipitation_Perc = [.90, .75, .55, .10, .35, .05, .05, .08, .20, .45, .
→˓65, .80]

(continues on next page)

7.2. Multivariate Analysis 85

Learning Apache Spark with Python

(continued from previous page)

#assign lists to a value
data = {'Month': Month, 'Avg_Temp': Avg_Temp, 'Avg_Percipitation_Perc': Avg_
→˓Percipitation_Perc}
#convert dictionary to a dataframe
df = pd.DataFrame(data)

fig, ax1 = plt.subplots(figsize=(10,6))
ax1.set_title('Average Percipitation Percentage by Month', fontsize=16)
ax1.tick_params(axis='y')

ax2 = sns.barplot(x='Month', y='Avg_Temp', data = df, color = 'gold')
ax2 = ax1.twinx()
ax2 = sns.lineplot(x='Month', y='Avg_Percipitation_Perc', data = df,
→˓sort=False, color=color)

ax1.set_xlabel('Month', fontsize=16)
ax1.set_ylabel('Avg Temp', fontsize=16)

ax2.tick_params(axis='y', color=color)
ax2.set_ylabel('Avg Percipitation %', fontsize=16)
plt.show()

86 Chapter 7. Data Exploration

CHAPTER

EIGHT

DATA MANIPULATION: FEATURES

Chinese proverb

All things are diffcult before they are easy!

Feature building is a super important step for modeling which will determine the success or failure of your
model. Otherwise, you will get: garbage in; garbage out! The techniques have been covered in the following
chapters, the followings are the brief summary. I recently found that the Spark official website did a really
good job for tutorial documentation. The chapter is based on Extracting transforming and selecting features.

8.1 Feature Extraction

8.1.1 TF-IDF

Term frequency-inverse document frequency (TF-IDF) is a feature vectorization method widely used in text
mining to reflect the importance of a term to a document in the corpus. More details can be found at:
https://spark.apache.org/docs/latest/ml-features#feature-extractors

Stackoverflow TF: Both HashingTF and CountVectorizer can be used to generate the term frequency vectors.
A few important differences:

a. partially reversible (CountVectorizer) vs irreversible (HashingTF) - since hashing is not reversible
you cannot restore original input from a hash vector. From the other hand count vector with model
(index) can be used to restore unordered input. As a consequence models created using hashed input
can be much harder to interpret and monitor.

b. memory and computational overhead - HashingTF requires only a single data scan and no addi-
tional memory beyond original input and vector. CountVectorizer requires additional scan over the
data to build a model and additional memory to store vocabulary (index). In case of unigram language
model it is usually not a problem but in case of higher n-grams it can be prohibitively expensive or
not feasible.

c. hashing depends on a size of the vector , hashing function and a document. Counting depends on a
size of the vector, training corpus and a document.

87

https://spark.apache.org/docs/latest/ml-features
https://spark.apache.org/docs/latest/ml-features#feature-extractors
https://stackoverflow.com/questions/35205865/what-is-the-difference-between-hashingtf-and-countvectorizer-in-spark

Learning Apache Spark with Python

d. a source of the information loss - in case of HashingTF it is dimensionality reduction with possible
collisions. CountVectorizer discards infrequent tokens. How it affects downstream models depends
on a particular use case and data.

HashingTF and CountVectorizer are the two popular alogoritms which used to generate term frequency
vectors. They basically convert documents into a numerical representation which can be fed directly or with
further processing into other algorithms like LDA, MinHash for Jaccard Distance, Cosine Distance.

• 𝑡: term

• 𝑑: document

• 𝐷: corpus

• |𝐷|: the number of the elements in corpus

• 𝑇𝐹 (𝑡, 𝑑): Term Frequency: the number of times that term 𝑡 appears in document 𝑑

• 𝐷𝐹 (𝑡,𝐷): Document Frequency: the number of documents that contains term 𝑡

• 𝐼𝐷𝐹 (𝑡,𝐷): Inverse Document Frequency is a numerical measure of how much information a term
provides

𝐼𝐷𝐹 (𝑡,𝐷) = log
|𝐷| + 1

𝐷𝐹 (𝑡,𝐷) + 1

• 𝑇𝐹𝐼𝐷𝐹 (𝑡, 𝑑,𝐷) the product of TF and IDF

𝑇𝐹𝐼𝐷𝐹 (𝑡, 𝑑,𝐷) = 𝑇𝐹 (𝑡, 𝑑) · 𝐼𝐷𝐹 (𝑡,𝐷)

Let’s look at the example:

from pyspark.ml import Pipeline
from pyspark.ml.feature import HashingTF, IDF, Tokenizer

sentenceData = spark.createDataFrame([
(0, "Python python Spark Spark"),
(1, "Python SQL")],

["document", "sentence"])

sentenceData.show(truncate=False)
+--------+-------------------------+
|document|sentence |
+--------+-------------------------+
|0 |Python python Spark Spark|
|1 |Python SQL |
+--------+-------------------------+

Then:

• 𝑇𝐹 (𝑝𝑦𝑡ℎ𝑜𝑛, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡1) = 1, 𝑇𝐹 (𝑠𝑝𝑎𝑟𝑘, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡1) = 2

• 𝐷𝐹 (𝑆𝑝𝑎𝑟𝑘,𝐷) = 2, 𝐷𝐹 (𝑠𝑞𝑙,𝐷) = 1

• IDF:

88 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

𝐼𝐷𝐹 (𝑝𝑦𝑡ℎ𝑜𝑛,𝐷) = log
|𝐷| + 1

𝐷𝐹 (𝑡,𝐷) + 1
= log(

2 + 1

2 + 1
) = 0

𝐼𝐷𝐹 (𝑠𝑝𝑎𝑟𝑘,𝐷) = log
|𝐷| + 1

𝐷𝐹 (𝑡,𝐷) + 1
= log(

2 + 1

1 + 1
) = 0.4054651081081644

𝐼𝐷𝐹 (𝑠𝑞𝑙,𝐷) = log
|𝐷| + 1

𝐷𝐹 (𝑡,𝐷) + 1
= log(

2 + 1

1 + 1
) = 0.4054651081081644

• TFIDF

𝑇𝐹𝐼𝐷𝐹 (𝑝𝑦𝑡ℎ𝑜𝑛, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡1, 𝐷) = 3 * 0 = 0

𝑇𝐹𝐼𝐷𝐹 (𝑠𝑝𝑎𝑟𝑘, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡1, 𝐷) = 2 * 0.4054651081081644 = 0.8109302162163288

𝑇𝐹𝐼𝐷𝐹 (𝑠𝑞𝑙, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡1, 𝐷) = 1 * 0.4054651081081644 = 0.4054651081081644

Countvectorizer

Stackoverflow TF: CountVectorizer and CountVectorizerModel aim to help convert a collection of text doc-
uments to vectors of token counts. When an a-priori dictionary is not available, CountVectorizer can be
used as an Estimator to extract the vocabulary, and generates a CountVectorizerModel. The model produces
sparse representations for the documents over the vocabulary, which can then be passed to other algorithms
like LDA.

from pyspark.ml import Pipeline
from pyspark.ml.feature import CountVectorizer
from pyspark.ml.feature import HashingTF, IDF, Tokenizer

sentenceData = spark.createDataFrame([
(0, "Python python Spark Spark"),
(1, "Python SQL")],

["document", "sentence"])

tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
vectorizer = CountVectorizer(inputCol="words", outputCol="rawFeatures")

idf = IDF(inputCol="rawFeatures", outputCol="features")

pipeline = Pipeline(stages=[tokenizer, vectorizer, idf])

model = pipeline.fit(sentenceData)

import numpy as np

total_counts = model.transform(sentenceData)\
.select('rawFeatures').rdd\
.map(lambda row: row['rawFeatures'].toArray())\
.reduce(lambda x,y: [x[i]+y[i] for i in range(len(y))])

vocabList = model.stages[1].vocabulary
d = {'vocabList':vocabList,'counts':total_counts}

(continues on next page)

8.1. Feature Extraction 89

https://stackoverflow.com/questions/35205865/what-is-the-difference-between-hashingtf-and-countvectorizer-in-spark

Learning Apache Spark with Python

(continued from previous page)

spark.createDataFrame(np.array(list(d.values())).T.tolist(),list(d.keys())).
→˓show()

counts = model.transform(sentenceData).select('rawFeatures').collect()
counts

[Row(rawFeatures=SparseVector(8, {0: 1.0, 1: 1.0, 2: 1.0})),
Row(rawFeatures=SparseVector(8, {0: 1.0, 1: 1.0, 4: 1.0})),
Row(rawFeatures=SparseVector(8, {0: 1.0, 3: 1.0, 5: 1.0, 6: 1.0, 7: 1.0}))]

+---------+------+
|vocabList|counts|
+---------+------+
python	3.0
spark	2.0
sql	1.0
+---------+------+

model.transform(sentenceData).show(truncate=False)

+--------+-------------------------+------------------------------+-----------
→˓--------+----------------------------------+
|document|sentence |words
→˓|rawFeatures |features |
+--------+-------------------------+------------------------------+-----------
→˓--------+----------------------------------+
|0 |Python python Spark Spark|[python, python, spark, spark]|(3,[0,1],
→˓[2.0,2.0])|(3,[0,1],[0.0,0.8109302162163288])|
|1 |Python SQL |[python, sql] |(3,[0,2],
→˓[1.0,1.0])|(3,[0,2],[0.0,0.4054651081081644])|
+--------+-------------------------+------------------------------+-----------
→˓--------+----------------------------------+

from pyspark.sql.types import ArrayType, StringType

def termsIdx2Term(vocabulary):
def termsIdx2Term(termIndices):

return [vocabulary[int(index)] for index in termIndices]
return udf(termsIdx2Term, ArrayType(StringType()))

vectorizerModel = model.stages[1]
vocabList = vectorizerModel.vocabulary
vocabList

['python', 'spark', 'sql']

rawFeatures = model.transform(sentenceData).select('rawFeatures')
rawFeatures.show()

(continues on next page)

90 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

(continued from previous page)

+-------------------+
| rawFeatures|
+-------------------+
|(3,[0,1],[2.0,2.0])|
|(3,[0,2],[1.0,1.0])|
+-------------------+

from pyspark.sql.functions import udf
import pyspark.sql.functions as F
from pyspark.sql.types import StringType, DoubleType, IntegerType

indices_udf = udf(lambda vector: vector.indices.tolist(),
→˓ArrayType(IntegerType()))
values_udf = udf(lambda vector: vector.toArray().tolist(),
→˓ArrayType(DoubleType()))

rawFeatures.withColumn('indices', indices_udf(F.col('rawFeatures')))\
.withColumn('values', values_udf(F.col('rawFeatures')))\
.withColumn("Terms", termsIdx2Term(vocabList)("indices")).show()

+-------------------+-------+---------------+---------------+
| rawFeatures|indices| values| Terms|
+-------------------+-------+---------------+---------------+
|(3,[0,1],[2.0,2.0])| [0, 1]|[2.0, 2.0, 0.0]|[python, spark]|
|(3,[0,2],[1.0,1.0])| [0, 2]|[1.0, 0.0, 1.0]| [python, sql]|
+-------------------+-------+---------------+---------------+

HashingTF

Stackoverflow TF: HashingTF is a Transformer which takes sets of terms and converts those sets into fixed-
length feature vectors. In text processing, a “set of terms” might be a bag of words. HashingTF utilizes
the hashing trick. A raw feature is mapped into an index (term) by applying a hash function. The hash
function used here is MurmurHash 3. Then term frequencies are calculated based on the mapped indices.
This approach avoids the need to compute a global term-to-index map, which can be expensive for a large
corpus, but it suffers from potential hash collisions, where different raw features may become the same term
after hashing.

from pyspark.ml import Pipeline
from pyspark.ml.feature import HashingTF, IDF, Tokenizer

sentenceData = spark.createDataFrame([
(0, "Python python Spark Spark"),
(1, "Python SQL")],

["document", "sentence"])

tokenizer = Tokenizer(inputCol="sentence", outputCol="words")

(continues on next page)

8.1. Feature Extraction 91

https://stackoverflow.com/questions/35205865/what-is-the-difference-between-hashingtf-and-countvectorizer-in-spark

Learning Apache Spark with Python

(continued from previous page)

vectorizer = HashingTF(inputCol="words", outputCol="rawFeatures",
→˓numFeatures=5)

idf = IDF(inputCol="rawFeatures", outputCol="features")

pipeline = Pipeline(stages=[tokenizer, vectorizer, idf])

model = pipeline.fit(sentenceData)
model.transform(sentenceData).show(truncate=False)

+--------+-------------------------+------------------------------+-----------
→˓--------+----------------------------------+
|document|sentence |words
→˓|rawFeatures |features |
+--------+-------------------------+------------------------------+-----------
→˓--------+----------------------------------+
|0 |Python python Spark Spark|[python, python, spark, spark]|(5,[0,4],
→˓[2.0,2.0])|(5,[0,4],[0.8109302162163288,0.0])|
|1 |Python SQL |[python, sql] |(5,[1,4],
→˓[1.0,1.0])|(5,[1,4],[0.4054651081081644,0.0])|
+--------+-------------------------+------------------------------+-----------
→˓--------+----------------------------------+

8.1.2 Word2Vec

Word Embeddings

Word2Vec is one of the popupar method to implement the Word Embeddings. Word embeddings (The
best tutorial I have read. The following word and images content are from Chris Bail, PhD Duke University.
So the copyright belongs to Chris Bail, PhD Duke University.) gained fame in the world of automated text
analysis when it was demonstrated that they could be used to identify analogies. Figure 1 illustrates the
output of a word embedding model where individual words are plotted in three dimensional space generated
by the model. By examining the adjacency of words in this space, word embedding models can complete
analogies such as “Man is to woman as king is to queen.” If you’d like to explore what the output of a large
word embedding model looks like in more detail, check out this fantastic visualization of most words in the
English language that was produced using a word embedding model called GloVE.

92 Chapter 8. Data Manipulation: Features

https://cbail.github.io/textasdata/word2vec/rmarkdown/word2vec.html

Learning Apache Spark with Python

Fig. 1: output of a word embedding model

The Context Window

Word embeddings are created by identifying the words that occur within something called a “Context Win-
dow.” The Figure below illustrates context windows of varied length for a single sentence. The context
window is defined by a string of words before and after a focal or “center” word that will be used to train a
word embedding model. Each center word and context words can be represented as a vector of numbers that
describe the presence or absence of unique words within a dataset, which is perhaps why word embedding
models are often described as “word vector” models, or “word2vec” models.

Two Types of Embedding Models

Word embeddings are usually performed in one of two ways: “Continuous Bag of Words” (CBOW) or
a “Skip-Gram Model.” The figure below illustrates the differences between the two models. The CBOW
model reads in the context window words and tries to predict the most likely center word. The Skip-Gram
Model predicts the context words given the center word. The examples above were created using the Skip-
Gram model, which is perhaps most useful for people who want to identify patterns within texts to represent
them in multimensional space, whereas the CBOW model is more useful in practical applications such as
predictive web search.

8.1. Feature Extraction 93

Learning Apache Spark with Python

Word Embedding Models in PySpark

from pyspark.ml.feature import Word2Vec

from pyspark.ml import Pipeline

tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="words", outputCol=
→˓"feature")

pipeline = Pipeline(stages=[tokenizer, word2Vec])

model = pipeline.fit(sentenceData)
result = model.transform(sentenceData)

result.show()
+-----+--------------------+--------------------+--------------------+
|label| sentence| words| feature|
+-----+--------------------+--------------------+--------------------+
0.0	I love Spark	[i, love, spark]	[0.05594437588782...
0.0	I love python	[i, love, python]	[-0.0350368790871...
1.0	I think ML is awe...	[i, think, ml, is...	[0.01242086507845...
+-----+--------------------+--------------------+--------------------+

w2v = model.stages[1]
w2v.getVectors().show()

(continues on next page)

94 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

(continued from previous page)

+-------+---+
|word |vector |
+-------+---+
is	[0.13657838106155396,0.060924094170331955,-0.03379475697875023]
awesome	[0.037024181336164474,-0.023855900391936302,0.0760037824511528]
i	[-0.0014482572441920638,0.049365971237421036,0.12016955763101578]
ml	[-0.14006119966506958,0.01626444421708584,0.042281970381736755]
spark	[0.1589149385690689,-0.10970081388950348,-0.10547549277544022]
think	[0.030011219903826714,-0.08994936943054199,0.16471518576145172]
love	[0.01036644633859396,-0.017782460898160934,0.08870164304971695]
python	[-0.11402882635593414,0.045119188725948334,-0.029877422377467155]
+-------+---+

from pyspark.sql.functions import format_number as fmt
w2v.findSynonyms("could", 2).select("word", fmt("similarity", 5).alias(
→˓"similarity")).show()

+-------+----------+
| word|similarity|
+-------+----------+
|classes| 0.90232|
| i| 0.75424|
+-------+----------+

8.1.3 FeatureHasher

from pyspark.ml.feature import FeatureHasher

dataset = spark.createDataFrame([
(2.2, True, "1", "foo"),
(3.3, False, "2", "bar"),
(4.4, False, "3", "baz"),
(5.5, False, "4", "foo")

], ["real", "bool", "stringNum", "string"])

hasher = FeatureHasher(inputCols=["real", "bool", "stringNum", "string"],
outputCol="features")

featurized = hasher.transform(dataset)
featurized.show(truncate=False)

+----+-----+---------+------+---
→˓-------+
|real|bool |stringNum|string|features
→˓ |
+----+-----+---------+------+---
→˓-------+
|2.2 |true |1 |foo |(262144,[174475,247670,257907,262126],[2.2,1.0,1.
→˓0,1.0])| (continues on next page)

8.1. Feature Extraction 95

Learning Apache Spark with Python

(continued from previous page)

|3.3 |false|2 |bar |(262144,[70644,89673,173866,174475],[1.0,1.0,1.0,
→˓3.3]) |
|4.4 |false|3 |baz |(262144,[22406,70644,174475,187923],[1.0,1.0,4.4,
→˓1.0]) |
|5.5 |false|4 |foo |(262144,[70644,101499,174475,257907],[1.0,1.0,5.
→˓5,1.0]) |
+----+-----+---------+------+---
→˓-------+

8.1.4 RFormula

from pyspark.ml.feature import RFormula

dataset = spark.createDataFrame(
[(7, "US", 18, 1.0),
(8, "CA", 12, 0.0),
(9, "CA", 15, 0.0)],

["id", "country", "hour", "clicked"])

formula = RFormula(
formula="clicked ~ country + hour",
featuresCol="features",
labelCol="label")

output = formula.fit(dataset).transform(dataset)
output.select("features", "label").show()

+----------+-----+
| features|label|
+----------+-----+
[0.0,18.0]	1.0
[1.0,12.0]	0.0
[1.0,15.0]	0.0
+----------+-----+

8.2 Feature Transform

8.2.1 Tokenizer

from pyspark.ml.feature import Tokenizer, RegexTokenizer
from pyspark.sql.functions import col, udf
from pyspark.sql.types import IntegerType

sentenceDataFrame = spark.createDataFrame([
(0, "Hi I heard about Spark"),
(1, "I wish Java could use case classes"),

(continues on next page)

96 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

(continued from previous page)

(2, "Logistic,regression,models,are,neat")
], ["id", "sentence"])

tokenizer = Tokenizer(inputCol="sentence", outputCol="words")

regexTokenizer = RegexTokenizer(inputCol="sentence", outputCol="words",
→˓pattern="\\W")
alternatively, pattern="\\w+", gaps(False)

countTokens = udf(lambda words: len(words), IntegerType())

tokenized = tokenizer.transform(sentenceDataFrame)
tokenized.select("sentence", "words")\

.withColumn("tokens", countTokens(col("words"))).show(truncate=False)

regexTokenized = regexTokenizer.transform(sentenceDataFrame)
regexTokenized.select("sentence", "words") \

.withColumn("tokens", countTokens(col("words"))).show(truncate=False)

+-----------------------------------+---
→˓-+------+
|sentence |words
→˓ |tokens|
+-----------------------------------+---
→˓-+------+
|Hi I heard about Spark |[hi, i, heard, about, spark]
→˓ |5 |
|I wish Java could use case classes |[i, wish, java, could, use, case,
→˓classes]|7 |
|Logistic,regression,models,are,neat|[logistic,regression,models,are,neat]
→˓ |1 |
+-----------------------------------+---
→˓-+------+

+-----------------------------------+---
→˓-+------+
|sentence |words
→˓ |tokens|
+-----------------------------------+---
→˓-+------+
|Hi I heard about Spark |[hi, i, heard, about, spark]
→˓ |5 |
|I wish Java could use case classes |[i, wish, java, could, use, case,
→˓classes]|7 |
|Logistic,regression,models,are,neat|[logistic, regression, models, are,
→˓neat] |5 |
+-----------------------------------+---
→˓-+------+

8.2. Feature Transform 97

Learning Apache Spark with Python

8.2.2 StopWordsRemover

from pyspark.ml.feature import StopWordsRemover

sentenceData = spark.createDataFrame([
(0, ["I", "saw", "the", "red", "balloon"]),
(1, ["Mary", "had", "a", "little", "lamb"])

], ["id", "raw"])

remover = StopWordsRemover(inputCol="raw", outputCol="removeded")
remover.transform(sentenceData).show(truncate=False)

+---+----------------------------+--------------------+
|id |raw |removeded |
+---+----------------------------+--------------------+
|0 |[I, saw, the, red, balloon] |[saw, red, balloon] |
|1 |[Mary, had, a, little, lamb]|[Mary, little, lamb]|
+---+----------------------------+--------------------+

8.2.3 NGram

from pyspark.ml import Pipeline
from pyspark.ml.feature import CountVectorizer
from pyspark.ml.feature import HashingTF, IDF, Tokenizer

from pyspark.ml.feature import NGram

sentenceData = spark.createDataFrame([
(0.0, "I love Spark"),
(0.0, "I love python"),
(1.0, "I think ML is awesome")],

["label", "sentence"])

tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
ngram = NGram(n=2, inputCol="words", outputCol="ngrams")

idf = IDF(inputCol="rawFeatures", outputCol="features")

pipeline = Pipeline(stages=[tokenizer, ngram])

model = pipeline.fit(sentenceData)

model.transform(sentenceData).show(truncate=False)

+-----+---------------------+---------------------------+---------------------
→˓-----------------+
|label|sentence |words |ngrams
→˓ |
+-----+---------------------+---------------------------+---------------------
→˓-----------------+

(continues on next page)

98 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

(continued from previous page)

|0.0 |I love Spark |[i, love, spark] |[i love, love spark]
→˓ |
|0.0 |I love python |[i, love, python] |[i love, love
→˓python] |
|1.0 |I think ML is awesome|[i, think, ml, is, awesome]|[i think, think ml,
→˓ml is, is awesome]|
+-----+---------------------+---------------------------+---------------------
→˓-----------------+

8.2.4 Binarizer

from pyspark.ml.feature import Binarizer

continuousDataFrame = spark.createDataFrame([
(0, 0.1),
(1, 0.8),
(2, 0.2),
(3,0.5)

], ["id", "feature"])

binarizer = Binarizer(threshold=0.5, inputCol="feature", outputCol="binarized_
→˓feature")

binarizedDataFrame = binarizer.transform(continuousDataFrame)

print("Binarizer output with Threshold = %f" % binarizer.getThreshold())
binarizedDataFrame.show()

Binarizer output with Threshold = 0.500000
+---+-------+-----------------+
| id|feature|binarized_feature|
+---+-------+-----------------+
0	0.1	0.0
1	0.8	1.0
2	0.2	0.0
3	0.5	0.0
+---+-------+-----------------+

8.2.5 Bucketizer

[Bucketizer](https://spark.apache.org/docs/latest/ml-features.html#bucketizer) transforms a column of con-
tinuous features to a column of feature buckets, where the buckets are specified by users.

from pyspark.ml.feature import QuantileDiscretizer, Bucketizer

data = [(0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.0)]
df = spark.createDataFrame(data, ["id", "age"])

(continues on next page)

8.2. Feature Transform 99

https://spark.apache.org/docs/latest/ml-features.html#bucketizer

Learning Apache Spark with Python

(continued from previous page)

print(df.show())

splits = [-float("inf"),3, 10,float("inf")]
result_bucketizer = Bucketizer(splits=splits, inputCol="age",outputCol="result
→˓").transform(df)
result_bucketizer.show()

+---+----+
| id| age|
+---+----+
0	18.0
1	19.0
2	8.0
3	5.0
4	2.0
+---+----+

None
+---+----+------+
| id| age|result|
+---+----+------+
0	18.0	2.0
1	19.0	2.0
2	8.0	1.0
3	5.0	1.0
4	2.0	0.0
+---+----+------+

8.2.6 QuantileDiscretizer

QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical
features. The number of bins is set by the numBuckets parameter. It is possible that the number of buckets
used will be smaller than this value, for example, if there are too few distinct values of the input to create
enough distinct quantiles.

from pyspark.ml.feature import QuantileDiscretizer, Bucketizer

data = [(0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.0)]
df = spark.createDataFrame(data, ["id", "age"])
print(df.show())

qds = QuantileDiscretizer(numBuckets=5, inputCol="age", outputCol="buckets",
relativeError=0.01, handleInvalid="error")

bucketizer = qds.fit(df)
bucketizer.transform(df).show()
bucketizer.setHandleInvalid("skip").transform(df).show()

+---+----+
| id| age|

(continues on next page)

100 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

(continued from previous page)

+---+----+
0	18.0
1	19.0
2	8.0
3	5.0
4	2.0
+---+----+

None
+---+----+-------+
| id| age|buckets|
+---+----+-------+
0	18.0	3.0
1	19.0	3.0
2	8.0	2.0
3	5.0	2.0
4	2.0	1.0
+---+----+-------+

+---+----+-------+
| id| age|buckets|
+---+----+-------+
0	18.0	3.0
1	19.0	3.0
2	8.0	2.0
3	5.0	2.0
4	2.0	1.0
+---+----+-------+

If the data has NULL values, then you will get the following results:

from pyspark.ml.feature import QuantileDiscretizer, Bucketizer

data = [(0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, None)]
df = spark.createDataFrame(data, ["id", "age"])
print(df.show())

splits = [-float("inf"),3, 10,float("inf")]
result_bucketizer = Bucketizer(splits=splits,

inputCol="age",outputCol="result").
→˓transform(df)
result_bucketizer.show()

qds = QuantileDiscretizer(numBuckets=5, inputCol="age", outputCol="buckets",
relativeError=0.01, handleInvalid="error")

bucketizer = qds.fit(df)
bucketizer.transform(df).show()
bucketizer.setHandleInvalid("skip").transform(df).show()

+---+----+
| id| age|

(continues on next page)

8.2. Feature Transform 101

Learning Apache Spark with Python

(continued from previous page)

+---+----+
0	18.0
1	19.0
2	8.0
3	5.0
4	null
+---+----+

None
+---+----+------+
| id| age|result|
+---+----+------+
0	18.0	2.0
1	19.0	2.0
2	8.0	1.0
3	5.0	1.0
4	null	null
+---+----+------+

+---+----+-------+
| id| age|buckets|
+---+----+-------+
0	18.0	3.0
1	19.0	4.0
2	8.0	2.0
3	5.0	1.0
4	null	null
+---+----+-------+

+---+----+-------+
| id| age|buckets|
+---+----+-------+
0	18.0	3.0
1	19.0	4.0
2	8.0	2.0
3	5.0	1.0
+---+----+-------+

8.2.7 StringIndexer

from pyspark.ml.feature import StringIndexer

df = spark.createDataFrame(
[(0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")],
["id", "category"])

indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
indexed = indexer.fit(df).transform(df)
indexed.show()

102 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

+---+--------+-------------+
| id|category|categoryIndex|
+---+--------+-------------+
0	a	0.0
1	b	2.0
2	c	1.0
3	a	0.0
4	a	0.0
5	c	1.0
+---+--------+-------------+

8.2.8 labelConverter

from pyspark.ml.feature import IndexToString, StringIndexer

df = spark.createDataFrame(
[(0, "Yes"), (1, "Yes"), (2, "Yes"), (3, "No"), (4, "No"), (5, "No")],
["id", "label"])

indexer = StringIndexer(inputCol="label", outputCol="labelIndex")
model = indexer.fit(df)
indexed = model.transform(df)

print("Transformed string column '%s' to indexed column '%s'"
% (indexer.getInputCol(), indexer.getOutputCol()))

indexed.show()

print("StringIndexer will store labels in output column metadata\n")

converter = IndexToString(inputCol="labelIndex", outputCol="originalLabel")
converted = converter.transform(indexed)

print("Transformed indexed column '%s' back to original string column '%s'
→˓using "

"labels in metadata" % (converter.getInputCol(), converter.
→˓getOutputCol()))
converted.select("id", "labelIndex", "originalLabel").show()

Transformed string column 'label' to indexed column 'labelIndex'
+---+-----+----------+
| id|label|labelIndex|
+---+-----+----------+
0	Yes	1.0
1	Yes	1.0
2	Yes	1.0
3	No	0.0
4	No	0.0
5	No	0.0
+---+-----+----------+

(continues on next page)

8.2. Feature Transform 103

Learning Apache Spark with Python

(continued from previous page)

StringIndexer will store labels in output column metadata

Transformed indexed column 'labelIndex' back to original string column
→˓'originalLabel' using labels in metadata
+---+----------+-------------+
| id|labelIndex|originalLabel|
+---+----------+-------------+
0	1.0	Yes
1	1.0	Yes
2	1.0	Yes
3	0.0	No
4	0.0	No
5	0.0	No
+---+----------+-------------+

from pyspark.ml import Pipeline
from pyspark.ml.feature import IndexToString, StringIndexer

df = spark.createDataFrame(
[(0, "Yes"), (1, "Yes"), (2, "Yes"), (3, "No"), (4, "No"), (5, "No")],
["id", "label"])

indexer = StringIndexer(inputCol="label", outputCol="labelIndex")
converter = IndexToString(inputCol="labelIndex", outputCol="originalLabel")

pipeline = Pipeline(stages=[indexer, converter])

model = pipeline.fit(df)
result = model.transform(df)

result.show()

+---+-----+----------+-------------+
| id|label|labelIndex|originalLabel|
+---+-----+----------+-------------+
0	Yes	1.0	Yes
1	Yes	1.0	Yes
2	Yes	1.0	Yes
3	No	0.0	No
4	No	0.0	No
5	No	0.0	No
+---+-----+----------+-------------+

104 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

8.2.9 VectorIndexer

from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

from pyspark.ml.feature import RFormula

df = spark.createDataFrame([
(0, 2.2, True, "1", "foo", 'CA'),
(1, 3.3, False, "2", "bar", 'US'),
(0, 4.4, False, "3", "baz", 'CHN'),
(1, 5.5, False, "4", "foo", 'AUS')

], ['label',"real", "bool", "stringNum", "string","country"])

formula = RFormula(
formula="label ~ real + bool + stringNum + string + country",
featuresCol="features",
labelCol="label")

Automatically identify categorical features, and index them.
We specify maxCategories so features with > 4 distinct values
are treated as continuous.
featureIndexer = VectorIndexer(inputCol="features", \

outputCol="indexedFeatures",\
maxCategories=2)

pipeline = Pipeline(stages=[formula, featureIndexer])

model = pipeline.fit(df)
result = model.transform(df)

result.show()

+-----+----+-----+---------+------+-------+--------------------+--------------
→˓------+
|label|real| bool|stringNum|string|country| features|
→˓indexedFeatures|
+-----+----+-----+---------+------+-------+--------------------+--------------
→˓------+
| 0| 2.2| true| 1| foo| CA|(10,[0,1,5,7],[2....|(10,[0,1,5,7],
→˓[2....|
| 1| 3.3|false| 2| bar| US|(10,[0,3,8],[3.3,...|(10,[0,3,8],
→˓[3.3,...|
| 0| 4.4|false| 3| baz| CHN|(10,[0,4,6,9],[4....|(10,[0,4,6,9],
→˓[4....|
| 1| 5.5|false| 4| foo| AUS|(10,[0,2,5],[5.5,...|(10,[0,2,5],
→˓[5.5,...|
+-----+----+-----+---------+------+-------+--------------------+--------------
→˓------+

8.2. Feature Transform 105

Learning Apache Spark with Python

8.2.10 VectorAssembler

from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler

dataset = spark.createDataFrame(
[(0, 18, 1.0, Vectors.dense([0.0, 10.0, 0.5]), 1.0)],
["id", "hour", "mobile", "userFeatures", "clicked"])

assembler = VectorAssembler(
inputCols=["hour", "mobile", "userFeatures"],
outputCol="features")

output = assembler.transform(dataset)
print("Assembled columns 'hour', 'mobile', 'userFeatures' to vector column
→˓'features'")
output.select("features", "clicked").show(truncate=False)

Assembled columns 'hour', 'mobile', 'userFeatures' to vector column 'features'
+-----------------------+-------+
|features |clicked|
+-----------------------+-------+
|[18.0,1.0,0.0,10.0,0.5]|1.0 |
+-----------------------+-------+

8.2.11 OneHotEncoder

This is the note I wrote for one of my readers for explaining the OneHotEncoder. I would like to share it at
here:

Import and creating SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])
df.show()

106 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

+---+--------+
| id|category|
+---+--------+
0	a
1	b
2	c
3	a
4	a
5	c
+---+--------+

OneHotEncoder

Encoder

from pyspark.ml.feature import OneHotEncoder, StringIndexer

stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
model = stringIndexer.fit(df)
indexed = model.transform(df)

default setting: dropLast=True
encoder = OneHotEncoder(inputCol="categoryIndex", outputCol="categoryVec",
→˓dropLast=False)
encoded = encoder.transform(indexed)
encoded.show()

+---+--------+-------------+-------------+
| id|category|categoryIndex| categoryVec|
+---+--------+-------------+-------------+
0	a	0.0	(3,[0],[1.0])
1	b	2.0	(3,[2],[1.0])
2	c	1.0	(3,[1],[1.0])
3	a	0.0	(3,[0],[1.0])
4	a	0.0	(3,[0],[1.0])
5	c	1.0	(3,[1],[1.0])
+---+--------+-------------+-------------+

Note: The default setting of OneHotEncoder is: dropLast=True

default setting: dropLast=True
encoder = OneHotEncoder(inputCol="categoryIndex", outputCol=
→˓"categoryVec")
encoded = encoder.transform(indexed)
encoded.show()

8.2. Feature Transform 107

Learning Apache Spark with Python

+---+--------+-------------+-------------+
| id|category|categoryIndex| categoryVec|
+---+--------+-------------+-------------+
0	a	0.0	(2,[0],[1.0])
1	b	2.0	(2,[],[])
2	c	1.0	(2,[1],[1.0])
3	a	0.0	(2,[0],[1.0])
4	a	0.0	(2,[0],[1.0])
5	c	1.0	(2,[1],[1.0])
+---+--------+-------------+-------------+

Vector Assembler

from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler
categoricalCols = ['category']

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".format(c))
for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.getOutputCol()),
→˓dropLast=False)

for indexer in indexers]
assembler = VectorAssembler(inputCols=[encoder.getOutputCol() for encoder in
→˓encoders]

, outputCol="features")
pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

data.show()
+---+--------+----------------+------------------------+-------------+
| id|category|category_indexed|category_indexed_encoded| features|
+---+--------+----------------+------------------------+-------------+
0	a	0.0	(3,[0],[1.0])	[1.0,0.0,0.0]
1	b	2.0	(3,[2],[1.0])	[0.0,0.0,1.0]
2	c	1.0	(3,[1],[1.0])	[0.0,1.0,0.0]
3	a	0.0	(3,[0],[1.0])	[1.0,0.0,0.0]
4	a	0.0	(3,[0],[1.0])	[1.0,0.0,0.0]
5	c	1.0	(3,[1],[1.0])	[0.0,1.0,0.0]
+---+--------+----------------+------------------------+-------------+

108 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

Application: Get Dummy Variable

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol)
>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

(continues on next page)

8.2. Feature Transform 109

Learning Apache Spark with Python

(continued from previous page)

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".format(c))
for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.getOutputCol()),
→˓dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol() for encoder
→˓in encoders]

+ continuousCols, outputCol="features")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

Unsupervised scenario

df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])
df.show()

indexCol = 'id'
categoricalCols = ['category']
continuousCols = []
labelCol = []

(continues on next page)

110 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

(continued from previous page)

mat = get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol)

mat.show()

+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

Supervised scenario

df = spark.read.csv(path='bank.csv',
sep=',',encoding='UTF-8',comment=None,
header=True,inferSchema=True)

indexCol = []
catCols = ['job','marital','education','default',

'housing','loan','contact','poutcome']

contCols = ['balance', 'duration','campaign','pdays','previous']
labelCol = 'y'

data = get_dummy(df,indexCol,catCols,contCols,labelCol,dropLast=False)
data.show(5)

+--------------------+-----+
| features|label|
+--------------------+-----+
(37,[8,12,17,19,2...	no
(37,[4,12,15,19,2...	no
(37,[0,13,16,19,2...	no
(37,[0,12,16,19,2...	no
(37,[1,12,15,19,2...	no
+--------------------+-----+
only showing top 5 rows

The Jupyter Notebook can be found on Colab: OneHotEncoder .

8.2. Feature Transform 111

https://colab.research.google.com/drive/1pbrFQ-mcyijsVJNPP5GHbOeJaKdTLte3#scrollTo=kLU4xy3XLQG3

Learning Apache Spark with Python

8.2.12 Scaler

from pyspark.ml.feature import Normalizer, StandardScaler, MinMaxScaler,
→˓MaxAbsScaler

scaler_type = 'Normal'
if scaler_type=='Normal':

scaler = Normalizer(inputCol="features", outputCol="scaledFeatures", p=1.
→˓0)
elif scaler_type=='Standard':

scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
withStd=True, withMean=False)

elif scaler_type=='MinMaxScaler':
scaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")

elif scaler_type=='MaxAbsScaler':
scaler = MaxAbsScaler(inputCol="features", outputCol="scaledFeatures")

from pyspark.ml import Pipeline
from pyspark.ml.linalg import Vectors

df = spark.createDataFrame([
(0, Vectors.dense([1.0, 0.5, -1.0]),),
(1, Vectors.dense([2.0, 1.0, 1.0]),),
(2, Vectors.dense([4.0, 10.0, 2.0]),)

], ["id", "features"])
df.show()

pipeline = Pipeline(stages=[scaler])

model =pipeline.fit(df)
data = model.transform(df)
data.show()

+---+--------------+
| id| features|
+---+--------------+
0	[1.0,0.5,-1.0]
1	[2.0,1.0,1.0]
2	[4.0,10.0,2.0]
+---+--------------+

+---+--------------+------------------+
| id| features| scaledFeatures|
+---+--------------+------------------+
0	[1.0,0.5,-1.0]	[0.4,0.2,-0.4]
1	[2.0,1.0,1.0]	[0.5,0.25,0.25]
2	[4.0,10.0,2.0]	[0.25,0.625,0.125]
+---+--------------+------------------+

112 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

Normalizer

from pyspark.ml.feature import Normalizer
from pyspark.ml.linalg import Vectors

dataFrame = spark.createDataFrame([
(0, Vectors.dense([1.0, 0.5, -1.0]),),
(1, Vectors.dense([2.0, 1.0, 1.0]),),
(2, Vectors.dense([4.0, 10.0, 2.0]),)

], ["id", "features"])

Normalize each Vector using L^1 norm.
normalizer = Normalizer(inputCol="features", outputCol="normFeatures", p=1.0)
l1NormData = normalizer.transform(dataFrame)
print("Normalized using L^1 norm")
l1NormData.show()

Normalize each Vector using L^∞ norm.
lInfNormData = normalizer.transform(dataFrame, {normalizer.p: float("inf")})
print("Normalized using L^inf norm")
lInfNormData.show()

Normalized using L^1 norm
+---+--------------+------------------+
| id| features| normFeatures|
+---+--------------+------------------+
0	[1.0,0.5,-1.0]	[0.4,0.2,-0.4]
1	[2.0,1.0,1.0]	[0.5,0.25,0.25]
2	[4.0,10.0,2.0]	[0.25,0.625,0.125]
+---+--------------+------------------+

Normalized using L^inf norm
+---+--------------+--------------+
| id| features| normFeatures|
+---+--------------+--------------+
0	[1.0,0.5,-1.0]	[1.0,0.5,-1.0]
1	[2.0,1.0,1.0]	[1.0,0.5,0.5]
2	[4.0,10.0,2.0]	[0.4,1.0,0.2]
+---+--------------+--------------+

StandardScaler

from pyspark.ml.feature import Normalizer, StandardScaler, MinMaxScaler,
→˓MaxAbsScaler

from pyspark.ml.linalg import Vectors

dataFrame = spark.createDataFrame([
(0, Vectors.dense([1.0, 0.5, -1.0]),),
(1, Vectors.dense([2.0, 1.0, 1.0]),),

(continues on next page)

8.2. Feature Transform 113

Learning Apache Spark with Python

(continued from previous page)

(2, Vectors.dense([4.0, 10.0, 2.0]),)
], ["id", "features"])

scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
withStd=True, withMean=False)

scaleredData = scaler.fit((dataFrame)).transform(dataFrame)
scaleredData.show(truncate=False)

+---+--------------+--
→˓--+
|id |features |scaledFeatures
→˓ |
+---+--------------+--
→˓--+
|0 |[1.0,0.5,-1.0]|[0.6546536707079772,0.09352195295828244,-0.
→˓6546536707079771]|
|1 |[2.0,1.0,1.0] |[1.3093073414159544,0.1870439059165649,0.
→˓6546536707079771] |
|2 |[4.0,10.0,2.0]|[2.618614682831909,1.870439059165649,1.3093073414159542]
→˓ |
+---+--------------+--
→˓--+

MinMaxScaler

from pyspark.ml.feature import Normalizer, StandardScaler, MinMaxScaler,
→˓MaxAbsScaler

from pyspark.ml.linalg import Vectors

dataFrame = spark.createDataFrame([
(0, Vectors.dense([1.0, 0.5, -1.0]),),
(1, Vectors.dense([2.0, 1.0, 1.0]),),
(2, Vectors.dense([4.0, 10.0, 2.0]),)

], ["id", "features"])

scaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
scaledData = scaler.fit((dataFrame)).transform(dataFrame)
scaledData.show(truncate=False)

+---+--------------+--
→˓-+
|id |features |scaledFeatures
→˓ |
+---+--------------+--
→˓-+
|0 |[1.0,0.5,-1.0]|[0.0,0.0,0.0]
→˓ |
|1 |[2.0,1.0,1.0] |[0.3333333333333333,0.05263157894736842,0.
→˓6666666666666666]| (continues on next page)

114 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

(continued from previous page)

|2 |[4.0,10.0,2.0]|[1.0,1.0,1.0]
→˓ |
+---+--------------+--
→˓-+

MaxAbsScaler

from pyspark.ml.feature import Normalizer, StandardScaler, MinMaxScaler,
→˓MaxAbsScaler

from pyspark.ml.linalg import Vectors

dataFrame = spark.createDataFrame([
(0, Vectors.dense([1.0, 0.5, -1.0]),),
(1, Vectors.dense([2.0, 1.0, 1.0]),),
(2, Vectors.dense([4.0, 10.0, 2.0]),)

], ["id", "features"])

scaler = MaxAbsScaler(inputCol="features", outputCol="scaledFeatures")
scaledData = scaler.fit((dataFrame)).transform(dataFrame)
scaledData.show(truncate=False)

+---+--------------+----------------+
|id |features |scaledFeatures |
+---+--------------+----------------+
0	[1.0,0.5,-1.0]	[0.25,0.05,-0.5]
1	[2.0,1.0,1.0]	[0.5,0.1,0.5]
2	[4.0,10.0,2.0]	[1.0,1.0,1.0]
+---+--------------+----------------+

8.2.13 PCA

from pyspark.ml.feature import PCA
from pyspark.ml.linalg import Vectors

data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
(Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]

df = spark.createDataFrame(data, ["features"])

pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures")
model = pca.fit(df)

result = model.transform(df).select("pcaFeatures")
result.show(truncate=False)

8.2. Feature Transform 115

Learning Apache Spark with Python

+---+
|pcaFeatures |
+---+
|[1.6485728230883807,-4.013282700516296,-5.524543751369388] |
|[-4.645104331781534,-1.1167972663619026,-5.524543751369387]|
|[-6.428880535676489,-5.337951427775355,-5.524543751369389] |
+---+

8.2.14 DCT

from pyspark.ml.feature import DCT
from pyspark.ml.linalg import Vectors

df = spark.createDataFrame([
(Vectors.dense([0.0, 1.0, -2.0, 3.0]),),
(Vectors.dense([-1.0, 2.0, 4.0, -7.0]),),
(Vectors.dense([14.0, -2.0, -5.0, 1.0]),)], ["features"])

dct = DCT(inverse=False, inputCol="features", outputCol="featuresDCT")

dctDf = dct.transform(df)

dctDf.select("featuresDCT").show(truncate=False)

+--+
|featuresDCT |
+--+
|[1.0,-1.1480502970952693,2.0000000000000004,-2.7716385975338604]|
|[-1.0,3.378492794482933,-7.000000000000001,2.9301512653149677] |
|[4.0,9.304453421915744,11.000000000000002,1.5579302036357163] |
+--+

8.3 Feature Selection

8.3.1 LASSO

Variable selection and the removal of correlated variables. The Ridge method shrinks the coefficients of
correlated variables while the LASSO method picks one variable and discards the others. The elastic net
penalty is a mixture of these two; if variables are correlated in groups then 𝛼 = 0.5 tends to select the
groups as in or out. If is close to 1, the elastic net performs much like the LASSO method and removes any
degeneracies and wild behavior caused by extreme correlations.

116 Chapter 8. Data Manipulation: Features

Learning Apache Spark with Python

8.3.2 RandomForest

AutoFeatures library based on RandomForest is coming soon.

8.4 Unbalanced data: Undersampling

Since we use PySpark to deal with the big data, Undersampling for Unbalanced Classification is a useful
method to deal with the Unbalanced data. Undersampling is a popular technique for unbalanced datasets to
reduce the skew in class distributions. However, it is well-known that undersampling one class modifies the
priors of the training set and consequently biases the posterior probabilities of a classifier. After you applied
the Undersampling, you need to recalibrate the Probability Calibrating Probability with Undersampling for
Unbalanced Classification.

df = spark.createDataFrame([
(0, "Yes"),
(1, "Yes"),
(2, "Yes"),
(3, "Yes"),
(4, "No"),
(5, "No")

], ["id", "label"])
df.show()

+---+-----+
| id|label|
+---+-----+
0	Yes
1	Yes
2	Yes
3	Yes
4	No
5	No
+---+-----+

8.4. Unbalanced data: Undersampling 117

https://github.com/runawayhorse001/AutoFeatures
https://www3.nd.edu/~dial/publications/dalpozzolo2015calibrating.pdf
https://www3.nd.edu/~dial/publications/dalpozzolo2015calibrating.pdf

Learning Apache Spark with Python

8.4.1 Calculate undersampling Ratio

import math
def round_up(n, decimals=0):

multiplier = 10 ** decimals
return math.ceil(n * multiplier) / multiplier

drop missing value rows
df = df.dropna()
under-sampling majority set
label_Y = df.filter(df.label=='Yes')
label_N = df.filter(df.label=='No')
sampleRatio = round_up(label_N.count() / df.count(),2)

8.4.2 Undersampling

label_Y_sample = label_Y.sample(False, sampleRatio)
union minority set and the under-sampling majority set
data = label_N.unionAll(label_Y_sample)
data.show()

+---+-----+
| id|label|
+---+-----+
4	No
5	No
1	Yes
2	Yes
+---+-----+

8.4.3 Recalibrating Probability

Undersampling is a popular technique for unbalanced datasets to reduce the skew in class distributions.
However, it is well-known that undersampling one class modifies the priors of the training set and con-
sequently biases the posterior probabilities of a classifier Calibrating Probability with Undersampling for
Unbalanced Classification.

predication.withColumn('adj_probability',sampleRatio*F.col('probability')/
→˓((sampleRatio-1)*F.col('probability')+1))

118 Chapter 8. Data Manipulation: Features

https://www3.nd.edu/~dial/publications/dalpozzolo2015calibrating.pdf
https://www3.nd.edu/~dial/publications/dalpozzolo2015calibrating.pdf

CHAPTER

NINE

REGRESSION

Chinese proverb

A journey of a thousand miles begins with a single step. – old Chinese proverb

In statistical modeling, regression analysis focuses on investigating the relationship between a dependent
variable and one or more independent variables. Wikipedia Regression analysis

In data mining, Regression is a model to represent the relationship between the value of lable (or target,
it is numerical variable) and on one or more features (or predictors they can be numerical and categorical
variables).

9.1 Linear Regression

9.1.1 Introduction

Given that a data set {𝑥𝑖1, . . . , 𝑥𝑖𝑛, 𝑦𝑖}𝑚𝑖=1 which contains n features (variables) and m samples (data points),
in simple linear regression model for modeling 𝑚 data points with 𝑗 independent variables: 𝑥𝑖𝑗 , the formula
is given by:

𝑦𝑖 = 𝛽0 + 𝛽𝑗𝑥𝑖𝑗 ,where, 𝑖 = 1, · · ·𝑚, 𝑗 = 1, · · ·𝑛.

In matrix notation, the data set is written as X = [𝑥1, · · · ,𝑥𝑛] with 𝑥𝑗 = {𝑥𝑖𝑗}𝑚𝑖=1, 𝑦 = {𝑦𝑖}𝑚𝑖=1 (see Fig.
Feature matrix and label) and 𝛽⊤ = {𝛽𝑗}𝑛𝑗=1. Then the matrix format equation is written as

𝑦 = X𝛽. (9.1)

119

https://en.wikipedia.org/wiki/Regression_analysis

Learning Apache Spark with Python

Fig. 1: Feature matrix and label

9.1.2 How to solve it?

1. Direct Methods (For more information please refer to my Prelim Notes for Numerical Analysis)

• For squared or rectangular matrices

– Singular Value Decomposition

– Gram-Schmidt orthogonalization

– QR Decomposition

• For squared matrices

– LU Decomposition

– Cholesky Decomposition

– Regular Splittings

2. Iterative Methods

• Stationary cases iterative method

– Jacobi Method

– Gauss-Seidel Method

– Richardson Method

– Successive Over Relaxation (SOR) Method

• Dynamic cases iterative method

– Chebyshev iterative Method

– Minimal residuals Method

– Minimal correction iterative method

– Steepest Descent Method

120 Chapter 9. Regression

http://web.utk.edu/~wfeng1/doc/PrelimNum.pdf

Learning Apache Spark with Python

– Conjugate Gradients Method

9.1.3 Ordinary Least Squares

In mathematics, (9.1) is a overdetermined system. The method of ordinary least squares can be used to find
an approximate solution to overdetermined systems. For the system overdetermined system (9.1), the least
squares formula is obtained from the problem

min
𝛽

||X𝛽 − 𝑦||, (9.2)

the solution of which can be written with the normal equations:

𝛽 = (X𝑇X)−1X𝑇𝑦 (9.3)

where T indicates a matrix transpose, provided (XTX)−1 exists (that is, provided X has full column rank).

Note: Actually, (9.3) can be derivated by the following way: multiply X𝑇 on side of (9.1) and then multiply
(X𝑇X)−1 on both side of the former result. You may also apply the Extreme Value Theorem to (9.2)
and find the solution (9.3).

9.1.4 Gradient Descent

Let’s use the following hypothesis:

ℎ𝛽 = 𝛽0 + 𝛽𝑗𝑥𝑗 ,where, 𝑗 = 1, · · ·𝑛.

Then, solving (9.2) is equivalent to minimize the following cost fucntion :

9.1.5 Cost Function

𝐽(𝛽) =
1

2𝑚

𝑚∑︁
𝑖=1

(︁
ℎ𝛽(𝑥(𝑖)) − 𝑦(𝑖))

)︁2

(9.4)

Note: The reason why we prefer to solve (9.4) rather than (9.2) is because (9.4) is convex and it has some
nice properties, such as it’s uniquely solvable and energy stable for small enough learning rate. the interested
reader who has great interest in non-convex cost function (energy) case. is referred to [Feng2016PSD] for
more details.

9.1. Linear Regression 121

Learning Apache Spark with Python

Fig. 2: Gradient Descent in 1D

Fig. 3: Gradient Descent in 2D

122 Chapter 9. Regression

Learning Apache Spark with Python

9.1.6 Batch Gradient Descent

Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a func-
tion. It searchs with the direction of the steepest desscent which is defined by the negative of the
gradient (see Fig. Gradient Descent in 1D and Gradient Descent in 2D for 1D and 2D, respectively) and
with learning rate (search step) 𝛼.

9.1.7 Stochastic Dradient Descent

9.1.8 Mini-batch Gradient Descent

9.1.9 Demo

• The Jupyter notebook can be download from Linear Regression which was implemented without using
Pipeline.

• The Jupyter notebook can be download from Linear Regression with Pipeline which was implemented
with using Pipeline.

• I will only present the code with pipeline style in the following.

• For more details about the parameters, please visit Linear Regression API .

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark regression example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("../data/Advertising.csv",header=True);

check the data set

df.show(5,True)
df.printSchema()

Then you will get

+-----+-----+---------+-----+
| TV|Radio|Newspaper|Sales|
+-----+-----+---------+-----+
|230.1| 37.8| 69.2| 22.1|

(continues on next page)

9.1. Linear Regression 123

_static/LinearRegression.ipynb
_static/LinearRegressionWpipeline.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.regression.LinearRegression.html

Learning Apache Spark with Python

(continued from previous page)

44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
151.5	41.3	58.5	18.5
180.8	10.8	58.4	12.9
+-----+-----+---------+-----+
only showing top 5 rows

root
|-- TV: double (nullable = true)
|-- Radio: double (nullable = true)
|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

You can also get the Statistical results from the data frame (Unfortunately, it only works for numerical).

df.describe().show()

Then you will get

+-------+-----------------+------------------+------------------+-------------
→˓-----+
|summary| TV| Radio| Newspaper|
→˓Sales|
+-------+-----------------+------------------+------------------+-------------
→˓-----+
| count| 200| 200| 200|
→˓ 200|
| mean| 147.0425|23.264000000000024|30.553999999999995|14.
→˓022500000000003|
| stddev|85.85423631490805|14.846809176168728| 21.77862083852283| 5.
→˓217456565710477|
| min| 0.7| 0.0| 0.3|
→˓ 1.6|
| max| 296.4| 49.6| 114.0|
→˓ 27.0|
+-------+-----------------+------------------+------------------+-------------
→˓-----+

124 Chapter 9. Regression

Learning Apache Spark with Python

Fig. 4: Sales distribution

3. Convert the data to dense vector (features and label)

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

I provide two ways to build the features and labels

method 1 (good for small feature):
#def transData(row):
return Row(label=row["Sales"],
features=Vectors.dense([row["TV"],
row["Radio"],
row["Newspaper"]]))

Method 2 (good for large features):
def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF(['features',
→˓'label'])

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in comple dataset.

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

(continues on next page)

9.1. Linear Regression 125

Learning Apache Spark with Python

(continued from previous page)

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

if indexCol:
return data.select(indexCol,'features','label')

else:
return data.select('features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

(continues on next page)

126 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol:
return data.select(indexCol,'features')

else:
return data.select('features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

(continues on next page)

9.1. Linear Regression 127

Learning Apache Spark with Python

(continued from previous page)

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))

(continues on next page)

128 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

return data.select(indexCol,'features','label')
elif not indexCol and labelCol:

for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

4. Transform the dataset to DataFrame

transformed= transData(df)
transformed.show(5)

+-----------------+-----+
| features|label|
+-----------------+-----+
[230.1,37.8,69.2]	22.1
[44.5,39.3,45.1]	10.4
[17.2,45.9,69.3]	9.3
[151.5,41.3,58.5]	18.5
[180.8,10.8,58.4]	12.9
+-----------------+-----+
only showing top 5 rows

Note: You will find out that all of the supervised machine learning algorithms in Spark are based on the
features and label (unsupervised machine learning algorithms in Spark are based on the features). That is
to say, you can play with all of the machine learning algorithms in Spark when you get ready the features
and label in pipeline architecture.

5. Deal With Categorical Variables

from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

Automatically identify categorical features, and index them.
We specify maxCategories so features with > 4 distinct values are treated
→˓as continuous.

featureIndexer = VectorIndexer(inputCol="features", \
outputCol="indexedFeatures",\
maxCategories=4).fit(transformed)

(continues on next page)

9.1. Linear Regression 129

Learning Apache Spark with Python

(continued from previous page)

data = featureIndexer.transform(transformed)

Now you check your dataset with

data.show(5,True)

you will get

+-----------------+-----+-----------------+
| features|label| indexedFeatures|
+-----------------+-----+-----------------+
[230.1,37.8,69.2]	22.1	[230.1,37.8,69.2]
[44.5,39.3,45.1]	10.4	[44.5,39.3,45.1]
[17.2,45.9,69.3]	9.3	[17.2,45.9,69.3]
[151.5,41.3,58.5]	18.5	[151.5,41.3,58.5]
[180.8,10.8,58.4]	12.9	[180.8,10.8,58.4]
+-----------------+-----+-----------------+
only showing top 5 rows

6. Split the data into training and test sets (40% held out for testing)

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = transformed.randomSplit([0.6, 0.4])

You can check your train and test data as follows (In my opinion, it is always to good to keep tracking your
data during prototype pahse):

trainingData.show(5)
testData.show(5)

Then you will get

+---------------+-----+---------------+
| features|label|indexedFeatures|
+---------------+-----+---------------+
[4.1,11.6,5.7]	3.2	[4.1,11.6,5.7]
[5.4,29.9,9.4]	5.3	[5.4,29.9,9.4]
[7.3,28.1,41.4]	5.5	[7.3,28.1,41.4]
[7.8,38.9,50.6]	6.6	[7.8,38.9,50.6]
[8.6,2.1,1.0]	4.8	[8.6,2.1,1.0]
+---------------+-----+---------------+
only showing top 5 rows

+----------------+-----+----------------+
| features|label| indexedFeatures|
+----------------+-----+----------------+
[0.7,39.6,8.7]	1.6	[0.7,39.6,8.7]
[8.4,27.2,2.1]	5.7	[8.4,27.2,2.1]
[11.7,36.9,45.2]	7.3	[11.7,36.9,45.2]
[13.2,15.9,49.6]	5.6	[13.2,15.9,49.6]

(continues on next page)

130 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

|[16.9,43.7,89.4]| 8.7|[16.9,43.7,89.4]|
+----------------+-----+----------------+
only showing top 5 rows

7. Fit Ordinary Least Square Regression Model

For more details about the parameters, please visit Linear Regression API .

Import LinearRegression class
from pyspark.ml.regression import LinearRegression

Define LinearRegression algorithm
lr = LinearRegression()

8. Pipeline Architecture

Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featureIndexer, lr])

model = pipeline.fit(trainingData)

9. Summary of the Model

Spark has a poor summary function for data and model. I wrote a summary function which has similar
format as R output for the linear regression in PySpark.

def modelsummary(model):
import numpy as np
print ("Note: the last rows are the information for Intercept")
print ("##","---")
print ("##"," Estimate | Std.Error | t Values | P-value")
coef = np.append(list(model.coefficients),model.intercept)
Summary=model.summary

for i in range(len(Summary.pValues)):
print ("##",'{:10.6f}'.format(coef[i]),\
'{:10.6f}'.format(Summary.coefficientStandardErrors[i]),\
'{:8.3f}'.format(Summary.tValues[i]),\
'{:10.6f}'.format(Summary.pValues[i]))

print ("##",'---')
print ("##","Mean squared error: % .6f" \

% Summary.meanSquaredError, ", RMSE: % .6f" \
% Summary.rootMeanSquaredError)

print ("##","Multiple R-squared: %f" % Summary.r2, ", \
Total iterations: %i"% Summary.totalIterations)

modelsummary(model.stages[-1])

You will get the following summary results:

9.1. Linear Regression 131

http://takwatanabe.me/pyspark/generated/generated/ml.regression.LinearRegression.html

Learning Apache Spark with Python

Note: the last rows are the information for Intercept
('##', '---')
('##', ' Estimate | Std.Error | t Values | P-value')
('##', ' 0.044186', ' 0.001663', ' 26.573', ' 0.000000')
('##', ' 0.206311', ' 0.010846', ' 19.022', ' 0.000000')
('##', ' 0.001963', ' 0.007467', ' 0.263', ' 0.793113')
('##', ' 2.596154', ' 0.379550', ' 6.840', ' 0.000000')
('##', '---')
('##', 'Mean squared error: 2.588230', ', RMSE: 1.608798')
('##', 'Multiple R-squared: 0.911869', ', Total iterations: 1')

10. Make predictions

Make predictions.
predictions = model.transform(testData)

Select example rows to display.
predictions.select("features","label","prediction").show(5)

+----------------+-----+------------------+
| features|label| prediction|
+----------------+-----+------------------+
[0.7,39.6,8.7]	1.6	10.81405928637388
[8.4,27.2,2.1]	5.7	8.583086404079918
[11.7,36.9,45.2]	7.3	10.814712818232422
[13.2,15.9,49.6]	5.6	6.557106943899219
[16.9,43.7,89.4]	8.7	12.534151375058645
+----------------+-----+------------------+
only showing top 5 rows

9. Evaluation

from pyspark.ml.evaluation import RegressionEvaluator
Select (prediction, true label) and compute test error
evaluator = RegressionEvaluator(labelCol="label",

predictionCol="prediction",
metricName="rmse")

rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

The final Root Mean Squared Error (RMSE) is as follows:

Root Mean Squared Error (RMSE) on test data = 1.63114

You can also check the 𝑅2 value for the test data:

y_true = predictions.select("label").toPandas()
y_pred = predictions.select("prediction").toPandas()

import sklearn.metrics
(continues on next page)

132 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print('r2_score: {0}'.format(r2_score))

Then you will get

r2_score: 0.854486655585

Warning: You should know most softwares are using different formula to calculate the 𝑅2 value
when no intercept is included in the model. You can get more information from the disscussion at
StackExchange.

9.2 Generalized linear regression

9.2.1 Introduction

9.2.2 How to solve it?

9.2.3 Demo

• The Jupyter notebook can be download from Generalized Linear Regression.

• For more details about the parameters, please visit Generalized Linear Regression API .

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark regression example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("../data/Advertising.csv",header=True);

check the data set

df.show(5,True)
df.printSchema()

Then you will get

9.2. Generalized linear regression 133

https://stats.stackexchange.com/questions/26176/removal-of-statistically-significant-intercept-term-increases-r2-in-linear-mo
https://stats.stackexchange.com/questions/26176/removal-of-statistically-significant-intercept-term-increases-r2-in-linear-mo
_static/GLM.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.regression.GeneralizedLinearRegression.html

Learning Apache Spark with Python

+-----+-----+---------+-----+
| TV|Radio|Newspaper|Sales|
+-----+-----+---------+-----+
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
151.5	41.3	58.5	18.5
180.8	10.8	58.4	12.9
+-----+-----+---------+-----+
only showing top 5 rows

root
|-- TV: double (nullable = true)
|-- Radio: double (nullable = true)
|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

You can also get the Statistical resutls from the data frame (Unfortunately, it only works for numerical).

df.describe().show()

Then you will get

+-------+-----------------+------------------+------------------+-------------
→˓-----+
|summary| TV| Radio| Newspaper|
→˓Sales|
+-------+-----------------+------------------+------------------+-------------
→˓-----+
| count| 200| 200| 200|
→˓ 200|
| mean| 147.0425|23.264000000000024|30.553999999999995|14.
→˓022500000000003|
| stddev|85.85423631490805|14.846809176168728| 21.77862083852283| 5.
→˓217456565710477|
| min| 0.7| 0.0| 0.3|
→˓ 1.6|
| max| 296.4| 49.6| 114.0|
→˓ 27.0|
+-------+-----------------+------------------+------------------+-------------
→˓-----+

3. Convert the data to dense vector (features and label)

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in comple dataset.

Supervised learning version:

134 Chapter 9. Regression

Learning Apache Spark with Python

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

if indexCol:
return data.select(indexCol,'features','label')

else:
return data.select('features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

(continues on next page)

9.2. Generalized linear regression 135

Learning Apache Spark with Python

(continued from previous page)

'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol:
return data.select(indexCol,'features')

else:
return data.select('features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),

(continues on next page)

136 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
(continues on next page)

9.2. Generalized linear regression 137

Learning Apache Spark with Python

(continued from previous page)

for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

I provide two ways to build the features and labels

method 1 (good for small feature):
#def transData(row):
return Row(label=row["Sales"],
features=Vectors.dense([row["TV"],
row["Radio"],
row["Newspaper"]]))

Method 2 (good for large features):
def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF(['features',
→˓'label'])

transformed= transData(df)
transformed.show(5)

+-----------------+-----+
| features|label|
+-----------------+-----+
[230.1,37.8,69.2]	22.1
[44.5,39.3,45.1]	10.4
[17.2,45.9,69.3]	9.3
[151.5,41.3,58.5]	18.5
[180.8,10.8,58.4]	12.9
+-----------------+-----+
only showing top 5 rows

Note: You will find out that all of the machine learning algorithms in Spark are based on the features and
label. That is to say, you can play with all of the machine learning algorithms in Spark when you get ready

138 Chapter 9. Regression

Learning Apache Spark with Python

the features and label.

4. Convert the data to dense vector

convert the data to dense vector
def transData(data):

return data.rdd.map(lambda r: [r[-1], Vectors.dense(r[:-1])]).\
toDF(['label','features'])

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

data= transData(df)
data.show()

5. Deal with the Categorical variables

from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

Automatically identify categorical features, and index them.
We specify maxCategories so features with > 4
distinct values are treated as continuous.

featureIndexer = VectorIndexer(inputCol="features", \
outputCol="indexedFeatures",\
maxCategories=4).fit(transformed)

data = featureIndexer.transform(transformed)

When you check you data at this point, you will get

+-----------------+-----+-----------------+
| features|label| indexedFeatures|
+-----------------+-----+-----------------+
[230.1,37.8,69.2]	22.1	[230.1,37.8,69.2]
[44.5,39.3,45.1]	10.4	[44.5,39.3,45.1]
[17.2,45.9,69.3]	9.3	[17.2,45.9,69.3]
[151.5,41.3,58.5]	18.5	[151.5,41.3,58.5]
[180.8,10.8,58.4]	12.9	[180.8,10.8,58.4]
+-----------------+-----+-----------------+
only showing top 5 rows

6. Split the data into training and test sets (40% held out for testing)

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = transformed.randomSplit([0.6, 0.4])

You can check your train and test data as follows (In my opinion, it is always to good to keep tracking your
data during prototype phase):

9.2. Generalized linear regression 139

Learning Apache Spark with Python

trainingData.show(5)
testData.show(5)

Then you will get

+----------------+-----+----------------+
| features|label| indexedFeatures|
+----------------+-----+----------------+
[5.4,29.9,9.4]	5.3	[5.4,29.9,9.4]
[7.8,38.9,50.6]	6.6	[7.8,38.9,50.6]
[8.4,27.2,2.1]	5.7	[8.4,27.2,2.1]
[8.7,48.9,75.0]	7.2	[8.7,48.9,75.0]
[11.7,36.9,45.2]	7.3	[11.7,36.9,45.2]
+----------------+-----+----------------+
only showing top 5 rows

+---------------+-----+---------------+
| features|label|indexedFeatures|
+---------------+-----+---------------+
[0.7,39.6,8.7]	1.6	[0.7,39.6,8.7]
[4.1,11.6,5.7]	3.2	[4.1,11.6,5.7]
[7.3,28.1,41.4]	5.5	[7.3,28.1,41.4]
[8.6,2.1,1.0]	4.8	[8.6,2.1,1.0]
[17.2,4.1,31.6]	5.9	[17.2,4.1,31.6]
+---------------+-----+---------------+
only showing top 5 rows

7. Fit Generalized Linear Regression Model

Import LinearRegression class
from pyspark.ml.regression import GeneralizedLinearRegression

Define LinearRegression algorithm
glr = GeneralizedLinearRegression(family="gaussian", link="identity",\

maxIter=10, regParam=0.3)

8. Pipeline Architecture

Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featureIndexer, glr])

model = pipeline.fit(trainingData)

9. Summary of the Model

Spark has a poor summary function for data and model. I wrote a summary function which has similar
format as R output for the linear regression in PySpark.

def modelsummary(model):
import numpy as np
print ("Note: the last rows are the information for Intercept")
print ("##","---")

(continues on next page)

140 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

print ("##"," Estimate | Std.Error | t Values | P-value")
coef = np.append(list(model.coefficients),model.intercept)
Summary=model.summary

for i in range(len(Summary.pValues)):
print ("##",'{:10.6f}'.format(coef[i]),\
'{:10.6f}'.format(Summary.coefficientStandardErrors[i]),\
'{:8.3f}'.format(Summary.tValues[i]),\
'{:10.6f}'.format(Summary.pValues[i]))

print ("##",'---')
print ("##","Mean squared error: % .6f" \
% Summary.meanSquaredError, ", RMSE: % .6f" \
% Summary.rootMeanSquaredError)
print ("##","Multiple R-squared: %f" % Summary.r2, ", \
Total iterations: %i"% Summary.totalIterations)

modelsummary(model.stages[-1])

You will get the following summary results:

Note: the last rows are the information for Intercept
('##', '---')
('##', ' Estimate | Std.Error | t Values | P-value')
('##', ' 0.042857', ' 0.001668', ' 25.692', ' 0.000000')
('##', ' 0.199922', ' 0.009881', ' 20.232', ' 0.000000')
('##', ' -0.001957', ' 0.006917', ' -0.283', ' 0.777757')
('##', ' 3.007515', ' 0.406389', ' 7.401', ' 0.000000')
('##', '---')

10. Make predictions

Make predictions.
predictions = model.transform(testData)

Select example rows to display.
predictions.select("features","label","predictedLabel").show(5)

+---------------+-----+------------------+
| features|label| prediction|
+---------------+-----+------------------+
[0.7,39.6,8.7]	1.6	10.937383732327625
[4.1,11.6,5.7]	3.2	5.491166258750164
[7.3,28.1,41.4]	5.5	8.8571603947873
[8.6,2.1,1.0]	4.8	3.793966281660073
[17.2,4.1,31.6]	5.9	4.502507124763654
+---------------+-----+------------------+
only showing top 5 rows

11. Evaluation

9.2. Generalized linear regression 141

Learning Apache Spark with Python

from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.evaluation import RegressionEvaluator
Select (prediction, true label) and compute test error
evaluator = RegressionEvaluator(labelCol="label",

predictionCol="prediction",
metricName="rmse")

rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

The final Root Mean Squared Error (RMSE) is as follows:

Root Mean Squared Error (RMSE) on test data = 1.89857

y_true = predictions.select("label").toPandas()
y_pred = predictions.select("prediction").toPandas()

import sklearn.metrics
r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print('r2_score: {0}'.format(r2_score))

Then you will get the 𝑅2 value:

r2_score: 0.87707391843

9.3 Decision tree Regression

9.3.1 Introduction

9.3.2 How to solve it?

9.3.3 Demo

• The Jupyter notebook can be download from Decision Tree Regression.

• For more details about the parameters, please visit Decision Tree Regressor API .

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark regression example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

142 Chapter 9. Regression

_static/DecisionTreeR.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.regression.DecisionTreeRegressor.html

Learning Apache Spark with Python

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("../data/Advertising.csv",header=True);

check the data set

df.show(5,True)
df.printSchema()

Then you will get

+-----+-----+---------+-----+
| TV|Radio|Newspaper|Sales|
+-----+-----+---------+-----+
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
151.5	41.3	58.5	18.5
180.8	10.8	58.4	12.9
+-----+-----+---------+-----+
only showing top 5 rows

root
|-- TV: double (nullable = true)
|-- Radio: double (nullable = true)
|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

You can also get the Statistical resutls from the data frame (Unfortunately, it only works for numerical).

df.describe().show()

Then you will get

+-------+-----------------+------------------+------------------+-------------
→˓-----+
|summary| TV| Radio| Newspaper|
→˓Sales|
+-------+-----------------+------------------+------------------+-------------
→˓-----+
| count| 200| 200| 200|
→˓ 200|
| mean| 147.0425|23.264000000000024|30.553999999999995|14.
→˓022500000000003|
| stddev|85.85423631490805|14.846809176168728| 21.77862083852283| 5.
→˓217456565710477|
| min| 0.7| 0.0| 0.3|
→˓ 1.6|
| max| 296.4| 49.6| 114.0|
→˓ 27.0|
+-------+-----------------+------------------+------------------+-------------
→˓-----+ (continues on next page)

9.3. Decision tree Regression 143

Learning Apache Spark with Python

(continued from previous page)

3. Convert the data to dense vector (features and label)

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in comple dataset.

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.

(continues on next page)

144 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

(continues on next page)

9.3. Decision tree Regression 145

Learning Apache Spark with Python

(continued from previous page)

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

(continues on next page)

146 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

I provide two ways to build the features and labels

method 1 (good for small feature):
#def transData(row):
return Row(label=row["Sales"],
features=Vectors.dense([row["TV"],
row["Radio"],
row["Newspaper"]]))

Method 2 (good for large features):
def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF(['features',
→˓'label'])

transformed= transData(df)
transformed.show(5)

+-----------------+-----+
| features|label|
+-----------------+-----+
[230.1,37.8,69.2]	22.1
[44.5,39.3,45.1]	10.4
[17.2,45.9,69.3]	9.3
[151.5,41.3,58.5]	18.5
[180.8,10.8,58.4]	12.9
+-----------------+-----+
only showing top 5 rows

9.3. Decision tree Regression 147

Learning Apache Spark with Python

Note: You will find out that all of the machine learning algorithms in Spark are based on the features and
label. That is to say, you can play with all of the machine learning algorithms in Spark when you get ready
the features and label.

4. Convert the data to dense vector

convert the data to dense vector
def transData(data):

return data.rdd.map(lambda r: [r[-1], Vectors.dense(r[:-1])]).\
toDF(['label','features'])

transformed = transData(df)
transformed.show(5)

5. Deal with the Categorical variables

from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

Automatically identify categorical features, and index them.
We specify maxCategories so features with > 4
distinct values are treated as continuous.

featureIndexer = VectorIndexer(inputCol="features", \
outputCol="indexedFeatures",\
maxCategories=4).fit(transformed)

data = featureIndexer.transform(transformed)

When you check you data at this point, you will get

+-----------------+-----+-----------------+
| features|label| indexedFeatures|
+-----------------+-----+-----------------+
[230.1,37.8,69.2]	22.1	[230.1,37.8,69.2]
[44.5,39.3,45.1]	10.4	[44.5,39.3,45.1]
[17.2,45.9,69.3]	9.3	[17.2,45.9,69.3]
[151.5,41.3,58.5]	18.5	[151.5,41.3,58.5]
[180.8,10.8,58.4]	12.9	[180.8,10.8,58.4]
+-----------------+-----+-----------------+
only showing top 5 rows

6. Split the data into training and test sets (40% held out for testing)

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = transformed.randomSplit([0.6, 0.4])

You can check your train and test data as follows (In my opinion, it is always to good to keep tracking your
data during prototype pahse):

148 Chapter 9. Regression

Learning Apache Spark with Python

trainingData.show(5)
testData.show(5)

Then you will get

+---------------+-----+---------------+
| features|label|indexedFeatures|
+---------------+-----+---------------+
[4.1,11.6,5.7]	3.2	[4.1,11.6,5.7]
[7.3,28.1,41.4]	5.5	[7.3,28.1,41.4]
[8.4,27.2,2.1]	5.7	[8.4,27.2,2.1]
[8.6,2.1,1.0]	4.8	[8.6,2.1,1.0]
[8.7,48.9,75.0]	7.2	[8.7,48.9,75.0]
+---------------+-----+---------------+
only showing top 5 rows

+----------------+-----+----------------+
| features|label| indexedFeatures|
+----------------+-----+----------------+
[0.7,39.6,8.7]	1.6	[0.7,39.6,8.7]
[5.4,29.9,9.4]	5.3	[5.4,29.9,9.4]
[7.8,38.9,50.6]	6.6	[7.8,38.9,50.6]
[17.2,45.9,69.3]	9.3	[17.2,45.9,69.3]
[18.7,12.1,23.4]	6.7	[18.7,12.1,23.4]
+----------------+-----+----------------+
only showing top 5 rows

7. Fit Decision Tree Regression Model

from pyspark.ml.regression import DecisionTreeRegressor

Train a DecisionTree model.
dt = DecisionTreeRegressor(featuresCol="indexedFeatures")

8. Pipeline Architecture

Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featureIndexer, dt])

model = pipeline.fit(trainingData)

9. Make predictions

Make predictions.
predictions = model.transform(testData)

Select example rows to display.
predictions.select("features","label","predictedLabel").show(5)

+----------+-----+----------------+
|prediction|label| features|

(continues on next page)

9.3. Decision tree Regression 149

Learning Apache Spark with Python

(continued from previous page)

+----------+-----+----------------+
7.2	1.6	[0.7,39.6,8.7]
7.3	5.3	[5.4,29.9,9.4]
7.2	6.6	[7.8,38.9,50.6]
8.64	9.3	[17.2,45.9,69.3]
6.45	6.7	[18.7,12.1,23.4]
+----------+-----+----------------+
only showing top 5 rows

10. Evaluation

from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.evaluation import RegressionEvaluator
Select (prediction, true label) and compute test error
evaluator = RegressionEvaluator(labelCol="label",

predictionCol="prediction",
metricName="rmse")

rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

The final Root Mean Squared Error (RMSE) is as follows:

Root Mean Squared Error (RMSE) on test data = 1.50999

y_true = predictions.select("label").toPandas()
y_pred = predictions.select("prediction").toPandas()

import sklearn.metrics
r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print('r2_score: {0}'.format(r2_score))

Then you will get the 𝑅2 value:

r2_score: 0.911024318967

You may also check the importance of the features:

model.stages[1].featureImportances

The you will get the weight for each features

SparseVector(3, {0: 0.6811, 1: 0.3187, 2: 0.0002})

150 Chapter 9. Regression

Learning Apache Spark with Python

9.4 Random Forest Regression

9.4.1 Introduction

9.4.2 How to solve it?

9.4.3 Demo

• The Jupyter notebook can be download from Random Forest Regression.

• For more details about the parameters, please visit Random Forest Regressor API .

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark RandomForest Regression example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\
load("../data/Advertising.csv",header=True);

df.show(5,True)
df.printSchema()

+-----+-----+---------+-----+
| TV|Radio|Newspaper|Sales|
+-----+-----+---------+-----+
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
151.5	41.3	58.5	18.5
180.8	10.8	58.4	12.9
+-----+-----+---------+-----+
only showing top 5 rows

root
|-- TV: double (nullable = true)
|-- Radio: double (nullable = true)
|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

df.describe().show()

(continues on next page)

9.4. Random Forest Regression 151

_static/RandomForestR.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.regression.RandomForestRegressor.html

Learning Apache Spark with Python

(continued from previous page)

+-------+-----------------+------------------+------------------+-------------
→˓-----+
|summary| TV| Radio| Newspaper|
→˓Sales|
+-------+-----------------+------------------+------------------+-------------
→˓-----+
| count| 200| 200| 200|
→˓ 200|
| mean| 147.0425|23.264000000000024|30.553999999999995|14.
→˓022500000000003|
| stddev|85.85423631490805|14.846809176168728| 21.77862083852283| 5.
→˓217456565710477|
| min| 0.7| 0.0| 0.3|
→˓ 1.6|
| max| 296.4| 49.6| 114.0|
→˓ 27.0|
+-------+-----------------+------------------+------------------+-------------
→˓-----+

3. Convert the data to dense vector (features and label)

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in comple dataset.

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

(continues on next page)

152 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

9.4. Random Forest Regression 153

Learning Apache Spark with Python

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

(continues on next page)

154 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

convert the data to dense vector
#def transData(row):
return Row(label=row["Sales"],
features=Vectors.dense([row["TV"],
row["Radio"],
row["Newspaper"]]))
def transData(data):

return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF([
→˓'features','label'])

4. Convert the data to dense vector

9.4. Random Forest Regression 155

Learning Apache Spark with Python

transformed= transData(df)
transformed.show(5)

+-----------------+-----+
| features|label|
+-----------------+-----+
[230.1,37.8,69.2]	22.1
[44.5,39.3,45.1]	10.4
[17.2,45.9,69.3]	9.3
[151.5,41.3,58.5]	18.5
[180.8,10.8,58.4]	12.9
+-----------------+-----+
only showing top 5 rows

5. Deal with the Categorical variables

from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

featureIndexer = VectorIndexer(inputCol="features", \
outputCol="indexedFeatures",\
maxCategories=4).fit(transformed)

data = featureIndexer.transform(transformed)
data.show(5,True)

+-----------------+-----+-----------------+
| features|label| indexedFeatures|
+-----------------+-----+-----------------+
[230.1,37.8,69.2]	22.1	[230.1,37.8,69.2]
[44.5,39.3,45.1]	10.4	[44.5,39.3,45.1]
[17.2,45.9,69.3]	9.3	[17.2,45.9,69.3]
[151.5,41.3,58.5]	18.5	[151.5,41.3,58.5]
[180.8,10.8,58.4]	12.9	[180.8,10.8,58.4]
+-----------------+-----+-----------------+
only showing top 5 rows

6. Split the data into training and test sets (40% held out for testing)

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = data.randomSplit([0.6, 0.4])

trainingData.show(5)
testData.show(5)

+----------------+-----+----------------+
| features|label| indexedFeatures|
+----------------+-----+----------------+
| [0.7,39.6,8.7]| 1.6| [0.7,39.6,8.7]|

(continues on next page)

156 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

[8.6,2.1,1.0]	4.8	[8.6,2.1,1.0]
[8.7,48.9,75.0]	7.2	[8.7,48.9,75.0]
[11.7,36.9,45.2]	7.3	[11.7,36.9,45.2]
[13.2,15.9,49.6]	5.6	[13.2,15.9,49.6]
+----------------+-----+----------------+
only showing top 5 rows

+---------------+-----+---------------+
| features|label|indexedFeatures|
+---------------+-----+---------------+
[4.1,11.6,5.7]	3.2	[4.1,11.6,5.7]
[5.4,29.9,9.4]	5.3	[5.4,29.9,9.4]
[7.3,28.1,41.4]	5.5	[7.3,28.1,41.4]
[7.8,38.9,50.6]	6.6	[7.8,38.9,50.6]
[8.4,27.2,2.1]	5.7	[8.4,27.2,2.1]
+---------------+-----+---------------+
only showing top 5 rows

7. Fit RandomForest Regression Model

Import LinearRegression class
from pyspark.ml.regression import RandomForestRegressor

Define LinearRegression algorithm
rf = RandomForestRegressor() # featuresCol="indexedFeatures",numTrees=2,
→˓maxDepth=2, seed=42

Note: If you decide to use the indexedFeatures features, you need to add the parameter
featuresCol="indexedFeatures".

8. Pipeline Architecture

Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featureIndexer, rf])
model = pipeline.fit(trainingData)

9. Make predictions

predictions = model.transform(testData)

Select example rows to display.
predictions.select("features","label", "prediction").show(5)

+---------------+-----+------------------+
| features|label| prediction|
+---------------+-----+------------------+
[4.1,11.6,5.7]	3.2	8.155439814814816
[5.4,29.9,9.4]	5.3	10.412769901394899
[7.3,28.1,41.4]	5.5	12.13735648148148

(continues on next page)

9.4. Random Forest Regression 157

Learning Apache Spark with Python

(continued from previous page)

|[7.8,38.9,50.6]| 6.6|11.321796703296704|
| [8.4,27.2,2.1]| 5.7|12.071421957671957|
+---------------+-----+------------------+
only showing top 5 rows

10. Evaluation

Select (prediction, true label) and compute test error
evaluator = RegressionEvaluator(

labelCol="label", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

Root Mean Squared Error (RMSE) on test data = 2.35912

import sklearn.metrics
r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print('r2_score: {:4.3f}'.format(r2_score))

r2_score: 0.831

11. Feature importances

model.stages[-1].featureImportances

SparseVector(3, {0: 0.4994, 1: 0.3196, 2: 0.181})

model.stages[-1].trees

[DecisionTreeRegressionModel (uid=dtr_c75f1c75442c) of depth 5 with 43 nodes,
DecisionTreeRegressionModel (uid=dtr_70fc2d441581) of depth 5 with 45 nodes,
DecisionTreeRegressionModel (uid=dtr_bc8464f545a7) of depth 5 with 31 nodes,
DecisionTreeRegressionModel (uid=dtr_a8a7e5367154) of depth 5 with 59 nodes,
DecisionTreeRegressionModel (uid=dtr_3ea01314fcbc) of depth 5 with 47 nodes,
DecisionTreeRegressionModel (uid=dtr_be9a04ac22a6) of depth 5 with 45 nodes,
DecisionTreeRegressionModel (uid=dtr_38610d47328a) of depth 5 with 51 nodes,
DecisionTreeRegressionModel (uid=dtr_bf14aea0ad3b) of depth 5 with 49 nodes,
DecisionTreeRegressionModel (uid=dtr_cde24ebd6bb6) of depth 5 with 39 nodes,
DecisionTreeRegressionModel (uid=dtr_a1fc9bd4fbeb) of depth 5 with 57 nodes,
DecisionTreeRegressionModel (uid=dtr_37798d6db1ba) of depth 5 with 41 nodes,
DecisionTreeRegressionModel (uid=dtr_c078b73ada63) of depth 5 with 41 nodes,
DecisionTreeRegressionModel (uid=dtr_fd00e3a070ad) of depth 5 with 55 nodes,
DecisionTreeRegressionModel (uid=dtr_9d01d5fb8604) of depth 5 with 45 nodes,
DecisionTreeRegressionModel (uid=dtr_8bd8bdddf642) of depth 5 with 41 nodes,
DecisionTreeRegressionModel (uid=dtr_e53b7bae30f8) of depth 5 with 49 nodes,
DecisionTreeRegressionModel (uid=dtr_808a869db21c) of depth 5 with 47 nodes,
DecisionTreeRegressionModel (uid=dtr_64d0916bceb0) of depth 5 with 33 nodes,
DecisionTreeRegressionModel (uid=dtr_0891055fff94) of depth 5 with 55 nodes,
DecisionTreeRegressionModel (uid=dtr_19c8bbad26c2) of depth 5 with 51 nodes]

158 Chapter 9. Regression

Learning Apache Spark with Python

9.5 Gradient-boosted tree regression

9.5.1 Introduction

9.5.2 How to solve it?

9.5.3 Demo

• The Jupyter notebook can be download from Gradient-boosted tree regression.

• For more details about the parameters, please visit Gradient boosted tree API .

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark GBTRegressor example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\
load("../data/Advertising.csv",header=True);

df.show(5,True)
df.printSchema()

+-----+-----+---------+-----+
| TV|Radio|Newspaper|Sales|
+-----+-----+---------+-----+
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
151.5	41.3	58.5	18.5
180.8	10.8	58.4	12.9
+-----+-----+---------+-----+
only showing top 5 rows

root
|-- TV: double (nullable = true)
|-- Radio: double (nullable = true)
|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

df.describe().show()

(continues on next page)

9.5. Gradient-boosted tree regression 159

_static/GLM.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.regression.GBTRegressor.html

Learning Apache Spark with Python

(continued from previous page)

+-------+-----------------+------------------+------------------+-------------
→˓-----+
|summary| TV| Radio| Newspaper|
→˓Sales|
+-------+-----------------+------------------+------------------+-------------
→˓-----+
| count| 200| 200| 200|
→˓ 200|
| mean| 147.0425|23.264000000000024|30.553999999999995|14.
→˓022500000000003|
| stddev|85.85423631490805|14.846809176168728| 21.77862083852283| 5.
→˓217456565710477|
| min| 0.7| 0.0| 0.3|
→˓ 1.6|
| max| 296.4| 49.6| 114.0|
→˓ 27.0|
+-------+-----------------+------------------+------------------+-------------
→˓-----+

3. Convert the data to dense vector (features and label)

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in comple dataset.

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

(continues on next page)

160 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

9.5. Gradient-boosted tree regression 161

Learning Apache Spark with Python

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

(continues on next page)

162 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

convert the data to dense vector
#def transData(row):
return Row(label=row["Sales"],
features=Vectors.dense([row["TV"],
row["Radio"],
row["Newspaper"]]))
def transData(data):

return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF([
→˓'features','label'])

4. Convert the data to dense vector

9.5. Gradient-boosted tree regression 163

Learning Apache Spark with Python

transformed= transData(df)
transformed.show(5)

+-----------------+-----+
| features|label|
+-----------------+-----+
[230.1,37.8,69.2]	22.1
[44.5,39.3,45.1]	10.4
[17.2,45.9,69.3]	9.3
[151.5,41.3,58.5]	18.5
[180.8,10.8,58.4]	12.9
+-----------------+-----+
only showing top 5 rows

5. Deal with the Categorical variables

from pyspark.ml import Pipeline
from pyspark.ml.regression import GBTRegressor
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

featureIndexer = VectorIndexer(inputCol="features", \
outputCol="indexedFeatures",\
maxCategories=4).fit(transformed)

data = featureIndexer.transform(transformed)
data.show(5,True)

+-----------------+-----+-----------------+
| features|label| indexedFeatures|
+-----------------+-----+-----------------+
[230.1,37.8,69.2]	22.1	[230.1,37.8,69.2]
[44.5,39.3,45.1]	10.4	[44.5,39.3,45.1]
[17.2,45.9,69.3]	9.3	[17.2,45.9,69.3]
[151.5,41.3,58.5]	18.5	[151.5,41.3,58.5]
[180.8,10.8,58.4]	12.9	[180.8,10.8,58.4]
+-----------------+-----+-----------------+
only showing top 5 rows

6. Split the data into training and test sets (40% held out for testing)

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = data.randomSplit([0.6, 0.4])

trainingData.show(5)
testData.show(5)

+----------------+-----+----------------+
| features|label| indexedFeatures|
+----------------+-----+----------------+
| [0.7,39.6,8.7]| 1.6| [0.7,39.6,8.7]|

(continues on next page)

164 Chapter 9. Regression

Learning Apache Spark with Python

(continued from previous page)

[8.6,2.1,1.0]	4.8	[8.6,2.1,1.0]
[8.7,48.9,75.0]	7.2	[8.7,48.9,75.0]
[11.7,36.9,45.2]	7.3	[11.7,36.9,45.2]
[13.2,15.9,49.6]	5.6	[13.2,15.9,49.6]
+----------------+-----+----------------+
only showing top 5 rows

+---------------+-----+---------------+
| features|label|indexedFeatures|
+---------------+-----+---------------+
[4.1,11.6,5.7]	3.2	[4.1,11.6,5.7]
[5.4,29.9,9.4]	5.3	[5.4,29.9,9.4]
[7.3,28.1,41.4]	5.5	[7.3,28.1,41.4]
[7.8,38.9,50.6]	6.6	[7.8,38.9,50.6]
[8.4,27.2,2.1]	5.7	[8.4,27.2,2.1]
+---------------+-----+---------------+
only showing top 5 rows

7. Fit RandomForest Regression Model

Import LinearRegression class
from pyspark.ml.regression import GBTRegressor

Define LinearRegression algorithm
rf = GBTRegressor() #numTrees=2, maxDepth=2, seed=42

Note: If you decide to use the indexedFeatures features, you need to add the parameter
featuresCol="indexedFeatures".

8. Pipeline Architecture

Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featureIndexer, rf])
model = pipeline.fit(trainingData)

9. Make predictions

predictions = model.transform(testData)

Select example rows to display.
predictions.select("features","label", "prediction").show(5)

+----------------+-----+------------------+
| features|label| prediction|
+----------------+-----+------------------+
[7.8,38.9,50.6]	6.6	6.836040343319862
[8.6,2.1,1.0]	4.8	5.652202764688849
[8.7,48.9,75.0]	7.2	6.908750296855572
[13.1,0.4,25.6]	5.3	5.784020210692574

(continues on next page)

9.5. Gradient-boosted tree regression 165

Learning Apache Spark with Python

(continued from previous page)

|[19.6,20.1,17.0]| 7.6|6.8678921062629295|
+----------------+-----+------------------+
only showing top 5 rows

10. Evaluation

Select (prediction, true label) and compute test error
evaluator = RegressionEvaluator(

labelCol="label", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

Root Mean Squared Error (RMSE) on test data = 1.36939

import sklearn.metrics
r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print('r2_score: {:4.3f}'.format(r2_score))

r2_score: 0.932

11. Feature importances

model.stages[-1].featureImportances

SparseVector(3, {0: 0.3716, 1: 0.3525, 2: 0.2759})

model.stages[-1].trees

[DecisionTreeRegressionModel (uid=dtr_7f5cd2ef7cb6) of depth 5 with 61 nodes,
DecisionTreeRegressionModel (uid=dtr_ef3ab6baeac9) of depth 5 with 39 nodes,
DecisionTreeRegressionModel (uid=dtr_07c6e3cf3819) of depth 5 with 45 nodes,
DecisionTreeRegressionModel (uid=dtr_ce724af79a2b) of depth 5 with 47 nodes,
DecisionTreeRegressionModel (uid=dtr_d149ecc71658) of depth 5 with 55 nodes,
DecisionTreeRegressionModel (uid=dtr_d3a79bdea516) of depth 5 with 43 nodes,
DecisionTreeRegressionModel (uid=dtr_7abc1a337844) of depth 5 with 51 nodes,
DecisionTreeRegressionModel (uid=dtr_480834b46d8f) of depth 5 with 33 nodes,
DecisionTreeRegressionModel (uid=dtr_0cbd1eaa3874) of depth 5 with 39 nodes,
DecisionTreeRegressionModel (uid=dtr_8088ac71a204) of depth 5 with 57 nodes,
DecisionTreeRegressionModel (uid=dtr_2ceb9e8deb45) of depth 5 with 47 nodes,
DecisionTreeRegressionModel (uid=dtr_cc334e84e9a2) of depth 5 with 57 nodes,
DecisionTreeRegressionModel (uid=dtr_a665c562929e) of depth 5 with 41 nodes,
DecisionTreeRegressionModel (uid=dtr_2999b1ffd2dc) of depth 5 with 45 nodes,
DecisionTreeRegressionModel (uid=dtr_29965cbe8cfc) of depth 5 with 55 nodes,
DecisionTreeRegressionModel (uid=dtr_731df51bf0ad) of depth 5 with 41 nodes,
DecisionTreeRegressionModel (uid=dtr_354cf33424da) of depth 5 with 51 nodes,
DecisionTreeRegressionModel (uid=dtr_4230f200b1c0) of depth 5 with 41 nodes,
DecisionTreeRegressionModel (uid=dtr_3279cdc1ce1d) of depth 5 with 45 nodes,
DecisionTreeRegressionModel (uid=dtr_f474a99ff06e) of depth 5 with 55 nodes]

166 Chapter 9. Regression

CHAPTER

TEN

REGULARIZATION

In mathematics, statistics, and computer science, particularly in the fields of machine learning and inverse
problems, regularization is a process of introducing additional information in order to solve an ill-posed
problem or to prevent overfitting (Wikipedia Regularization).

Due to the sparsity within our data, our training sets will often be ill-posed (singular). Applying regulariza-
tion to the regression has many advantages, including:

1. Converting ill-posed problems to well-posed by adding additional information via the penalty param-
eter 𝜆

2. Preventing overfitting

3. Variable selection and the removal of correlated variables (Glmnet Vignette). The Ridge method
shrinks the coefficients of correlated variables while the LASSO method picks one variable and dis-
cards the others. The elastic net penalty is a mixture of these two; if variables are correlated in groups
then 𝛼 = 0.5 tends to select the groups as in or out. If 𝛼 is close to 1, the elastic net performs
much like the LASSO method and removes any degeneracies and wild behavior caused by extreme
correlations.

10.1 Ordinary least squares regression

min
𝛽∈R𝑛

1

𝑛
‖X𝛽 − 𝑦‖2

When 𝜆 = 0 (i.e. regParam = 0), then there is no penalty.

LinearRegression(featuresCol="features", labelCol="label", predictionCol=
→˓"prediction", maxIter=100,
regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
→˓standardization=True, solver="auto",
weightCol=None, aggregationDepth=2)

167

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf

Learning Apache Spark with Python

10.2 Ridge regression

min
𝛽∈R𝑛

1

𝑛
‖X𝛽 − 𝑦‖2 + 𝜆‖𝛽‖22

When 𝜆 > 0 (i.e. regParam > 0) and 𝛼 = 0 (i.e. elasticNetParam = 0) , then the penalty is an L2
penalty.

LinearRegression(featuresCol="features", labelCol="label", predictionCol=
→˓"prediction", maxIter=100,
regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
→˓standardization=True, solver="auto",
weightCol=None, aggregationDepth=2)

10.3 Least Absolute Shrinkage and Selection Operator (LASSO)

min
𝛽∈R𝑛

1

𝑛
‖X𝛽 − 𝑦‖2 + 𝜆‖𝛽‖1

When 𝜆 > 0 (i.e. regParam > 0) and 𝛼 = 1 (i.e. elasticNetParam = 1), then the penalty is an L1
penalty.

LinearRegression(featuresCol="features", labelCol="label", predictionCol=
→˓"prediction", maxIter=100,
regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
→˓standardization=True, solver="auto",
weightCol=None, aggregationDepth=2)

10.4 Elastic net

min
𝛽∈R𝑛

1

𝑛
‖X𝛽 − 𝑦‖2 + 𝜆(𝛼‖𝛽‖1 + (1 − 𝛼)‖𝛽‖22), 𝛼 ∈ (0, 1)

When 𝜆 > 0 (i.e. regParam > 0) and elasticNetParam ∈ (0, 1) (i.e. 𝛼 ∈ (0, 1)) , then the penalty is
an L1 + L2 penalty.

LinearRegression(featuresCol="features", labelCol="label", predictionCol=
→˓"prediction", maxIter=100,
regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
→˓standardization=True, solver="auto",
weightCol=None, aggregationDepth=2)

168 Chapter 10. Regularization

CHAPTER

ELEVEN

CLASSIFICATION

Chinese proverb

Birds of a feather folock together. – old Chinese proverb

11.1 Binomial logistic regression

11.1.1 Introduction

11.1.2 Demo

• The Jupyter notebook can be download from Logistic Regression.

• For more details, please visit Logistic Regression API .

Note: In this demo, I introduced a new function get_dummy to deal with the categorical data. I highly
recommend you to use my get_dummy function in the other cases. This function will save a lot of time for
you.

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark Logistic Regression example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv') \
.options(header='true', inferschema='true') \

(continues on next page)

169

_static/logisticRegression.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.classification.BinaryLogisticRegressionSummary.html

Learning Apache Spark with Python

(continued from previous page)

.load("./data/bank.csv",header=True);
df.drop('day','month','poutcome').show(5)

+---+------------+-------+---------+-------+-------+-------+----+-------+-----
→˓---+--------+-----+--------+---+
|age|
→˓job|marital|education|default|balance|housing|loan|contact|duration|campaign|pdays|previous|
→˓ y|
+---+------------+-------+---------+-------+-------+-------+----+-------+-----
→˓---+--------+-----+--------+---+
| 58| management|married| tertiary| no| 2143| yes| no|unknown|
→˓261| 1| -1| 0| no|
| 44| technician| single|secondary| no| 29| yes| no|unknown|
→˓151| 1| -1| 0| no|
| 33|entrepreneur|married|secondary| no| 2| yes| yes|unknown|
→˓ 76| 1| -1| 0| no|
| 47| blue-collar|married| unknown| no| 1506| yes| no|unknown|
→˓ 92| 1| -1| 0| no|
| 33| unknown| single| unknown| no| 1| no| no|unknown|
→˓198| 1| -1| 0| no|
+---+------------+-------+---------+-------+-------+-------+----+-------+-----
→˓---+--------+-----+--------+---+
only showing top 5 rows

df.printSchema()

root
|-- age: integer (nullable = true)
|-- job: string (nullable = true)
|-- marital: string (nullable = true)
|-- education: string (nullable = true)
|-- default: string (nullable = true)
|-- balance: integer (nullable = true)
|-- housing: string (nullable = true)
|-- loan: string (nullable = true)
|-- contact: string (nullable = true)
|-- day: integer (nullable = true)
|-- month: string (nullable = true)
|-- duration: integer (nullable = true)
|-- campaign: integer (nullable = true)
|-- pdays: integer (nullable = true)
|-- previous: integer (nullable = true)
|-- poutcome: string (nullable = true)
|-- y: string (nullable = true)

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in complex dataset.

170 Chapter 11. Classification

Learning Apache Spark with Python

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

(continues on next page)

11.1. Binomial logistic regression 171

Learning Apache Spark with Python

(continued from previous page)

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
(continues on next page)

172 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning

(continues on next page)

11.1. Binomial logistic regression 173

Learning Apache Spark with Python

(continued from previous page)

data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

def get_dummy(df,categoricalCols,continuousCols,labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".format(c))
for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol() for encoder
→˓in encoders]

+ continuousCols, outputCol="features")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select('features','label')

3. Deal with categorical data and Convert the data to dense vector

catcols = ['job','marital','education','default',
'housing','loan','contact','poutcome']

num_cols = ['balance', 'duration','campaign','pdays','previous',]
labelCol = 'y'

data = get_dummy(df,catcols,num_cols,labelCol)
data.show(5)

+--------------------+-----+
| features|label|

(continues on next page)

174 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

+--------------------+-----+
(29,[1,11,14,16,1...	no
(29,[2,12,13,16,1...	no
(29,[7,11,13,16,1...	no
(29,[0,11,16,17,1...	no
(29,[12,16,18,20,...	no
+--------------------+-----+
only showing top 5 rows

4. Deal with Categorical Label and Variables

from pyspark.ml.feature import StringIndexer
Index labels, adding metadata to the label column
labelIndexer = StringIndexer(inputCol='label',

outputCol='indexedLabel').fit(data)
labelIndexer.transform(data).show(5, True)

+--------------------+-----+------------+
| features|label|indexedLabel|
+--------------------+-----+------------+
(29,[1,11,14,16,1...	no	0.0
(29,[2,12,13,16,1...	no	0.0
(29,[7,11,13,16,1...	no	0.0
(29,[0,11,16,17,1...	no	0.0
(29,[12,16,18,20,...	no	0.0
+--------------------+-----+------------+
only showing top 5 rows

from pyspark.ml.feature import VectorIndexer
Automatically identify categorical features, and index them.
Set maxCategories so features with > 4 distinct values are treated as
→˓continuous.
featureIndexer =VectorIndexer(inputCol="features", \

outputCol="indexedFeatures", \
maxCategories=4).fit(data)

featureIndexer.transform(data).show(5, True)

+--------------------+-----+--------------------+
| features|label| indexedFeatures|
+--------------------+-----+--------------------+
(29,[1,11,14,16,1...	no	(29,[1,11,14,16,1...
(29,[2,12,13,16,1...	no	(29,[2,12,13,16,1...
(29,[7,11,13,16,1...	no	(29,[7,11,13,16,1...
(29,[0,11,16,17,1...	no	(29,[0,11,16,17,1...
(29,[12,16,18,20,...	no	(29,[12,16,18,20,...
+--------------------+-----+--------------------+
only showing top 5 rows

5. Split the data to training and test data sets

11.1. Binomial logistic regression 175

Learning Apache Spark with Python

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = data.randomSplit([0.6, 0.4])

trainingData.show(5,False)
testData.show(5,False)

+---
→˓--------------------+-----+
|features
→˓ |label|
+---
→˓--------------------+-----+
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓731.0,401.0,4.0,-1.0])|no |
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓723.0,112.0,2.0,-1.0])|no |
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓626.0,205.0,1.0,-1.0])|no |
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓498.0,357.0,1.0,-1.0])|no |
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓477.0,473.0,2.0,-1.0])|no |
+---
→˓--------------------+-----+
only showing top 5 rows

+---
→˓--------------------+-----+
|features
→˓ |label|
+---
→˓--------------------+-----+
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓648.0,280.0,2.0,-1.0])|no |
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓596.0,147.0,1.0,-1.0])|no |
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓529.0,416.0,4.0,-1.0])|no |
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓518.0,46.0,5.0,-1.0]) |no |
|(29,[0,11,13,16,17,18,19,21,24,25,26,27],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-
→˓470.0,275.0,2.0,-1.0])|no |
+---
→˓--------------------+-----+
only showing top 5 rows

6. Fit Logistic Regression Model

from pyspark.ml.classification import LogisticRegression
logr = LogisticRegression(featuresCol='indexedFeatures', labelCol=
→˓'indexedLabel')

7. Pipeline Architecture

176 Chapter 11. Classification

Learning Apache Spark with Python

Convert indexed labels back to original labels.
labelConverter = IndexToString(inputCol="prediction", outputCol=
→˓"predictedLabel",

labels=labelIndexer.labels)

Chain indexers and tree in a Pipeline
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, logr,
→˓labelConverter])

Train model. This also runs the indexers.
model = pipeline.fit(trainingData)

8. Make predictions

Make predictions.
predictions = model.transform(testData)
Select example rows to display.
predictions.select("features","label","predictedLabel").show(5)

+--------------------+-----+--------------+
| features|label|predictedLabel|
+--------------------+-----+--------------+
(29,[0,11,13,16,1...	no	no
(29,[0,11,13,16,1...	no	no
(29,[0,11,13,16,1...	no	no
(29,[0,11,13,16,1...	no	no
(29,[0,11,13,16,1...	no	no
+--------------------+-----+--------------+
only showing top 5 rows

9. Evaluation

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(

labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy
→˓")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g" % (1.0 - accuracy))

Test Error = 0.0987688

lrModel = model.stages[2]
trainingSummary = lrModel.summary

Obtain the objective per iteration
objectiveHistory = trainingSummary.objectiveHistory
print("objectiveHistory:")
for objective in objectiveHistory:

(continues on next page)

11.1. Binomial logistic regression 177

Learning Apache Spark with Python

(continued from previous page)

print(objective)

Obtain the receiver-operating characteristic as a dataframe and
→˓areaUnderROC.
trainingSummary.roc.show(5)
print("areaUnderROC: " + str(trainingSummary.areaUnderROC))

Set the model threshold to maximize F-Measure
fMeasure = trainingSummary.fMeasureByThreshold
maxFMeasure = fMeasure.groupBy().max('F-Measure').select('max(F-Measure)').
→˓head(5)
bestThreshold = fMeasure.where(fMeasure['F-Measure'] == maxFMeasure['max(F-
→˓Measure)']) \
.select('threshold').head()['threshold']
lr.setThreshold(bestThreshold)

You can use z.show() to get the data and plot the ROC curves:

You can also register a TempTable data.registerTempTable('roc_data') and then use sql to
plot the ROC curve:

178 Chapter 11. Classification

Learning Apache Spark with Python

10. visualization

import matplotlib.pyplot as plt
import numpy as np
import itertools

def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):

"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")

else:
print('Confusion matrix, without normalization')

print(cm)

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

class_temp = predictions.select("label").groupBy("label")\
.count().sort('count', ascending=False).toPandas()

class_temp = class_temp["label"].values.tolist()
class_names = map(str, class_temp)
print(class_name)
class_names

['no', 'yes']

from sklearn.metrics import confusion_matrix
y_true = predictions.select("label")
y_true = y_true.toPandas()

(continues on next page)

11.1. Binomial logistic regression 179

Learning Apache Spark with Python

(continued from previous page)

y_pred = predictions.select("predictedLabel")
y_pred = y_pred.toPandas()

cnf_matrix = confusion_matrix(y_true, y_pred,labels=class_names)
cnf_matrix

array([[15657, 379],
[1410, 667]])

Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,

title='Confusion matrix, without normalization')
plt.show()

Confusion matrix, without normalization
[[15657 379]
[1410 667]]

Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,

title='Normalized confusion matrix')
(continues on next page)

180 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

plt.show()

Normalized confusion matrix
[[0.97636568 0.02363432]
[0.67886375 0.32113625]]

11.2 Multinomial logistic regression

11.2.1 Introduction

11.2.2 Demo

• The Jupyter notebook can be download from Logistic Regression.

• For more details, please visit Logistic Regression API .

Note: In this demo, I introduced a new function get_dummy to deal with the categorical data. I highly
recommend you to use my get_dummy function in the other cases. This function will save a lot of time for
you.

1. Set up spark context and SparkSession

11.2. Multinomial logistic regression 181

_static/logisticRegression.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.classification.BinaryLogisticRegressionSummary.html

Learning Apache Spark with Python

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark MultinomialLogisticRegression classification") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv') \
.options(header='true', inferschema='true') \
.load("./data/WineData2.csv",header=True);

df.show(5)

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| 5|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| 5|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| 6|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

df.printSchema()

root
|-- fixed: double (nullable = true)
|-- volatile: double (nullable = true)
|-- citric: double (nullable = true)
|-- sugar: double (nullable = true)
|-- chlorides: double (nullable = true)
|-- free: double (nullable = true)
|-- total: double (nullable = true)
|-- density: double (nullable = true)
|-- pH: double (nullable = true)
|-- sulphates: double (nullable = true)
|-- alcohol: double (nullable = true)
|-- quality: string (nullable = true)

182 Chapter 11. Classification

Learning Apache Spark with Python

Convert to float format
def string_to_float(x):

return float(x)

#
def condition(r):

if (0<= r <= 4):
label = "low"

elif(4< r <= 6):
label = "medium"

else:
label = "high"

return label

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, DoubleType
string_to_float_udf = udf(string_to_float, DoubleType())
quality_udf = udf(lambda x: condition(x), StringType())

df = df.withColumn("quality", quality_udf("quality"))

df.show(5,True)

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| medium|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| medium|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| medium|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| medium|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| medium|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

df.printSchema()

root
|-- fixed: double (nullable = true)
|-- volatile: double (nullable = true)
|-- citric: double (nullable = true)
|-- sugar: double (nullable = true)
|-- chlorides: double (nullable = true)

(continues on next page)

11.2. Multinomial logistic regression 183

Learning Apache Spark with Python

(continued from previous page)

|-- free: double (nullable = true)
|-- total: double (nullable = true)
|-- density: double (nullable = true)
|-- pH: double (nullable = true)
|-- sulphates: double (nullable = true)
|-- alcohol: double (nullable = true)
|-- quality: string (nullable = true)

3. Deal with categorical data and Convert the data to dense vector

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in complex dataset.

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

Unsupervised learning version:

184 Chapter 11. Classification

Learning Apache Spark with Python

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column

(continues on next page)

11.2. Multinomial logistic regression 185

Learning Apache Spark with Python

(continued from previous page)

:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders] (continues on next page)

186 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

def get_dummy(df,categoricalCols,continuousCols,labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".format(c))
for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol() for encoder
→˓in encoders]

+ continuousCols, outputCol="features")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select('features','label')

11.2. Multinomial logistic regression 187

Learning Apache Spark with Python

4. Transform the dataset to DataFrame

from pyspark.ml.linalg import Vectors # !!!!caution: not from pyspark.mllib.
→˓linalg import Vectors
from pyspark.ml import Pipeline
from pyspark.ml.feature import IndexToString,StringIndexer, VectorIndexer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF(['features',
→˓'label'])

transformed = transData(df)
transformed.show(5)

+--------------------+------+
| features| label|
+--------------------+------+
[7.4,0.7,0.0,1.9,...	medium
[7.8,0.88,0.0,2.6...	medium
[7.8,0.76,0.04,2....	medium
[11.2,0.28,0.56,1...	medium
[7.4,0.7,0.0,1.9,...	medium
+--------------------+------+
only showing top 5 rows

4. Deal with Categorical Label and Variables

Index labels, adding metadata to the label column
labelIndexer = StringIndexer(inputCol='label',

outputCol='indexedLabel').fit(transformed)
labelIndexer.transform(transformed).show(5, True)

+--------------------+------+------------+
| features| label|indexedLabel|
+--------------------+------+------------+
[7.4,0.7,0.0,1.9,...	medium	0.0
[7.8,0.88,0.0,2.6...	medium	0.0
[7.8,0.76,0.04,2....	medium	0.0
[11.2,0.28,0.56,1...	medium	0.0
[7.4,0.7,0.0,1.9,...	medium	0.0
+--------------------+------+------------+
only showing top 5 rows

Automatically identify categorical features, and index them.
Set maxCategories so features with > 4 distinct values are treated as
→˓continuous.
featureIndexer =VectorIndexer(inputCol="features", \

outputCol="indexedFeatures", \
maxCategories=4).fit(transformed)

featureIndexer.transform(transformed).show(5, True)

188 Chapter 11. Classification

Learning Apache Spark with Python

+--------------------+------+--------------------+
| features| label| indexedFeatures|
+--------------------+------+--------------------+
[7.4,0.7,0.0,1.9,...	medium	[7.4,0.7,0.0,1.9,...
[7.8,0.88,0.0,2.6...	medium	[7.8,0.88,0.0,2.6...
[7.8,0.76,0.04,2....	medium	[7.8,0.76,0.04,2....
[11.2,0.28,0.56,1...	medium	[11.2,0.28,0.56,1...
[7.4,0.7,0.0,1.9,...	medium	[7.4,0.7,0.0,1.9,...
+--------------------+------+--------------------+
only showing top 5 rows

5. Split the data to training and test data sets

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = data.randomSplit([0.6, 0.4])

trainingData.show(5,False)
testData.show(5,False)

+---+------+
|features |label |
+---+------+
[4.7,0.6,0.17,2.3,0.058,17.0,106.0,0.9932,3.85,0.6,12.9]	medium
[5.0,0.38,0.01,1.6,0.048,26.0,60.0,0.99084,3.7,0.75,14.0]	medium
[5.0,0.4,0.5,4.3,0.046,29.0,80.0,0.9902,3.49,0.66,13.6]	medium
[5.0,0.74,0.0,1.2,0.041,16.0,46.0,0.99258,4.01,0.59,12.5]	medium
[5.1,0.42,0.0,1.8,0.044,18.0,88.0,0.99157,3.68,0.73,13.6]	high
+---+------+
only showing top 5 rows

+---+------+
|features |label |
+---+------+
[4.6,0.52,0.15,2.1,0.054,8.0,65.0,0.9934,3.9,0.56,13.1]	low
[4.9,0.42,0.0,2.1,0.048,16.0,42.0,0.99154,3.71,0.74,14.0]	high
[5.0,0.42,0.24,2.0,0.06,19.0,50.0,0.9917,3.72,0.74,14.0]	high
[5.0,1.02,0.04,1.4,0.045,41.0,85.0,0.9938,3.75,0.48,10.5]	low
[5.0,1.04,0.24,1.6,0.05,32.0,96.0,0.9934,3.74,0.62,11.5]	medium
+---+------+
only showing top 5 rows

6. Fit Multinomial logisticRegression Classification Model

from pyspark.ml.classification import LogisticRegression
logr = LogisticRegression(featuresCol='indexedFeatures', labelCol=
→˓'indexedLabel')

7. Pipeline Architecture

Convert indexed labels back to original labels.
labelConverter = IndexToString(inputCol="prediction", outputCol=
→˓"predictedLabel",

(continues on next page)

11.2. Multinomial logistic regression 189

Learning Apache Spark with Python

(continued from previous page)

labels=labelIndexer.labels)

Chain indexers and tree in a Pipeline
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, logr,
→˓labelConverter])

Train model. This also runs the indexers.
model = pipeline.fit(trainingData)

8. Make predictions

Make predictions.
predictions = model.transform(testData)
Select example rows to display.
predictions.select("features","label","predictedLabel").show(5)

+--------------------+------+--------------+
| features| label|predictedLabel|
+--------------------+------+--------------+
[4.6,0.52,0.15,2....	low	medium
[4.9,0.42,0.0,2.1...	high	high
[5.0,0.42,0.24,2....	high	high
[5.0,1.02,0.04,1....	low	medium
[5.0,1.04,0.24,1....	medium	medium
+--------------------+------+--------------+
only showing top 5 rows

9. Evaluation

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(

labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy
→˓")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g" % (1.0 - accuracy))

Test Error = 0.181287

lrModel = model.stages[2]
trainingSummary = lrModel.summary

Obtain the objective per iteration
objectiveHistory = trainingSummary.objectiveHistory
print("objectiveHistory:")
for objective in objectiveHistory:
print(objective)

(continues on next page)

190 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

Obtain the receiver-operating characteristic as a dataframe and
→˓areaUnderROC.
trainingSummary.roc.show(5)
print("areaUnderROC: " + str(trainingSummary.areaUnderROC))

Set the model threshold to maximize F-Measure
fMeasure = trainingSummary.fMeasureByThreshold
maxFMeasure = fMeasure.groupBy().max('F-Measure').select('max(F-Measure)').
→˓head(5)
bestThreshold = fMeasure.where(fMeasure['F-Measure'] == maxFMeasure['max(F-
→˓Measure)']) \
.select('threshold').head()['threshold']
lr.setThreshold(bestThreshold)

You can use z.show() to get the data and plot the ROC curves:

You can also register a TempTable data.registerTempTable('roc_data') and then use sql to
plot the ROC curve:

10. visualization

11.2. Multinomial logistic regression 191

Learning Apache Spark with Python

import matplotlib.pyplot as plt
import numpy as np
import itertools

def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):

"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")

else:
print('Confusion matrix, without normalization')

print(cm)

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

class_temp = predictions.select("label").groupBy("label")\
.count().sort('count', ascending=False).toPandas()

class_temp = class_temp["label"].values.tolist()
class_names = map(str, class_temp)
print(class_name)
class_names

['medium', 'high', 'low']

from sklearn.metrics import confusion_matrix
y_true = predictions.select("label")
y_true = y_true.toPandas()

(continues on next page)

192 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

y_pred = predictions.select("predictedLabel")
y_pred = y_pred.toPandas()

cnf_matrix = confusion_matrix(y_true, y_pred,labels=class_names)
cnf_matrix

array([[526, 11, 2],
[73, 33, 0],
[38, 0, 1]])

Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,

title='Confusion matrix, without normalization')
plt.show()

Confusion matrix, without normalization
[[526 11 2]
[73 33 0]
[38 0 1]]

Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,

(continues on next page)

11.2. Multinomial logistic regression 193

Learning Apache Spark with Python

(continued from previous page)

title='Normalized confusion matrix')

plt.show()

Normalized confusion matrix
[[0.97588126 0.02040816 0.00371058]
[0.68867925 0.31132075 0.]
[0.97435897 0. 0.02564103]]

11.3 Decision tree Classification

11.3.1 Introduction

11.3.2 Demo

• The Jupyter notebook can be download from Decision Tree Classification.

• For more details, please visit DecisionTreeClassifier API .

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

(continues on next page)

194 Chapter 11. Classification

_static/DecisionTreeC.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.classification.DecisionTreeClassifier.html

Learning Apache Spark with Python

(continued from previous page)

spark = SparkSession \
.builder \
.appName("Python Spark Decision Tree classification") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true') \

.load("../data/WineData2.csv",header=True);
df.show(5,True)

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| 5|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| 5|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| 6|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

Convert to float format
def string_to_float(x):

return float(x)

#
def condition(r):

if (0<= r <= 4):
label = "low"

elif(4< r <= 6):
label = "medium"

else:
label = "high"

return label

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, DoubleType

(continues on next page)

11.3. Decision tree Classification 195

Learning Apache Spark with Python

(continued from previous page)

string_to_float_udf = udf(string_to_float, DoubleType())
quality_udf = udf(lambda x: condition(x), StringType())

df = df.withColumn("quality", quality_udf("quality"))
df.show(5,True)
df.printSchema()

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| medium|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| medium|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| medium|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| medium|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| medium|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

root
|-- fixed: double (nullable = true)
|-- volatile: double (nullable = true)
|-- citric: double (nullable = true)
|-- sugar: double (nullable = true)
|-- chlorides: double (nullable = true)
|-- free: double (nullable = true)
|-- total: double (nullable = true)
|-- density: double (nullable = true)
|-- pH: double (nullable = true)
|-- sulphates: double (nullable = true)
|-- alcohol: double (nullable = true)
|-- quality: string (nullable = true)

3. Convert the data to dense vector

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in complex dataset.

Supervised learning version:

196 Chapter 11. Classification

Learning Apache Spark with Python

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

(continues on next page)

11.3. Decision tree Classification 197

Learning Apache Spark with Python

(continued from previous page)

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []

(continues on next page)

198 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

(continues on next page)

11.3. Decision tree Classification 199

Learning Apache Spark with Python

(continued from previous page)

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

!!!!caution: not from pyspark.mllib.linalg import Vectors
from pyspark.ml.linalg import Vectors
from pyspark.ml import Pipeline
from pyspark.ml.feature import IndexToString,StringIndexer, VectorIndexer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF([

→˓'features','label'])

4. Transform the dataset to DataFrame

transformed = transData(df)
transformed.show(5)

+--------------------+------+
| features| label|
+--------------------+------+
[7.4,0.7,0.0,1.9,...	medium
[7.8,0.88,0.0,2.6...	medium
[7.8,0.76,0.04,2....	medium
[11.2,0.28,0.56,1...	medium
[7.4,0.7,0.0,1.9,...	medium
+--------------------+------+
only showing top 5 rows

5. Deal with Categorical Label and Variables

Index labels, adding metadata to the label column
labelIndexer = StringIndexer(inputCol='label',

outputCol='indexedLabel').fit(transformed)
labelIndexer.transform(transformed).show(5, True)

+--------------------+------+------------+
| features| label|indexedLabel|
+--------------------+------+------------+
[7.4,0.7,0.0,1.9,...	medium	0.0
[7.8,0.88,0.0,2.6...	medium	0.0
[7.8,0.76,0.04,2....	medium	0.0
[11.2,0.28,0.56,1...	medium	0.0
[7.4,0.7,0.0,1.9,...	medium	0.0

(continues on next page)

200 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

+--------------------+------+------------+
only showing top 5 rows

Automatically identify categorical features, and index them.
Set maxCategories so features with > 4 distinct values are treated as

→˓continuous.
featureIndexer =VectorIndexer(inputCol="features", \

outputCol="indexedFeatures", \
maxCategories=4).fit(transformed)

featureIndexer.transform(transformed).show(5, True)

+--------------------+------+--------------------+
| features| label| indexedFeatures|
+--------------------+------+--------------------+
[7.4,0.7,0.0,1.9,...	medium	[7.4,0.7,0.0,1.9,...
[7.8,0.88,0.0,2.6...	medium	[7.8,0.88,0.0,2.6...
[7.8,0.76,0.04,2....	medium	[7.8,0.76,0.04,2....
[11.2,0.28,0.56,1...	medium	[11.2,0.28,0.56,1...
[7.4,0.7,0.0,1.9,...	medium	[7.4,0.7,0.0,1.9,...
+--------------------+------+--------------------+
only showing top 5 rows

6. Split the data to training and test data sets

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = transformed.randomSplit([0.6, 0.4])

trainingData.show(5)
testData.show(5)

+--------------------+------+
| features| label|
+--------------------+------+
[4.6,0.52,0.15,2....	low
[4.7,0.6,0.17,2.3...	medium
[5.0,1.02,0.04,1....	low
[5.0,1.04,0.24,1....	medium
[5.1,0.585,0.0,1....	high
+--------------------+------+
only showing top 5 rows

+--------------------+------+
| features| label|
+--------------------+------+
[4.9,0.42,0.0,2.1...	high
[5.0,0.38,0.01,1....	medium
[5.0,0.4,0.5,4.3,...	medium
[5.0,0.42,0.24,2....	high
[5.0,0.74,0.0,1.2...	medium
+--------------------+------+
only showing top 5 rows

11.3. Decision tree Classification 201

Learning Apache Spark with Python

7. Fit Decision Tree Classification Model

from pyspark.ml.classification import DecisionTreeClassifier

Train a DecisionTree model
dTree = DecisionTreeClassifier(labelCol='indexedLabel', featuresCol=
→˓'indexedFeatures')

8. Pipeline Architecture

Convert indexed labels back to original labels.
labelConverter = IndexToString(inputCol="prediction", outputCol=
→˓"predictedLabel",

labels=labelIndexer.labels)

Chain indexers and tree in a Pipeline
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, dTree,
→˓labelConverter])

Train model. This also runs the indexers.
model = pipeline.fit(trainingData)

9. Make predictions

Make predictions.
predictions = model.transform(testData)
Select example rows to display.
predictions.select("features","label","predictedLabel").show(5)

+--------------------+------+--------------+
| features| label|predictedLabel|
+--------------------+------+--------------+
[4.9,0.42,0.0,2.1...	high	high
[5.0,0.38,0.01,1....	medium	medium
[5.0,0.4,0.5,4.3,...	medium	medium
[5.0,0.42,0.24,2....	high	medium
[5.0,0.74,0.0,1.2...	medium	medium
+--------------------+------+--------------+
only showing top 5 rows

10. Evaluation

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(

labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy
→˓")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g" % (1.0 - accuracy))

(continues on next page)

202 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

rfModel = model.stages[-2]
print(rfModel) # summary only

Test Error = 0.45509
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_
→˓4545ac8dca9c8438ef2a)
of depth 5 with 59 nodes

11. visualization

import matplotlib.pyplot as plt
import numpy as np
import itertools

def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):

"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")

else:
print('Confusion matrix, without normalization')

print(cm)

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

class_temp = predictions.select("label").groupBy("label")\
.count().sort('count', ascending=False).toPandas()

class_temp = class_temp["label"].values.tolist()
(continues on next page)

11.3. Decision tree Classification 203

Learning Apache Spark with Python

(continued from previous page)

class_names = map(str, class_temp)
print(class_name)
class_names

['medium', 'high', 'low']

from sklearn.metrics import confusion_matrix
y_true = predictions.select("label")
y_true = y_true.toPandas()

y_pred = predictions.select("predictedLabel")
y_pred = y_pred.toPandas()

cnf_matrix = confusion_matrix(y_true, y_pred,labels=class_names)
cnf_matrix

array([[497, 29, 7],
[40, 42, 0],
[22, 0, 2]])

Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,

title='Confusion matrix, without normalization')
plt.show()

Confusion matrix, without normalization
[[497 29 7]
[40 42 0]
[22 0 2]]

204 Chapter 11. Classification

Learning Apache Spark with Python

Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,

title='Normalized confusion matrix')

plt.show()

Normalized confusion matrix
[[0.93245779 0.05440901 0.01313321]
[0.48780488 0.51219512 0.]
[0.91666667 0. 0.08333333]]

11.3. Decision tree Classification 205

Learning Apache Spark with Python

11.4 Random forest Classification

11.4.1 Introduction

11.4.2 Demo

• The Jupyter notebook can be download from Random forest Classification.

• For more details, please visit RandomForestClassifier API .

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark Decision Tree classification") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true') \

(continues on next page)

206 Chapter 11. Classification

_static/RandomForestC3.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.classification.RandomForestClassifier.html

Learning Apache Spark with Python

(continued from previous page)

.load("../data/WineData2.csv",header=True);
df.show(5,True)

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| 5|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| 5|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| 6|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

Convert to float format
def string_to_float(x):

return float(x)

#
def condition(r):

if (0<= r <= 4):
label = "low"

elif(4< r <= 6):
label = "medium"

else:
label = "high"

return label

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, DoubleType
string_to_float_udf = udf(string_to_float, DoubleType())
quality_udf = udf(lambda x: condition(x), StringType())

df = df.withColumn("quality", quality_udf("quality"))
df.show(5,True)
df.printSchema()

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|

(continues on next page)

11.4. Random forest Classification 207

Learning Apache Spark with Python

(continued from previous page)

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| medium|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| medium|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| medium|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| medium|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| medium|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

root
|-- fixed: double (nullable = true)
|-- volatile: double (nullable = true)
|-- citric: double (nullable = true)
|-- sugar: double (nullable = true)
|-- chlorides: double (nullable = true)
|-- free: double (nullable = true)
|-- total: double (nullable = true)
|-- density: double (nullable = true)
|-- pH: double (nullable = true)
|-- sulphates: double (nullable = true)
|-- alcohol: double (nullable = true)
|-- quality: string (nullable = true)

3. Convert the data to dense vector

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in complex dataset.

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

(continues on next page)

208 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

(continues on next page)

11.4. Random forest Classification 209

Learning Apache Spark with Python

(continued from previous page)

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
| 0|[1.0,0.0,0.0]|

(continues on next page)

210 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

!!!!caution: not from pyspark.mllib.linalg import Vectors
from pyspark.ml.linalg import Vectors

(continues on next page)

11.4. Random forest Classification 211

Learning Apache Spark with Python

(continued from previous page)

from pyspark.ml import Pipeline
from pyspark.ml.feature import IndexToString,StringIndexer, VectorIndexer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF([

→˓'features','label'])

4. Transform the dataset to DataFrame

transformed = transData(df)
transformed.show(5)

+--------------------+------+
| features| label|
+--------------------+------+
[7.4,0.7,0.0,1.9,...	medium
[7.8,0.88,0.0,2.6...	medium
[7.8,0.76,0.04,2....	medium
[11.2,0.28,0.56,1...	medium
[7.4,0.7,0.0,1.9,...	medium
+--------------------+------+
only showing top 5 rows

5. Deal with Categorical Label and Variables

Index labels, adding metadata to the label column
labelIndexer = StringIndexer(inputCol='label',

outputCol='indexedLabel').fit(transformed)
labelIndexer.transform(transformed).show(5, True)

+--------------------+------+------------+
| features| label|indexedLabel|
+--------------------+------+------------+
[7.4,0.7,0.0,1.9,...	medium	0.0
[7.8,0.88,0.0,2.6...	medium	0.0
[7.8,0.76,0.04,2....	medium	0.0
[11.2,0.28,0.56,1...	medium	0.0
[7.4,0.7,0.0,1.9,...	medium	0.0
+--------------------+------+------------+
only showing top 5 rows

Automatically identify categorical features, and index them.
Set maxCategories so features with > 4 distinct values are treated as

→˓continuous.
featureIndexer =VectorIndexer(inputCol="features", \

outputCol="indexedFeatures", \
maxCategories=4).fit(transformed)

featureIndexer.transform(transformed).show(5, True)

212 Chapter 11. Classification

Learning Apache Spark with Python

+--------------------+------+--------------------+
| features| label| indexedFeatures|
+--------------------+------+--------------------+
[7.4,0.7,0.0,1.9,...	medium	[7.4,0.7,0.0,1.9,...
[7.8,0.88,0.0,2.6...	medium	[7.8,0.88,0.0,2.6...
[7.8,0.76,0.04,2....	medium	[7.8,0.76,0.04,2....
[11.2,0.28,0.56,1...	medium	[11.2,0.28,0.56,1...
[7.4,0.7,0.0,1.9,...	medium	[7.4,0.7,0.0,1.9,...
+--------------------+------+--------------------+
only showing top 5 rows

6. Split the data to training and test data sets

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = transformed.randomSplit([0.6, 0.4])

trainingData.show(5)
testData.show(5)

+--------------------+------+
| features| label|
+--------------------+------+
[4.6,0.52,0.15,2....	low
[4.7,0.6,0.17,2.3...	medium
[5.0,1.02,0.04,1....	low
[5.0,1.04,0.24,1....	medium
[5.1,0.585,0.0,1....	high
+--------------------+------+
only showing top 5 rows

+--------------------+------+
| features| label|
+--------------------+------+
[4.9,0.42,0.0,2.1...	high
[5.0,0.38,0.01,1....	medium
[5.0,0.4,0.5,4.3,...	medium
[5.0,0.42,0.24,2....	high
[5.0,0.74,0.0,1.2...	medium
+--------------------+------+
only showing top 5 rows

7. Fit Random Forest Classification Model

from pyspark.ml.classification import RandomForestClassifier

Train a RandomForest model.
rf = RandomForestClassifier(labelCol="indexedLabel", featuresCol=
→˓"indexedFeatures", numTrees=10)

8. Pipeline Architecture

11.4. Random forest Classification 213

Learning Apache Spark with Python

Convert indexed labels back to original labels.
labelConverter = IndexToString(inputCol="prediction", outputCol=
→˓"predictedLabel",

labels=labelIndexer.labels)

Chain indexers and tree in a Pipeline
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, rf,labelConverter])

Train model. This also runs the indexers.
model = pipeline.fit(trainingData)

9. Make predictions

Make predictions.
predictions = model.transform(testData)
Select example rows to display.
predictions.select("features","label","predictedLabel").show(5)

+--------------------+------+--------------+
| features| label|predictedLabel|
+--------------------+------+--------------+
[4.9,0.42,0.0,2.1...	high	high
[5.0,0.38,0.01,1....	medium	medium
[5.0,0.4,0.5,4.3,...	medium	medium
[5.0,0.42,0.24,2....	high	medium
[5.0,0.74,0.0,1.2...	medium	medium
+--------------------+------+--------------+
only showing top 5 rows

10. Evaluation

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(

labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy
→˓")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g" % (1.0 - accuracy))

rfModel = model.stages[-2]
print(rfModel) # summary only

Test Error = 0.173502
RandomForestClassificationModel (uid=rfc_a3395531f1d2) with 10 trees

11. visualization

import matplotlib.pyplot as plt
import numpy as np

(continues on next page)

214 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

import itertools

def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):

"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")

else:
print('Confusion matrix, without normalization')

print(cm)

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

class_temp = predictions.select("label").groupBy("label")\
.count().sort('count', ascending=False).toPandas()

class_temp = class_temp["label"].values.tolist()
class_names = map(str, class_temp)
print(class_name)
class_names

['medium', 'high', 'low']

from sklearn.metrics import confusion_matrix
y_true = predictions.select("label")
y_true = y_true.toPandas()

y_pred = predictions.select("predictedLabel")

(continues on next page)

11.4. Random forest Classification 215

Learning Apache Spark with Python

(continued from previous page)

y_pred = y_pred.toPandas()

cnf_matrix = confusion_matrix(y_true, y_pred,labels=class_names)
cnf_matrix

array([[502, 9, 0],
[73, 22, 0],
[28, 0, 0]])

Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,

title='Confusion matrix, without normalization')
plt.show()

Confusion matrix, without normalization
[[502 9 0]
[73 22 0]
[28 0 0]]

Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,

title='Normalized confusion matrix')
(continues on next page)

216 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

plt.show()

Normalized confusion matrix
[[0.98238748 0.01761252 0.]
[0.76842105 0.23157895 0.]
[1. 0. 0.]]

11.5 Gradient-boosted tree Classification

11.5.1 Introduction

11.5.2 Demo

• The Jupyter notebook can be download from Gradient boosted tree Classification.

• For more details, please visit GBTClassifier API .

Warning: Unfortunately, the GBTClassifier currently only supports binary labels.

11.5. Gradient-boosted tree Classification 217

_static/gbtC3.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.classification.GBTClassifier.html

Learning Apache Spark with Python

11.6 XGBoost: Gradient-boosted tree Classification

11.6.1 Introduction

11.6.2 Demo

• The Jupyter notebook can be download from Gradient boosted tree Classification.

• For more details, please visit GBTClassifier API .

Warning: Unfortunately, I didn’t find a good way to setup the XGBoost directly in Spark. But I do get
the XGBoost work with pysparkling on my machine.

1. Start H2O cluster inside the Spark environment

from pysparkling import *
hc = H2OContext.getOrCreate(spark)

Connecting to H2O server at http://192.168.0.102:54323... successful.
H2O cluster uptime: 07 secs
H2O cluster timezone: America/Chicago
H2O data parsing timezone: UTC
H2O cluster version: 3.22.1.3
H2O cluster version age: 20 days
H2O cluster name: sparkling-water-dt216661_local-1550259209801
H2O cluster total nodes: 1
H2O cluster free memory: 848 Mb
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster status: accepting new members, healthy
H2O connection url: http://192.168.0.102:54323
H2O connection proxy: None
H2O internal security: False
H2O API Extensions: XGBoost, Algos, AutoML, Core V3, Core V4
Python version: 3.7.1 final

Sparkling Water Context:

* H2O name: sparkling-water-dt216661_local-1550259209801

* cluster size: 1

* list of used nodes:
(executorId, host, port)

(driver,192.168.0.102,54323)

Open H2O Flow in browser: http://192.168.0.102:54323 (CMD + click in Mac
→˓OSX)

2. Parse the data using H2O and convert them to Spark Frame

218 Chapter 11. Classification

_static/gbtC3.ipynb
http://takwatanabe.me/pyspark/generated/generated/ml.classification.GBTClassifier.html

Learning Apache Spark with Python

import h2o
frame = h2o.import_file("https://raw.githubusercontent.com/h2oai/sparkling-
→˓water/master/examples/smalldata/prostate/prostate.csv")
spark_frame = hc.as_spark_frame(frame)

spark_frame.show(4)

+---+-------+---+----+-----+-----+----+----+-------+
| ID|CAPSULE|AGE|RACE|DPROS|DCAPS| PSA| VOL|GLEASON|
+---+-------+---+----+-----+-----+----+----+-------+
1	0	65	1	2	1	1.4	0.0	6
2	0	72	1	3	2	6.7	0.0	7
3	0	70	1	1	2	4.9	0.0	6
4	0	76	2	2	1	51.2	20.0	7
+---+-------+---+----+-----+-----+----+----+-------+
only showing top 4 rows

3. Train the model

from pysparkling.ml import H2OXGBoost
estimator = H2OXGBoost(predictionCol="AGE")
model = estimator.fit(spark_frame)

4. Run Predictions

predictions = model.transform(spark_frame)
predictions.show(4)

+---+-------+---+----+-----+-----+----+----+-------+-------------------+
| ID|CAPSULE|AGE|RACE|DPROS|DCAPS| PSA| VOL|GLEASON| prediction_output|
+---+-------+---+----+-----+-----+----+----+-------+-------------------+
1	0	65	1	2	1	1.4	0.0	6	[64.85852813720703]
2	0	72	1	3	2	6.7	0.0	7	[72.0611801147461]
3	0	70	1	1	2	4.9	0.0	6	[70.26496887207031]
4	0	76	2	2	1	51.2	20.0	7	[75.26521301269531]
+---+-------+---+----+-----+-----+----+----+-------+-------------------+
only showing top 4 rows

11.7 Naive Bayes Classification

11.7.1 Introduction

11.7.2 Demo

• The Jupyter notebook can be download from Naive Bayes Classification.

11.7. Naive Bayes Classification 219

_static/NaiveBayes.ipynb

Learning Apache Spark with Python

• For more details, please visit NaiveBayes API .

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark Naive Bayes classification") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv') \
.options(header='true', inferschema='true') \
.load("./data/WineData2.csv",header=True);

df.show(5)

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| 5|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| 5|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| 6|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

df.printSchema()

root
|-- fixed: double (nullable = true)
|-- volatile: double (nullable = true)
|-- citric: double (nullable = true)
|-- sugar: double (nullable = true)
|-- chlorides: double (nullable = true)
|-- free: double (nullable = true)
|-- total: double (nullable = true)
|-- density: double (nullable = true)
|-- pH: double (nullable = true)
|-- sulphates: double (nullable = true)

(continues on next page)

220 Chapter 11. Classification

http://takwatanabe.me/pyspark/generated/generated/ml.classification.NaiveBayes.html

Learning Apache Spark with Python

(continued from previous page)

|-- alcohol: double (nullable = true)
|-- quality: string (nullable = true)

Convert to float format
def string_to_float(x):

return float(x)

#
def condition(r):

if (0<= r <= 6):
label = "low"

else:
label = "high"

return label

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, DoubleType
string_to_float_udf = udf(string_to_float, DoubleType())
quality_udf = udf(lambda x: condition(x), StringType())

df = df.withColumn("quality", quality_udf("quality"))

df.show(5,True)

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| medium|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| medium|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| medium|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| medium|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| medium|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

df.printSchema()

root
|-- fixed: double (nullable = true)
|-- volatile: double (nullable = true)
|-- citric: double (nullable = true)

(continues on next page)

11.7. Naive Bayes Classification 221

Learning Apache Spark with Python

(continued from previous page)

|-- sugar: double (nullable = true)
|-- chlorides: double (nullable = true)
|-- free: double (nullable = true)
|-- total: double (nullable = true)
|-- density: double (nullable = true)
|-- pH: double (nullable = true)
|-- sulphates: double (nullable = true)
|-- alcohol: double (nullable = true)
|-- quality: string (nullable = true)

3. Deal with categorical data and Convert the data to dense vector

Note:

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in complex dataset.

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

222 Chapter 11. Classification

Learning Apache Spark with Python

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com
'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column

(continues on next page)

11.7. Naive Bayes Classification 223

Learning Apache Spark with Python

(continued from previous page)

:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

(continues on next page)

224 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select(indexCol,'features','label')

elif not indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

def get_dummy(df,categoricalCols,continuousCols,labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".format(c))
for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol() for encoder
→˓in encoders]

+ continuousCols, outputCol="features")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

(continues on next page)

11.7. Naive Bayes Classification 225

Learning Apache Spark with Python

(continued from previous page)

return data.select('features','label')

4. Transform the dataset to DataFrame

from pyspark.ml.linalg import Vectors # !!!!caution: not from pyspark.mllib.
→˓linalg import Vectors
from pyspark.ml import Pipeline
from pyspark.ml.feature import IndexToString,StringIndexer, VectorIndexer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF(['features',
→˓'label'])

transformed = transData(df)
transformed.show(5)

+--------------------+-----+
| features|label|
+--------------------+-----+
[7.4,0.7,0.0,1.9,...	low
[7.8,0.88,0.0,2.6...	low
[7.8,0.76,0.04,2....	low
[11.2,0.28,0.56,1...	low
[7.4,0.7,0.0,1.9,...	low
+--------------------+-----+
only showing top 5 rows

4. Deal with Categorical Label and Variables

Index labels, adding metadata to the label column
labelIndexer = StringIndexer(inputCol='label',

outputCol='indexedLabel').fit(transformed)
labelIndexer.transform(transformed).show(5, True)

+--------------------+-----+------------+
| features|label|indexedLabel|
+--------------------+-----+------------+
[7.4,0.7,0.0,1.9,...	low	0.0
[7.8,0.88,0.0,2.6...	low	0.0
[7.8,0.76,0.04,2....	low	0.0
[11.2,0.28,0.56,1...	low	0.0
[7.4,0.7,0.0,1.9,...	low	0.0
+--------------------+-----+------------+
only showing top 5 rows

Automatically identify categorical features, and index them.
Set maxCategories so features with > 4 distinct values are treated as
→˓continuous. (continues on next page)

226 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

featureIndexer =VectorIndexer(inputCol="features", \
outputCol="indexedFeatures", \
maxCategories=4).fit(transformed)

featureIndexer.transform(transformed).show(5, True)

+--------------------+-----+--------------------+
| features|label| indexedFeatures|
+--------------------+-----+--------------------+
[7.4,0.7,0.0,1.9,...	low	[7.4,0.7,0.0,1.9,...
[7.8,0.88,0.0,2.6...	low	[7.8,0.88,0.0,2.6...
[7.8,0.76,0.04,2....	low	[7.8,0.76,0.04,2....
[11.2,0.28,0.56,1...	low	[11.2,0.28,0.56,1...
[7.4,0.7,0.0,1.9,...	low	[7.4,0.7,0.0,1.9,...
+--------------------+-----+--------------------+
only showing top 5 rows

5. Split the data to training and test data sets

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = data.randomSplit([0.6, 0.4])

trainingData.show(5,False)
testData.show(5,False)

+---+-----+
|features |label|
+---+-----+
[5.0,0.38,0.01,1.6,0.048,26.0,60.0,0.99084,3.7,0.75,14.0]	low
[5.0,0.42,0.24,2.0,0.06,19.0,50.0,0.9917,3.72,0.74,14.0]	high
[5.0,0.74,0.0,1.2,0.041,16.0,46.0,0.99258,4.01,0.59,12.5]	low
[5.0,1.02,0.04,1.4,0.045,41.0,85.0,0.9938,3.75,0.48,10.5]	low
[5.0,1.04,0.24,1.6,0.05,32.0,96.0,0.9934,3.74,0.62,11.5]	low
+---+-----+
only showing top 5 rows

+---+-----+
|features |label|
+---+-----+
[4.6,0.52,0.15,2.1,0.054,8.0,65.0,0.9934,3.9,0.56,13.1]	low
[4.7,0.6,0.17,2.3,0.058,17.0,106.0,0.9932,3.85,0.6,12.9]	low
[4.9,0.42,0.0,2.1,0.048,16.0,42.0,0.99154,3.71,0.74,14.0]	high
[5.0,0.4,0.5,4.3,0.046,29.0,80.0,0.9902,3.49,0.66,13.6]	low
[5.2,0.49,0.26,2.3,0.09,23.0,74.0,0.9953,3.71,0.62,12.2]	low
+---+-----+
only showing top 5 rows

6. Fit Naive Bayes Classification Model

from pyspark.ml.classification import NaiveBayes
nb = NaiveBayes(featuresCol='indexedFeatures', labelCol='indexedLabel')

11.7. Naive Bayes Classification 227

Learning Apache Spark with Python

7. Pipeline Architecture

Convert indexed labels back to original labels.
labelConverter = IndexToString(inputCol="prediction", outputCol=
→˓"predictedLabel",

labels=labelIndexer.labels)

Chain indexers and tree in a Pipeline
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, nb,labelConverter])

Train model. This also runs the indexers.
model = pipeline.fit(trainingData)

8. Make predictions

Make predictions.
predictions = model.transform(testData)
Select example rows to display.
predictions.select("features","label","predictedLabel").show(5)

+--------------------+-----+--------------+
| features|label|predictedLabel|
+--------------------+-----+--------------+
[4.6,0.52,0.15,2....	low	low
[4.7,0.6,0.17,2.3...	low	low
[4.9,0.42,0.0,2.1...	high	low
[5.0,0.4,0.5,4.3,...	low	low
[5.2,0.49,0.26,2....	low	low
+--------------------+-----+--------------+
only showing top 5 rows

9. Evaluation

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(

labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy
→˓")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g" % (1.0 - accuracy))

Test Error = 0.307339

lrModel = model.stages[2]
trainingSummary = lrModel.summary

Obtain the objective per iteration
objectiveHistory = trainingSummary.objectiveHistory
print("objectiveHistory:")
for objective in objectiveHistory:

(continues on next page)

228 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

print(objective)

Obtain the receiver-operating characteristic as a dataframe and
→˓areaUnderROC.
trainingSummary.roc.show(5)
print("areaUnderROC: " + str(trainingSummary.areaUnderROC))

Set the model threshold to maximize F-Measure
fMeasure = trainingSummary.fMeasureByThreshold
maxFMeasure = fMeasure.groupBy().max('F-Measure').select('max(F-Measure)').
→˓head(5)
bestThreshold = fMeasure.where(fMeasure['F-Measure'] == maxFMeasure['max(F-
→˓Measure)']) \
.select('threshold').head()['threshold']
lr.setThreshold(bestThreshold)

You can use z.show() to get the data and plot the ROC curves:

You can also register a TempTable data.registerTempTable('roc_data') and then use sql to
plot the ROC curve:

11.7. Naive Bayes Classification 229

Learning Apache Spark with Python

10. visualization

import matplotlib.pyplot as plt
import numpy as np
import itertools

def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):

"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")

else:
print('Confusion matrix, without normalization')

print(cm)

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

class_temp = predictions.select("label").groupBy("label")\
.count().sort('count', ascending=False).toPandas()

class_temp = class_temp["label"].values.tolist()
class_names = map(str, class_temp)
print(class_name)
class_names

['low', 'high']

from sklearn.metrics import confusion_matrix
y_true = predictions.select("label")
y_true = y_true.toPandas()

(continues on next page)

230 Chapter 11. Classification

Learning Apache Spark with Python

(continued from previous page)

y_pred = predictions.select("predictedLabel")
y_pred = y_pred.toPandas()

cnf_matrix = confusion_matrix(y_true, y_pred,labels=class_names)
cnf_matrix

array([[392, 169],
[32, 61]])

Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,

title='Confusion matrix, without normalization')
plt.show()

Confusion matrix, without normalization
[[392 169]
[32 61]]

Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,

title='Normalized confusion matrix')
(continues on next page)

11.7. Naive Bayes Classification 231

Learning Apache Spark with Python

(continued from previous page)

plt.show()

Normalized confusion matrix
[[0.69875223 0.30124777]
[0.34408602 0.65591398]]

232 Chapter 11. Classification

CHAPTER

TWELVE

CLUSTERING

Chinese proverb

Sharpening the knife longer can make it easier to hack the firewood – old Chinese proverb

The above figure was generated by the code from: Python Data Science Handbook.

12.1 K-Means Model

12.1.1 Introduction

k-means clustering is a method of vector quantization, originally from signal processing, that is popular for
cluster analysis in data mining. The approach k-means follows to solve the problem is called Expectation-
Maximization. It can be described as follows:

1. Assign some cluter centers

2. Repeated until converged

• E-Step: assign points to the nearest center

• M-step: set the cluster center to the mean

233

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html#Expectation-Maximization

Learning Apache Spark with Python

Given a set of observations (𝑥1, 𝑥2, · · · , 𝑥𝑚). The objective function is

𝐽 =

𝑚∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑤𝑖𝑘||𝑥𝑖 − 𝑐𝑘||2

where 𝑤𝑖𝑘 = 1 if 𝑥𝑖 is in cluster 𝑘; otherwise 𝑤𝑖𝑘 = 0 and 𝑐𝑘 is the centroid of 𝑥𝑖 ‘s cluster.

Mathematically, k-means is a minimization problem with two parts: First, we minimize 𝐽 w.r.t 𝑤𝑖𝑘 with 𝑐𝑘
fixed; Then minimize 𝐽 w.r.t 𝑐𝑘 with 𝑤𝑖𝑘 fixed. i.e.

E-step:

𝜕𝐽

𝜕𝑤𝑖𝑘
=

𝑚∑︁
𝑖=1

𝐾∑︁
𝑘=1

||𝑥𝑖 − 𝑐𝑘||2

⇒ 𝑤𝑖𝑘 =

{︂
1, if 𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 ||𝑥𝑖 − 𝑐𝑗 ||2
0, otherwise

M-step:

𝜕𝐽

𝜕𝑐𝑘
= 2

∑︁
𝑖=1

𝑚𝑤𝑖𝑘(𝑥𝑖 − 𝑐𝑘) = 0 ⇒ 𝑐𝑘 =

∑︀𝑚
𝑖=1𝑤𝑖𝑘𝑥𝑖∑︀𝑚
𝑖=1𝑤𝑖𝑘

12.1.2 Demo

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark K-means example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("../data/iris.csv",header=True);

check the data set

df.show(5,True)
df.printSchema()

Then you will get

234 Chapter 12. Clustering

Learning Apache Spark with Python

+------------+-----------+------------+-----------+-------+
|sepal_length|sepal_width|petal_length|petal_width|species|
+------------+-----------+------------+-----------+-------+
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
+------------+-----------+------------+-----------+-------+
only showing top 5 rows

root
|-- sepal_length: double (nullable = true)
|-- sepal_width: double (nullable = true)
|-- petal_length: double (nullable = true)
|-- petal_width: double (nullable = true)
|-- species: string (nullable = true)

You can also get the Statistical resutls from the data frame (Unfortunately, it only works for numerical).

df.describe().show()

Then you will get

+-------+------------------+-------------------+------------------+-----------
→˓-------+---------+
|summary| sepal_length| sepal_width| petal_length|
→˓petal_width| species|
+-------+------------------+-------------------+------------------+-----------
→˓-------+---------+
| count| 150| 150| 150|
→˓ 150| 150|
| mean| 5.843333333333335| 3.0540000000000007|3.7586666666666693|1.
→˓1986666666666672| null|
| stddev|0.8280661279778637|0.43359431136217375| 1.764420419952262|0.
→˓7631607417008414| null|
| min| 4.3| 2.0| 1.0|
→˓ 0.1| setosa|
| max| 7.9| 4.4| 6.9|
→˓ 2.5|virginica|
+-------+------------------+-------------------+------------------+-----------
→˓-------+---------+

3. Convert the data to dense vector (features)

convert the data to dense vector
from pyspark.mllib.linalg import Vectors
def transData(data):

return data.rdd.map(lambda r: [Vectors.dense(r[:-1])]).toDF(['features'])

Note:

12.1. K-Means Model 235

Learning Apache Spark with Python

You are strongly encouraged to try my get_dummy function for dealing with the categorical
data in complex dataset.

Supervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol):

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer,

→˓OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

data = data.withColumn('label',col(labelCol))

return data.select(indexCol,'features','label')

Unsupervised learning version:

def get_dummy(df,indexCol,categoricalCols,continuousCols):
'''
Get dummy variables and concat with continuous variables

→˓for unsupervised learning.
:param df: the dataframe
:param categoricalCols: the name list of the categorical

→˓data
:param continuousCols: the name list of the numerical

→˓data
:return k: feature matrix

:author: Wenqiang Feng

(continues on next page)

236 Chapter 12. Clustering

Learning Apache Spark with Python

(continued from previous page)

:email: von198@gmail.com
'''

indexers = [StringIndexer(inputCol=c, outputCol="{0}_
→˓indexed".format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.

→˓getOutputCol(),
outputCol="{0}_encoded".format(indexer.

→˓getOutputCol()))
for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.
→˓getOutputCol() for encoder in encoders]

+ continuousCols, outputCol=
→˓"features")

pipeline = Pipeline(stages=indexers + encoders +
→˓[assembler])

model=pipeline.fit(df)
data = model.transform(df)

return data.select(indexCol,'features')

Two in one:

def get_dummy(df,indexCol,categoricalCols,continuousCols,labelCol,
→˓dropLast=False):

'''
Get dummy variables and concat with continuous variables for ml

→˓modeling.
:param df: the dataframe
:param categoricalCols: the name list of the categorical data
:param continuousCols: the name list of the numerical data
:param labelCol: the name of label column
:param dropLast: the flag of drop last column
:return: feature matrix

:author: Wenqiang Feng
:email: von198@gmail.com

>>> df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")

(continues on next page)

12.1. K-Means Model 237

Learning Apache Spark with Python

(continued from previous page)

], ["id", "category"])

>>> indexCol = 'id'
>>> categoricalCols = ['category']
>>> continuousCols = []
>>> labelCol = []

>>> mat = get_dummy(df,indexCol,categoricalCols,continuousCols,
→˓labelCol)

>>> mat.show()

>>>
+---+-------------+
| id| features|
+---+-------------+
0	[1.0,0.0,0.0]
1	[0.0,0.0,1.0]
2	[0.0,1.0,0.0]
3	[1.0,0.0,0.0]
4	[1.0,0.0,0.0]
5	[0.0,1.0,0.0]
+---+-------------+

'''

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder,

→˓VectorAssembler
from pyspark.sql.functions import col

indexers = [StringIndexer(inputCol=c, outputCol="{0}_indexed".
→˓format(c))

for c in categoricalCols]

default setting: dropLast=True
encoders = [OneHotEncoder(inputCol=indexer.getOutputCol(),

outputCol="{0}_encoded".format(indexer.
→˓getOutputCol()),dropLast=dropLast)

for indexer in indexers]

assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
→˓for encoder in encoders]

+ continuousCols, outputCol="features
→˓")

pipeline = Pipeline(stages=indexers + encoders + [assembler])

model=pipeline.fit(df)
data = model.transform(df)

if indexCol and labelCol:
for supervised learning
data = data.withColumn('label',col(labelCol))

(continues on next page)

238 Chapter 12. Clustering

Learning Apache Spark with Python

(continued from previous page)

return data.select(indexCol,'features','label')
elif not indexCol and labelCol:

for supervised learning
data = data.withColumn('label',col(labelCol))
return data.select('features','label')

elif indexCol and not labelCol:
for unsupervised learning
return data.select(indexCol,'features')

elif not indexCol and not labelCol:
for unsupervised learning
return data.select('features')

4. Transform the dataset to DataFrame

transformed= transData(df)
transformed.show(5, False)

+-----------------+
|features |
+-----------------+
|[5.1,3.5,1.4,0.2]|
|[4.9,3.0,1.4,0.2]|
|[4.7,3.2,1.3,0.2]|
|[4.6,3.1,1.5,0.2]|
|[5.0,3.6,1.4,0.2]|
+-----------------+
only showing top 5 rows

5. Deal With Categorical Variables

from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

Automatically identify categorical features, and index them.
We specify maxCategories so features with > 4 distinct values are treated
→˓as continuous.

featureIndexer = VectorIndexer(inputCol="features", \
outputCol="indexedFeatures",\
maxCategories=4).fit(transformed)

data = featureIndexer.transform(transformed)

Now you check your dataset with

data.show(5,True)

you will get

12.1. K-Means Model 239

Learning Apache Spark with Python

+-----------------+-----------------+
| features| indexedFeatures|
+-----------------+-----------------+
[5.1,3.5,1.4,0.2]	[5.1,3.5,1.4,0.2]
[4.9,3.0,1.4,0.2]	[4.9,3.0,1.4,0.2]
[4.7,3.2,1.3,0.2]	[4.7,3.2,1.3,0.2]
[4.6,3.1,1.5,0.2]	[4.6,3.1,1.5,0.2]
[5.0,3.6,1.4,0.2]	[5.0,3.6,1.4,0.2]
+-----------------+-----------------+
only showing top 5 rows

Note: Since clustering algorithms including k-means use distance-based measurements to determine the
similarity between data points, It’s strongly recommended to standardize the data to have a mean of zero
and a standard deviation of one.

6. Elbow method to determine the optimal number of clusters for k-means clustering

import numpy as np
cost = np.zeros(20)
for k in range(2,20):

kmeans = KMeans()\
.setK(k)\
.setSeed(1) \
.setFeaturesCol("indexedFeatures")\
.setPredictionCol("cluster")

model = kmeans.fit(data)
cost[k] = model.computeCost(data) # requires Spark 2.0 or later

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import seaborn as sbs
from matplotlib.ticker import MaxNLocator

fig, ax = plt.subplots(1,1, figsize =(8,6))
ax.plot(range(2,20),cost[2:20])
ax.set_xlabel('k')
ax.set_ylabel('cost')
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
plt.show()

240 Chapter 12. Clustering

Learning Apache Spark with Python

In my opinion, sometimes it’s hard to choose the optimal number of the clusters by using the elbow
method. As shown in the following Figure, you can choose 3, 5 or even 8. I will choose 3 in this demo.

12.1. K-Means Model 241

Learning Apache Spark with Python

• Silhouette analysis

#PySpark libraries
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col, percent_rank, lit
from pyspark.sql.window import Window
from pyspark.sql import DataFrame, Row
from pyspark.sql.types import StructType
from functools import reduce # For Python 3.x

from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator

def optimal_k(df_in,index_col,k_min, k_max,num_runs):
'''
Determine optimal number of clusters by using Silhoutte Score Analysis.
:param df_in: the input dataframe
:param index_col: the name of the index column
:param k_min: the minmum number of the clusters
:param k_max: the maxmum number of the clusters
:param num_runs: the number of runs for each fixed clusters

(continues on next page)

242 Chapter 12. Clustering

Learning Apache Spark with Python

(continued from previous page)

:return k: optimal number of the clusters
:return silh_lst: Silhouette score
:return r_table: the running results table

:author: Wenqiang Feng
:email: von198@gmail.com
'''

start = time.time()
silh_lst = []
k_lst = np.arange(k_min, k_max+1)

r_table = df_in.select(index_col).toPandas()
r_table = r_table.set_index(index_col)
centers = pd.DataFrame()

for k in k_lst:
silh_val = []
for run in np.arange(1, num_runs+1):

Trains a k-means model.
kmeans = KMeans()\

.setK(k)\

.setSeed(int(np.random.randint(100, size=1)))
model = kmeans.fit(df_in)

Make predictions
predictions = model.transform(df_in)
r_table['cluster_{k}_{run}'.format(k=k, run=run)]= predictions.

→˓select('prediction').toPandas()

Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(predictions)
silh_val.append(silhouette)

silh_array=np.asanyarray(silh_val)
silh_lst.append(silh_array.mean())

elapsed = time.time() - start

silhouette = pd.DataFrame(list(zip(k_lst,silh_lst)),columns = ['k',
→˓'silhouette'])

print('+--+')
print("| The finding optimal k phase took %8.0f s. |"

→˓%(elapsed))
print('+--+')

return k_lst[np.argmax(silh_lst, axis=0)], silhouette , r_table

12.1. K-Means Model 243

Learning Apache Spark with Python

k, silh_lst, r_table = optimal_k(scaledData,index_col,k_min, k_max,num_runs)

+--+
| The finding optimal k phase took 1783 s. |
+--+

spark.createDataFrame(silh_lst).show()

+---+------------------+
| k| silhouette|
+---+------------------+
3	0.8045154385557953
4	0.6993528775512052
5	0.6689286654221447
6	0.6356184024841809
7	0.7174102265711756
8	0.6720861758298997
9	0.601771359881241
10	0.6292447334578428
+---+------------------+

From the silhouette list, we can choose 3 as the optimal number of the clusters.

Warning: ClusteringEvaluator in pyspark.ml.evaluation requires Spark 2.4 or later!!

7. Pipeline Architecture

from pyspark.ml.clustering import KMeans, KMeansModel

kmeans = KMeans() \
.setK(3) \
.setFeaturesCol("indexedFeatures")\
.setPredictionCol("cluster")

Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featureIndexer, kmeans])

model = pipeline.fit(transformed)

cluster = model.transform(transformed)

8. k-means clusters

cluster = model.transform(transformed)

+-----------------+-----------------+-------+
| features| indexedFeatures|cluster|
+-----------------+-----------------+-------+
|[5.1,3.5,1.4,0.2]|[5.1,3.5,1.4,0.2]| 1|
|[4.9,3.0,1.4,0.2]|[4.9,3.0,1.4,0.2]| 1|

(continues on next page)

244 Chapter 12. Clustering

Learning Apache Spark with Python

(continued from previous page)

[4.7,3.2,1.3,0.2]	[4.7,3.2,1.3,0.2]	1
[4.6,3.1,1.5,0.2]	[4.6,3.1,1.5,0.2]	1
[5.0,3.6,1.4,0.2]	[5.0,3.6,1.4,0.2]	1
[5.4,3.9,1.7,0.4]	[5.4,3.9,1.7,0.4]	1
[4.6,3.4,1.4,0.3]	[4.6,3.4,1.4,0.3]	1
[5.0,3.4,1.5,0.2]	[5.0,3.4,1.5,0.2]	1
[4.4,2.9,1.4,0.2]	[4.4,2.9,1.4,0.2]	1
[4.9,3.1,1.5,0.1]	[4.9,3.1,1.5,0.1]	1
[5.4,3.7,1.5,0.2]	[5.4,3.7,1.5,0.2]	1
[4.8,3.4,1.6,0.2]	[4.8,3.4,1.6,0.2]	1
[4.8,3.0,1.4,0.1]	[4.8,3.0,1.4,0.1]	1
[4.3,3.0,1.1,0.1]	[4.3,3.0,1.1,0.1]	1
[5.8,4.0,1.2,0.2]	[5.8,4.0,1.2,0.2]	1
[5.7,4.4,1.5,0.4]	[5.7,4.4,1.5,0.4]	1
[5.4,3.9,1.3,0.4]	[5.4,3.9,1.3,0.4]	1
[5.1,3.5,1.4,0.3]	[5.1,3.5,1.4,0.3]	1
[5.7,3.8,1.7,0.3]	[5.7,3.8,1.7,0.3]	1
[5.1,3.8,1.5,0.3]	[5.1,3.8,1.5,0.3]	1
+-----------------+-----------------+-------+
only showing top 20 rows

12.1. K-Means Model 245

Learning Apache Spark with Python

246 Chapter 12. Clustering

CHAPTER

THIRTEEN

RFM ANALYSIS

The above figure source: Blast Analytics Marketing

RFM is a method used for analyzing customer value. It is commonly used in database marketing and direct
marketing and has received particular attention in retail and professional services industries. More details

247

Learning Apache Spark with Python

can be found at Wikipedia RFM_wikipedia.

RFM stands for the three dimensions:

• Recency – How recently did the customer purchase? i.e. Duration since last purchase

• Frequency – How often do they purchase? i.e. Total number of purchases

• Monetary Value – How much do they spend? i.e. Total money this customer spent

13.1 RFM Analysis Methodology

RFM Analysis contains three main steps:

13.1.1 1. Build the RFM features matrix for each customer

+----------+-------+---------+---------+
|CustomerID|Recency|Frequency| Monetary|
+----------+-------+---------+---------+
14911	1	248	132572.62
12748	0	224	29072.1
17841	1	169	40340.78
14606	1	128	11713.85
15311	0	118	59419.34
+----------+-------+---------+---------+
only showing top 5 rows

13.1.2 2. Determine cutting points for each feature

+----------+-------+---------+--------+-----+-----+-----+
|CustomerID|Recency|Frequency|Monetary|r_seg|f_seg|m_seg|
+----------+-------+---------+--------+-----+-----+-----+
17420	50	3	598.83	2	3	2
16861	59	3	151.65	3	3	1
16503	106	5	1421.43	3	2	3
15727	16	7	5178.96	1	1	4
17389	0	43	31300.08	1	1	4
+----------+-------+---------+--------+-----+-----+-----+
only showing top 5 rows

248 Chapter 13. RFM Analysis

https://en.wikipedia.org/wiki/RFM_(customer_value)

Learning Apache Spark with Python

13.1.3 3. Determine the RFM scores and summarize the corresponding business
value

+----------+-------+---------+--------+-----+-----+-----+--------+
|CustomerID|Recency|Frequency|Monetary|r_seg|f_seg|m_seg|RFMScore|
+----------+-------+---------+--------+-----+-----+-----+--------+
17988	11	8	191.17	1	1	1	111
16892	1	7	496.84	1	1	2	112
16668	15	6	306.72	1	1	2	112
16554	3	7	641.55	1	1	2	112
16500	4	6	400.86	1	1	2	112
+----------+-------+---------+--------+-----+-----+-----+--------+
only showing top 5 rows

The corresponding business description and marketing value:

Fig. 1: Source: Blast Analytics Marketing

13.1. RFM Analysis Methodology 249

Learning Apache Spark with Python

13.2 Demo

• The Jupyter notebook can be download from Data Exploration.

• The data can be downloaf from German Credit.

13.2.1 Load and clean data

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark RFM example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df_raw = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("Online Retail.csv",header=True);

check the data set

df_raw.show(5)
df_raw.printSchema()

Then you will get

+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+
|InvoiceNo|StockCode| Description|Quantity|
→˓InvoiceDate|UnitPrice|CustomerID| Country|
+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+
| 536365| 85123A|WHITE HANGING HEA...| 6|12/1/10 8:26| 2.55|
→˓ 17850|United Kingdom|
| 536365| 71053| WHITE METAL LANTERN| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|
| 536365| 84406B|CREAM CUPID HEART...| 8|12/1/10 8:26| 2.75|
→˓ 17850|United Kingdom|
| 536365| 84029G|KNITTED UNION FLA...| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|
| 536365| 84029E|RED WOOLLY HOTTIE...| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|
+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+
only showing top 5 rows

(continues on next page)

250 Chapter 13. RFM Analysis

_static/RFM.ipynb
_static/OnlineRetail.csv

Learning Apache Spark with Python

(continued from previous page)

root
|-- InvoiceNo: string (nullable = true)
|-- StockCode: string (nullable = true)
|-- Description: string (nullable = true)
|-- Quantity: integer (nullable = true)
|-- InvoiceDate: string (nullable = true)
|-- UnitPrice: double (nullable = true)
|-- CustomerID: integer (nullable = true)
|-- Country: string (nullable = true)

3. Data clean and data manipulation

• check and remove the null values

from pyspark.sql.functions import count

def my_count(df_in):
df_in.agg(*[count(c).alias(c) for c in df_in.columns]).show()

my_count(df_raw)

+---------+---------+-----------+--------+-----------+---------+----------+---
→˓----+
|InvoiceNo|StockCode|Description|Quantity|InvoiceDate|UnitPrice|CustomerID|Country|
+---------+---------+-----------+--------+-----------+---------+----------+---
→˓----+
| 541909| 541909| 540455| 541909| 541909| 541909| 406829|
→˓541909|
+---------+---------+-----------+--------+-----------+---------+----------+---
→˓----+

Since the count results are not the same, we have some null value in the CustomerID column. We can
drop these records from the dataset.

df = df_raw.dropna(how='any')
my_count(df)

+---------+---------+-----------+--------+-----------+---------+----------+---
→˓----+
|InvoiceNo|StockCode|Description|Quantity|InvoiceDate|UnitPrice|CustomerID|Country|
+---------+---------+-----------+--------+-----------+---------+----------+---
→˓----+
| 406829| 406829| 406829| 406829| 406829| 406829| 406829|
→˓406829|
+---------+---------+-----------+--------+-----------+---------+----------+---
→˓----+

• Dealwith the InvoiceDate

13.2. Demo 251

Learning Apache Spark with Python

from pyspark.sql.functions import to_utc_timestamp, unix_timestamp, lit,
→˓datediff, col

timeFmt = "MM/dd/yy HH:mm"

df = df.withColumn('NewInvoiceDate'
, to_utc_timestamp(unix_timestamp(col('InvoiceDate'),

→˓timeFmt).cast('timestamp')
, 'UTC'))

df.show(5)

+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+--------------------+
|InvoiceNo|StockCode| Description|Quantity|
→˓InvoiceDate|UnitPrice|CustomerID| Country| NewInvoiceDate|
+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+--------------------+
| 536365| 85123A|WHITE HANGING HEA...| 6|12/1/10 8:26| 2.55|
→˓ 17850|United Kingdom|2010-12-01 08:26:...|
| 536365| 71053| WHITE METAL LANTERN| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|2010-12-01 08:26:...|
| 536365| 84406B|CREAM CUPID HEART...| 8|12/1/10 8:26| 2.75|
→˓ 17850|United Kingdom|2010-12-01 08:26:...|
| 536365| 84029G|KNITTED UNION FLA...| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|2010-12-01 08:26:...|
| 536365| 84029E|RED WOOLLY HOTTIE...| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|2010-12-01 08:26:...|
+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+--------------------+
only showing top 5 rows

Warning: The spark is pretty sensitive to the date format!

• calculate total price

from pyspark.sql.functions import round

df = df.withColumn('TotalPrice', round(df.Quantity * df.UnitPrice, 2))

• calculate the time difference

from pyspark.sql.functions import mean, min, max, sum, datediff, to_date

date_max = df.select(max('NewInvoiceDate')).toPandas()
current = to_utc_timestamp(unix_timestamp(lit(str(date_max.iloc[0][0])), \

'yy-MM-dd HH:mm').cast('timestamp'), 'UTC')

Calculatre Duration
df = df.withColumn('Duration', datediff(lit(current), 'NewInvoiceDate'))

252 Chapter 13. RFM Analysis

Learning Apache Spark with Python

• build the Recency, Frequency and Monetary

recency = df.groupBy('CustomerID').agg(min('Duration').alias('Recency'))
frequency = df.groupBy('CustomerID', 'InvoiceNo').count()\

.groupBy('CustomerID')\

.agg(count("*").alias("Frequency"))
monetary = df.groupBy('CustomerID').agg(round(sum('TotalPrice'), 2).alias(
→˓'Monetary'))
rfm = recency.join(frequency,'CustomerID', how = 'inner')\

.join(monetary,'CustomerID', how = 'inner')

rfm.show(5)

+----------+-------+---------+--------+
|CustomerID|Recency|Frequency|Monetary|
+----------+-------+---------+--------+
17420	50	3	598.83
16861	59	3	151.65
16503	106	5	1421.43
15727	16	7	5178.96
17389	0	43	31300.08
+----------+-------+---------+--------+
only showing top 5 rows

13.2.2 RFM Segmentation

4. Determine cutting points

In this section, you can use the techniques (statistical results and visualizations) in Data Exploration section
to help you determine the cutting points for each attribute. In my opinion, the cutting points are mainly
depend on the business sense. You’s better talk to your makrting people and get feedback and suggestion
from them. I will use the quantile as the cutting points in this demo.

cols = ['Recency','Frequency','Monetary']
describe_pd(rfm,cols,1)

+-------+-----------------+-----------------+------------------+
|summary| Recency| Frequency| Monetary|
+-------+-----------------+-----------------+------------------+
count	4372.0	4372.0	4372.0
mean	91.58119853613907	5.07548032936871	1898.4597003659655
stddev	100.7721393138483	9.338754163574727	8219.345141139722
min	0.0	1.0	-4287.63
max	373.0	248.0	279489.02
25%	16.0	1.0	293.36249999999995
50%	50.0	3.0	648.075
75%	143.0	5.0	1611.725
+-------+-----------------+-----------------+------------------+

The user defined function by using the cutting points:

13.2. Demo 253

Learning Apache Spark with Python

def RScore(x):
if x <= 16:

return 1
elif x<= 50:

return 2
elif x<= 143:

return 3
else:

return 4

def FScore(x):
if x <= 1:

return 4
elif x <= 3:

return 3
elif x <= 5:

return 2
else:

return 1

def MScore(x):
if x <= 293:

return 4
elif x <= 648:

return 3
elif x <= 1611:

return 2
else:

return 1

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, DoubleType

R_udf = udf(lambda x: RScore(x), StringType())
F_udf = udf(lambda x: FScore(x), StringType())
M_udf = udf(lambda x: MScore(x), StringType())

5. RFM Segmentation

rfm_seg = rfm.withColumn("r_seg", R_udf("Recency"))
rfm_seg = rfm_seg.withColumn("f_seg", F_udf("Frequency"))
rfm_seg = rfm_seg.withColumn("m_seg", M_udf("Monetary"))
rfm_seg.show(5)

+----------+-------+---------+--------+-----+-----+-----+
|CustomerID|Recency|Frequency|Monetary|r_seg|f_seg|m_seg|
+----------+-------+---------+--------+-----+-----+-----+
17420	50	3	598.83	2	3	2
16861	59	3	151.65	3	3	1
16503	106	5	1421.43	3	2	3
15727	16	7	5178.96	1	1	4
17389	0	43	31300.08	1	1	4

(continues on next page)

254 Chapter 13. RFM Analysis

Learning Apache Spark with Python

(continued from previous page)

+----------+-------+---------+--------+-----+-----+-----+
only showing top 5 rows

rfm_seg = rfm_seg.withColumn('RFMScore',
F.concat(F.col('r_seg'),F.col('f_seg'), F.col('m_

→˓seg')))
rfm_seg.sort(F.col('RFMScore')).show(5)

+----------+-------+---------+--------+-----+-----+-----+--------+
|CustomerID|Recency|Frequency|Monetary|r_seg|f_seg|m_seg|RFMScore|
+----------+-------+---------+--------+-----+-----+-----+--------+
17988	11	8	191.17	1	1	1	111
16892	1	7	496.84	1	1	2	112
16668	15	6	306.72	1	1	2	112
16554	3	7	641.55	1	1	2	112
16500	4	6	400.86	1	1	2	112
+----------+-------+---------+--------+-----+-----+-----+--------+
only showing top 5 rows

13.2.3 Statistical Summary

6. Statistical Summary

• simple summary

rfm_seg.groupBy('RFMScore')\
.agg({'Recency':'mean',

'Frequency': 'mean',
'Monetary': 'mean'})\

.sort(F.col('RFMScore')).show(5)

+--------+-----------------+------------------+------------------+
|RFMScore| avg(Recency)| avg(Monetary)| avg(Frequency)|
+--------+-----------------+------------------+------------------+
111	11.0	191.17	8.0
112	8.0	505.9775	7.5
113	7.237113402061856	1223.3604123711339	7.752577319587629
114	6.035123966942149	8828.888595041324	18.882231404958677
121	9.6	207.24	4.4
+--------+-----------------+------------------+------------------+
only showing top 5 rows

• complex summary

grp = 'RFMScore'
num_cols = ['Recency','Frequency','Monetary']
df_input = rfm_seg

quantile_grouped = quantile_agg(df_input,grp,num_cols)

(continues on next page)

13.2. Demo 255

Learning Apache Spark with Python

(continued from previous page)

quantile_grouped.toPandas().to_csv(output_dir+'quantile_grouped.csv')

deciles_grouped = deciles_agg(df_input,grp,num_cols)
deciles_grouped.toPandas().to_csv(output_dir+'deciles_grouped.csv')

13.3 Extension

You can also apply the K-means clustering in Clustering section to do the segmentation.

13.3.1 Build feature matrix

1. build dense feature matrix

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

method 1 (good for small feature):
#def transData(row):
return Row(label=row["Sales"],
features=Vectors.dense([row["TV"],
row["Radio"],
row["Newspaper"]]))

Method 2 (good for large features):
def transData(data):

return data.rdd.map(lambda r: [r[0],Vectors.dense(r[1:])]).toDF([
→˓'CustomerID','rfm'])

transformed= transData(rfm)
transformed.show(5)

+----------+-------------------+
|CustomerID| rfm|
+----------+-------------------+
17420	[50.0,3.0,598.83]
16861	[59.0,3.0,151.65]
16503	[106.0,5.0,1421.43]
15727	[16.0,7.0,5178.96]
17389	[0.0,43.0,31300.08]
+----------+-------------------+
only showing top 5 rows

2. Scaler the feature matrix

from pyspark.ml.feature import MinMaxScaler

scaler = MinMaxScaler(inputCol="rfm",\

(continues on next page)

256 Chapter 13. RFM Analysis

Learning Apache Spark with Python

(continued from previous page)

outputCol="features")
scalerModel = scaler.fit(transformed)
scaledData = scalerModel.transform(transformed)
scaledData.show(5,False)

+----------+-------------------+--
→˓----------------+
|CustomerID|rfm |features
→˓ |
+----------+-------------------+--
→˓----------------+
|17420 |[50.0,3.0,598.83] |[0.13404825737265416,0.008097165991902834,0.
→˓01721938714830836]|
|16861 |[59.0,3.0,151.65] |[0.1581769436997319,0.008097165991902834,0.
→˓01564357039241953] |
|16503 |[106.0,5.0,1421.43]|[0.28418230563002683,0.016194331983805668,0.
→˓02011814573186342]|
|15727 |[16.0,7.0,5178.96] |[0.04289544235924933,0.024291497975708502,0.
→˓03335929858922501]|
|17389 |[0.0,43.0,31300.08]|[0.0,0.1700404858299595,0.12540746393334334]
→˓ |
+----------+-------------------+--
→˓----------------+
only showing top 5 rows

13.3.2 K-means clustering

3. Find optimal number of cluster

I will present two popular ways to determine the optimal number of the cluster.

• elbow analysis

#PySpark libraries
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col, percent_rank, lit
from pyspark.sql.window import Window
from pyspark.sql import DataFrame, Row
from pyspark.sql.types import StructType
from functools import reduce # For Python 3.x

from pyspark.ml.clustering import KMeans
#from pyspark.ml.evaluation import ClusteringEvaluator # requires Spark 2.4
→˓or later

import numpy as np
cost = np.zeros(20)
for k in range(2,20):

kmeans = KMeans()\

(continues on next page)

13.3. Extension 257

Learning Apache Spark with Python

(continued from previous page)

.setK(k)\

.setSeed(1) \

.setFeaturesCol("features")\

.setPredictionCol("cluster")

model = kmeans.fit(scaledData)
cost[k] = model.computeCost(scaledData) # requires Spark 2.0 or later

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import seaborn as sbs
from matplotlib.ticker import MaxNLocator

fig, ax = plt.subplots(1,1, figsize =(8,6))
ax.plot(range(2,20),cost[2:20], marker = "o")
ax.set_xlabel('k')
ax.set_ylabel('cost')
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
plt.show()

258 Chapter 13. RFM Analysis

Learning Apache Spark with Python

Fig. 2: Cost v.s. the number of the clusters

In my opinion, sometimes it’s hard to choose the number of the clusters. As shown in Figure Cost v.s. the
number of the clusters, you can choose 3, 5 or even 8. I will choose 3 in this demo.

• Silhouette analysis

#PySpark libraries
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col, percent_rank, lit
from pyspark.sql.window import Window
from pyspark.sql import DataFrame, Row
from pyspark.sql.types import StructType
from functools import reduce # For Python 3.x

from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator

def optimal_k(df_in,index_col,k_min, k_max,num_runs):
'''
Determine optimal number of clusters by using Silhoutte Score Analysis.

(continues on next page)

13.3. Extension 259

Learning Apache Spark with Python

(continued from previous page)

:param df_in: the input dataframe
:param index_col: the name of the index column
:param k_min: the train dataset
:param k_min: the minmum number of the clusters
:param k_max: the maxmum number of the clusters
:param num_runs: the number of runs for each fixed clusters

:return k: optimal number of the clusters
:return silh_lst: Silhouette score
:return r_table: the running results table

:author: Wenqiang Feng
:email: von198@gmail.com.com
'''

start = time.time()
silh_lst = []
k_lst = np.arange(k_min, k_max+1)

r_table = df_in.select(index_col).toPandas()
r_table = r_table.set_index(index_col)
centers = pd.DataFrame()

for k in k_lst:
silh_val = []
for run in np.arange(1, num_runs+1):

Trains a k-means model.
kmeans = KMeans()\

.setK(k)\

.setSeed(int(np.random.randint(100, size=1)))
model = kmeans.fit(df_in)

Make predictions
predictions = model.transform(df_in)
r_table['cluster_{k}_{run}'.format(k=k, run=run)]= predictions.

→˓select('prediction').toPandas()

Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(predictions)
silh_val.append(silhouette)

silh_array=np.asanyarray(silh_val)
silh_lst.append(silh_array.mean())

elapsed = time.time() - start

silhouette = pd.DataFrame(list(zip(k_lst,silh_lst)),columns = ['k',
→˓'silhouette'])

print('+--+')
(continues on next page)

260 Chapter 13. RFM Analysis

Learning Apache Spark with Python

(continued from previous page)

print("| The finding optimal k phase took %8.0f s. |"
→˓%(elapsed))

print('+--+')

return k_lst[np.argmax(silh_lst, axis=0)], silhouette , r_table

k, silh_lst, r_table = optimal_k(scaledData,index_col,k_min, k_max,num_runs)

+--+
| The finding optimal k phase took 1783 s. |
+--+

spark.createDataFrame(silh_lst).show()

+---+------------------+
| k| silhouette|
+---+------------------+
3	0.8045154385557953
4	0.6993528775512052
5	0.6689286654221447
6	0.6356184024841809
7	0.7174102265711756
8	0.6720861758298997
9	0.601771359881241
10	0.6292447334578428
+---+------------------+

From the silhouette list, we can choose 3 as the optimal number of the clusters.

Warning: ClusteringEvaluator in pyspark.ml.evaluation requires Spark 2.4 or later!!

4. K-means clustering

k = 3
kmeans = KMeans().setK(k).setSeed(1)
model = kmeans.fit(scaledData)
Make predictions
predictions = model.transform(scaledData)
predictions.show(5,False)

+----------+-------------------+--------------------+----------+
|CustomerID| rfm| features|prediction|
+----------+-------------------+--------------------+----------+
17420	[50.0,3.0,598.83]	[0.13404825737265...	0
16861	[59.0,3.0,151.65]	[0.15817694369973...	0
16503	[106.0,5.0,1421.43]	[0.28418230563002...	2
15727	[16.0,7.0,5178.96]	[0.04289544235924...	0
17389	[0.0,43.0,31300.08]	[0.0,0.1700404858...	0

(continues on next page)

13.3. Extension 261

Learning Apache Spark with Python

(continued from previous page)

+----------+-------------------+--------------------+----------+
only showing top 5 rows

13.3.3 Statistical summary

5. statistical summary

results = rfm.join(predictions.select('CustomerID','prediction'),'CustomerID',
→˓how='left')
results.show(5)

+----------+-------+---------+--------+----------+
|CustomerID|Recency|Frequency|Monetary|prediction|
+----------+-------+---------+--------+----------+
13098	1	41	28658.88	0
13248	124	2	465.68	2
13452	259	2	590.0	1
13460	29	2	183.44	0
13518	85	1	659.44	0
+----------+-------+---------+--------+----------+
only showing top 5 rows

• simple summary

results.groupBy('prediction')\
.agg({'Recency':'mean',

'Frequency': 'mean',
'Monetary': 'mean'})\

.sort(F.col('prediction')).show(5)

+----------+------------------+------------------+------------------+
|prediction| avg(Recency)| avg(Monetary)| avg(Frequency)|
+----------+------------------+------------------+------------------+
0	30.966337980278816	2543.0355321319284	6.514450867052023
1	296.02403846153845	407.16831730769206	1.5592948717948718
2	154.40148698884758	702.5096406443623	2.550185873605948
+----------+------------------+------------------+------------------+

• complex summary

grp = 'RFMScore'
num_cols = ['Recency','Frequency','Monetary']
df_input = results

quantile_grouped = quantile_agg(df_input,grp,num_cols)
quantile_grouped.toPandas().to_csv(output_dir+'quantile_grouped.csv')

deciles_grouped = deciles_agg(df_input,grp,num_cols)
deciles_grouped.toPandas().to_csv(output_dir+'deciles_grouped.csv')

262 Chapter 13. RFM Analysis

CHAPTER

FOURTEEN

TEXT MINING

Chinese proverb

Articles showed more than intended. – Xianglong Shen

14.1 Text Collection

14.1.1 Image to text

• My img2txt function

def img2txt(img_dir):
"""
convert images to text
"""
import os, PythonMagick

(continues on next page)

263

Learning Apache Spark with Python

(continued from previous page)

from datetime import datetime
import PyPDF2

from PIL import Image
import pytesseract

f = open('doc4img.txt','wa')
for img in [img_file for img_file in os.listdir(img_dir)

if (img_file.endswith(".png") or
img_file.endswith(".jpg") or
img_file.endswith(".jpeg"))]:

start_time = datetime.now()

input_img = img_dir + "/" + img

print('---
→˓-----')

print(img)
print('Converting ' + img +'.......')
print('---

→˓-----')

extract the text information from images
text = pytesseract.image_to_string(Image.open(input_img))
print(text)

ouput text file
f.write(img + "\n")
f.write(text.encode('utf-8'))

print "CPU Time for converting" + img +":"+ str(datetime.now() -
→˓start_time) +"\n"

f.write("\n--
→˓---\n")

f.close()

• Demo

I applied my img2txt function to the image in Image folder.

image_dir = r"Image"

img2txt(image_dir)

Then I got the following results:

--
feng.pdf_0.png
Converting feng.pdf_0.png.......

(continues on next page)

264 Chapter 14. Text Mining

static/feng.pdf_0.png

Learning Apache Spark with Python

(continued from previous page)

--
l I l w

Wenqiang Feng
Data Scientist
DST APPLIED ANALYTICS GROUP

Wenqiang Feng is Data Scientist for DST’s Applied Analytics Group. Dr. Feng’s
→˓responsibilities
include providing DST clients with access to cutting--edge skills and
→˓technologies, including Big
Data analytic solutions, advanced analytic and data enhancement techniques
→˓and modeling.

Dr. Feng has deep analytic expertise in data mining, analytic systems,
→˓machine learning
algorithms, business intelligence, and applying Big Data tools to
→˓strategically solve industry
problems in a cross--functional business. Before joining the DST Applied
→˓Analytics Group, Dr.
Feng holds a MA Data Science Fellow at The Institute for Mathematics and Its
→˓Applications
{IMA) at the University of Minnesota. While there, he helped startup
→˓companies make
marketing decisions based on deep predictive analytics.

Dr. Feng graduated from University of Tennessee, Knoxville with PhD in
→˓Computational
mathematics and Master’s degree in Statistics. He also holds Master’s degree
→˓in Computational
Mathematics at Missouri University of Science and Technology (MST) and
→˓Master’s degree in
Applied Mathematics at University of science and technology of China (USTC).
CPU Time for convertingfeng.pdf_0.png:0:00:02.061208

14.1.2 Image Enhnaced to text

• My img2txt_enhance function

def img2txt_enhance(img_dir,scaler):
"""
convert images files to text
"""

import numpy as np
import os, PythonMagick
from datetime import datetime
import PyPDF2

(continues on next page)

14.1. Text Collection 265

Learning Apache Spark with Python

(continued from previous page)

from PIL import Image, ImageEnhance, ImageFilter
import pytesseract

f = open('doc4img.txt','wa')
for img in [img_file for img_file in os.listdir(img_dir)

if (img_file.endswith(".png") or
img_file.endswith(".jpg") or
img_file.endswith(".jpeg"))]:

start_time = datetime.now()

input_img = img_dir + "/" + img
enhanced_img = img_dir + "/" +"Enhanced" + "/"+ img

im = Image.open(input_img) # the second one
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(1)
im = im.convert('1')
im.save(enhanced_img)

for scale in np.ones(scaler):
im = Image.open(enhanced_img) # the second one
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(scale)
im = im.convert('1')
im.save(enhanced_img)

print('---
→˓-----')

print(img)
print('Converting ' + img +'.......')
print('---

→˓-----')

extract the text information from images
text = pytesseract.image_to_string(Image.open(enhanced_img))
print(text)

ouput text file
f.write(img + "\n")
f.write(text.encode('utf-8'))

print "CPU Time for converting" + img +":"+ str(datetime.now() -
→˓start_time) +"\n"

f.write("\n--
→˓---\n")

(continues on next page)

266 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

f.close()

• Demo

I applied my img2txt_enhance function to the following noised image in Enhance folder.

image_dir = r"Enhance"

pdf2txt_enhance(image_dir)

Then I got the following results:

--
noised.jpg
Converting noised.jpg.......
--
zHHH
CPU Time for convertingnoised.jpg:0:00:00.135465

while the result from img2txt function is

--
noised.jpg
Converting noised.jpg.......
--
,2 WW
CPU Time for convertingnoised.jpg:0:00:00.133508

which is not correct.

14.1.3 PDF to text

• My pdf2txt function

def pdf2txt(pdf_dir,image_dir):
"""
convert PDF to text
"""

import os, PythonMagick
from datetime import datetime
import PyPDF2

(continues on next page)

14.1. Text Collection 267

images/noised.jpg

Learning Apache Spark with Python

(continued from previous page)

from PIL import Image
import pytesseract

f = open('doc.txt','wa')
for pdf in [pdf_file for pdf_file in os.listdir(pdf_dir) if pdf_file.

→˓endswith(".pdf")]:

start_time = datetime.now()

input_pdf = pdf_dir + "/" + pdf

pdf_im = PyPDF2.PdfFileReader(file(input_pdf, "rb"))
npage = pdf_im.getNumPages()

print('---
→˓-----')

print(pdf)
print('Converting %d pages.' % npage)
print('---

→˓-----')

f.write("\n--
→˓----------\n")

for p in range(npage):

pdf_file = input_pdf + '[' + str(p) +']'
image_file = image_dir + "/" + pdf+ '_' + str(p)+ '.png'

convert PDF files to Images
im = PythonMagick.Image()
im.density('300')
im.read(pdf_file)
im.write(image_file)

extract the text information from images
text = pytesseract.image_to_string(Image.open(image_file))

#print(text)

ouput text file
f.write(pdf + "\n")
f.write(text.encode('utf-8'))

print "CPU Time for converting" + pdf +":"+ str(datetime.now() -
→˓start_time) +"\n"

f.close()

• Demo

268 Chapter 14. Text Mining

Learning Apache Spark with Python

I applied my pdf2txt function to my scaned bio pdf file in pdf folder.

pdf_dir = r"pdf"
image_dir = r"Image"

pdf2txt(pdf_dir,image_dir)

Then I got the following results:

--
feng.pdf
Converting 1 pages.
--
l I l w

Wenqiang Feng
Data Scientist
DST APPLIED ANALYTICS GROUP

Wenqiang Feng is Data Scientist for DST’s Applied Analytics Group. Dr. Feng’s
→˓responsibilities
include providing DST clients with access to cutting--edge skills and
→˓technologies, including Big
Data analytic solutions, advanced analytic and data enhancement techniques
→˓and modeling.

Dr. Feng has deep analytic expertise in data mining, analytic systems,
→˓machine learning
algorithms, business intelligence, and applying Big Data tools to
→˓strategically solve industry
problems in a cross--functional business. Before joining the DST Applied
→˓Analytics Group, Dr.
Feng holds a MA Data Science Fellow at The Institute for Mathematics and Its
→˓Applications
{IMA) at the University of Minnesota. While there, he helped startup
→˓companies make
marketing decisions based on deep predictive analytics.

Dr. Feng graduated from University of Tennessee, Knoxville with PhD in
→˓Computational
mathematics and Master’s degree in Statistics. He also holds Master’s degree
→˓in Computational
Mathematics at Missouri University of Science and Technology (MST) and
→˓Master’s degree in
Applied Mathematics at University of science and technology of China (USTC).
CPU Time for convertingfeng.pdf:0:00:03.143800

14.1. Text Collection 269

Learning Apache Spark with Python

14.1.4 Audio to text

• My audio2txt function

def audio2txt(audio_dir):
''' convert audio to text'''

import speech_recognition as sr
r = sr.Recognizer()

f = open('doc.txt','wa')
for audio_n in [audio_file for audio_file in os.listdir(audio_dir) \

if audio_file.endswith(".wav")]:

filename = audio_dir + "/" + audio_n

Read audio data
with sr.AudioFile(filename) as source:

audio = r.record(source) # read the entire audio file

Google Speech Recognition
text = r.recognize_google(audio)

ouput text file
f.write(audio_n + ": ")
f.write(text.encode('utf-8'))
f.write("\n")

print('You said: ' + text)

f.close()

• Demo

I applied my audio2txt function to my audio records in audio folder.

audio_dir = r"audio"

audio2txt(audio_dir)

Then I got the following results:

You said: hello this is George welcome to my tutorial
You said: mathematics is important in daily life
You said: call me tomorrow
You said: do you want something to eat
You said: I want to speak with him
You said: nice to see you
You said: can you speak slowly
You said: have a good day

By the way, you can use my following python code to record your own audio and play with audio2txt
function in Command-line python record.py "demo2.wav":

270 Chapter 14. Text Mining

Learning Apache Spark with Python

import sys, getopt

import speech_recognition as sr

audio_filename = sys.argv[1]

r = sr.Recognizer()
with sr.Microphone() as source:

r.adjust_for_ambient_noise(source)
print("Hey there, say something, I am recording!")
audio = r.listen(source)
print("Done listening!")

with open(audio_filename, "wb") as f:
f.write(audio.get_wav_data())

14.2 Text Preprocessing

• check to see if a row only contains whitespace

def check_blanks(data_str):
is_blank = str(data_str.isspace())
return is_blank

• Determine whether the language of the text content is english or not: Use langid module to classify
the language to make sure we are applying the correct cleanup actions for English langid

def check_lang(data_str):
predict_lang = langid.classify(data_str)
if predict_lang[1] >= .9:

language = predict_lang[0]
else:

language = 'NA'
return language

• Remove features

def remove_features(data_str):
compile regex
url_re = re.compile('https?://(www.)?\w+\.\w+(/\w+)*/?')
punc_re = re.compile('[%s]' % re.escape(string.punctuation))
num_re = re.compile('(\\d+)')
mention_re = re.compile('@(\w+)')
alpha_num_re = re.compile("^[a-z0-9_.]+$")
convert to lowercase
data_str = data_str.lower()
remove hyperlinks
data_str = url_re.sub(' ', data_str)
remove @mentions
data_str = mention_re.sub(' ', data_str)

(continues on next page)

14.2. Text Preprocessing 271

Learning Apache Spark with Python

(continued from previous page)

remove puncuation
data_str = punc_re.sub(' ', data_str)
remove numeric 'words'
data_str = num_re.sub(' ', data_str)
remove non a-z 0-9 characters and words shorter than 3 characters
list_pos = 0
cleaned_str = ''
for word in data_str.split():

if list_pos == 0:
if alpha_num_re.match(word) and len(word) > 2:

cleaned_str = word
else:

cleaned_str = ' '
else:

if alpha_num_re.match(word) and len(word) > 2:
cleaned_str = cleaned_str + ' ' + word

else:
cleaned_str += ' '

list_pos += 1
return cleaned_str

• removes stop words

def remove_stops(data_str):
expects a string
stops = set(stopwords.words("english"))
list_pos = 0
cleaned_str = ''
text = data_str.split()
for word in text:

if word not in stops:
rebuild cleaned_str
if list_pos == 0:

cleaned_str = word
else:

cleaned_str = cleaned_str + ' ' + word
list_pos += 1

return cleaned_str

• tagging text

def tag_and_remove(data_str):
cleaned_str = ' '
noun tags
nn_tags = ['NN', 'NNP', 'NNP', 'NNPS', 'NNS']
adjectives
jj_tags = ['JJ', 'JJR', 'JJS']
verbs
vb_tags = ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ']
nltk_tags = nn_tags + jj_tags + vb_tags

(continues on next page)

272 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

break string into 'words'
text = data_str.split()

tag the text and keep only those with the right tags
tagged_text = pos_tag(text)
for tagged_word in tagged_text:

if tagged_word[1] in nltk_tags:
cleaned_str += tagged_word[0] + ' '

return cleaned_str

• lemmatization

def lemmatize(data_str):
expects a string
list_pos = 0
cleaned_str = ''
lmtzr = WordNetLemmatizer()
text = data_str.split()
tagged_words = pos_tag(text)
for word in tagged_words:

if 'v' in word[1].lower():
lemma = lmtzr.lemmatize(word[0], pos='v')

else:
lemma = lmtzr.lemmatize(word[0], pos='n')

if list_pos == 0:
cleaned_str = lemma

else:
cleaned_str = cleaned_str + ' ' + lemma

list_pos += 1
return cleaned_str

define the preprocessing function in PySpark

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
import preproc as pp

check_lang_udf = udf(pp.check_lang, StringType())
remove_stops_udf = udf(pp.remove_stops, StringType())
remove_features_udf = udf(pp.remove_features, StringType())
tag_and_remove_udf = udf(pp.tag_and_remove, StringType())
lemmatize_udf = udf(pp.lemmatize, StringType())
check_blanks_udf = udf(pp.check_blanks, StringType())

14.2. Text Preprocessing 273

Learning Apache Spark with Python

14.3 Text Classification

Theoretically speaking, you may apply any classification algorithms to do classification. I will only present
Naive Bayes method is the following.

14.3.1 Introduction

14.3.2 Demo

1. create spark contexts

import pyspark
from pyspark.sql import SQLContext

create spark contexts
sc = pyspark.SparkContext()
sqlContext = SQLContext(sc)

2. load dataset

Load a text file and convert each line to a Row.
data_rdd = sc.textFile("../data/raw_data.txt")
parts_rdd = data_rdd.map(lambda l: l.split("\t"))

Filter bad rows out
garantee_col_rdd = parts_rdd.filter(lambda l: len(l) == 3)
typed_rdd = garantee_col_rdd.map(lambda p: (p[0], p[1], float(p[2])))

#Create DataFrame
data_df = sqlContext.createDataFrame(typed_rdd, ["text", "id", "label"])

get the raw columns
raw_cols = data_df.columns

#data_df.show()
data_df.printSchema()

274 Chapter 14. Text Mining

Learning Apache Spark with Python

root
|-- text: string (nullable = true)
|-- id: string (nullable = true)
|-- label: double (nullable = true)

+--------------------+------------------+-----+
| text| id|label|
+--------------------+------------------+-----+
Fresh install of ...	1018769417	1.0
Well. Now I know ...	10284216536	1.0
"Literally six we...	10298589026	1.0
Mitsubishi i MiEV...	109017669432377344	1.0
+--------------------+------------------+-----+
only showing top 4 rows

3. setup pyspark udf function

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
import preproc as pp

Register all the functions in Preproc with Spark Context
check_lang_udf = udf(pp.check_lang, StringType())
remove_stops_udf = udf(pp.remove_stops, StringType())
remove_features_udf = udf(pp.remove_features, StringType())
tag_and_remove_udf = udf(pp.tag_and_remove, StringType())
lemmatize_udf = udf(pp.lemmatize, StringType())
check_blanks_udf = udf(pp.check_blanks, StringType())

4. language identification

lang_df = data_df.withColumn("lang", check_lang_udf(data_df["text"]))
en_df = lang_df.filter(lang_df["lang"] == "en")
en_df.show(4)

+--------------------+------------------+-----+----+
| text| id|label|lang|
+--------------------+------------------+-----+----+
RT @goeentertain:...	665305154954989568	1.0	en
Teforia Uses Mach...	660668007975268352	1.0	en
Apple TV or Roku?	25842461136	1.0	en
Finished http://t...	9412369614	1.0	en
+--------------------+------------------+-----+----+
only showing top 4 rows

5. remove stop words

rm_stops_df = en_df.select(raw_cols)\
.withColumn("stop_text", remove_stops_udf(en_df["text"]))

rm_stops_df.show(4)

14.3. Text Classification 275

Learning Apache Spark with Python

+--------------------+------------------+-----+--------------------+
| text| id|label| stop_text|
+--------------------+------------------+-----+--------------------+
RT @goeentertain:...	665305154954989568	1.0	RT @goeentertain:...
Teforia Uses Mach...	660668007975268352	1.0	Teforia Uses Mach...
Apple TV or Roku?	25842461136	1.0	Apple TV Roku?
Finished http://t...	9412369614	1.0	Finished http://t...
+--------------------+------------------+-----+--------------------+
only showing top 4 rows

6. remove irrelevant features

rm_features_df = rm_stops_df.select(raw_cols+["stop_text"])\
.withColumn("feat_text", \
remove_features_udf(rm_stops_df["stop_text"]))

rm_features_df.show(4)

+--------------------+------------------+-----+--------------------+----------
→˓----------+
| text| id|label| stop_text|
→˓ feat_text|
+--------------------+------------------+-----+--------------------+----------
→˓----------+
|RT @goeentertain:...|665305154954989568| 1.0|RT @goeentertain:...| future
→˓blase ...|
|Teforia Uses Mach...|660668007975268352| 1.0|Teforia Uses Mach...|teforia
→˓uses mach...|
| Apple TV or Roku?| 25842461136| 1.0| Apple TV Roku?|
→˓apple roku|
|Finished http://t...| 9412369614| 1.0|Finished http://t...|
→˓ finished|
+--------------------+------------------+-----+--------------------+----------
→˓----------+
only showing top 4 rows

7. tag the words

tagged_df = rm_features_df.select(raw_cols+["feat_text"]) \
.withColumn("tagged_text", \
tag_and_remove_udf(rm_features_df.feat_text))

tagged_df.show(4)

+--------------------+------------------+-----+--------------------+----------
→˓----------+
| text| id|label| feat_text|
→˓tagged_text|
+--------------------+------------------+-----+--------------------+----------
→˓----------+
|RT @goeentertain:...|665305154954989568| 1.0| future blase ...| future
→˓blase vic...|

(continues on next page)

276 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

|Teforia Uses Mach...|660668007975268352| 1.0|teforia uses mach...| teforia
→˓uses mac...|
| Apple TV or Roku?| 25842461136| 1.0| apple roku|
→˓apple roku |
|Finished http://t...| 9412369614| 1.0| finished|
→˓ finished |
+--------------------+------------------+-----+--------------------+----------
→˓----------+
only showing top 4 rows

8. lemmatization of words

lemm_df = tagged_df.select(raw_cols+["tagged_text"]) \
.withColumn("lemm_text", lemmatize_udf(tagged_df["tagged_

→˓text"]))
lemm_df.show(4)

+--------------------+------------------+-----+--------------------+----------
→˓----------+
| text| id|label| tagged_text|
→˓ lemm_text|
+--------------------+------------------+-----+--------------------+----------
→˓----------+
|RT @goeentertain:...|665305154954989568| 1.0| future blase vic...|future
→˓blase vice...|
|Teforia Uses Mach...|660668007975268352| 1.0| teforia uses mac...|teforia
→˓use machi...|
| Apple TV or Roku?| 25842461136| 1.0| apple roku |
→˓apple roku|
|Finished http://t...| 9412369614| 1.0| finished |
→˓ finish|
+--------------------+------------------+-----+--------------------+----------
→˓----------+
only showing top 4 rows

9. remove blank rows and drop duplicates

check_blanks_df = lemm_df.select(raw_cols+["lemm_text"])\
.withColumn("is_blank", check_blanks_udf(lemm_df[

→˓"lemm_text"]))
remove blanks
no_blanks_df = check_blanks_df.filter(check_blanks_df["is_blank"] ==

→˓"False")

drop duplicates
dedup_df = no_blanks_df.dropDuplicates(['text', 'label'])

dedup_df.show(4)

+--------------------+------------------+-----+--------------------+--------+
| text| id|label| lemm_text|is_blank|

(continues on next page)

14.3. Text Classification 277

Learning Apache Spark with Python

(continued from previous page)

+--------------------+------------------+-----+--------------------+--------+
RT @goeentertain:...	665305154954989568	1.0	future blase vice...	False
Teforia Uses Mach...	660668007975268352	1.0	teforia use machi...	False
Apple TV or Roku?	25842461136	1.0	apple roku	False
Finished http://t...	9412369614	1.0	finish	False
+--------------------+------------------+-----+--------------------+--------+
only showing top 4 rows

10. add unieuq ID

from pyspark.sql.functions import monotonically_increasing_id
Create Unique ID
dedup_df = dedup_df.withColumn("uid", monotonically_increasing_id())
dedup_df.show(4)

+--------------------+------------------+-----+--------------------+--------+-
→˓-----------+
| text| id|label| lemm_text|is_blank|
→˓ uid|
+--------------------+------------------+-----+--------------------+--------+-
→˓-----------+
| dragon| 1546813742| 1.0| dragon| False|
→˓85899345920|
| hurt much| 1558492525| 1.0| hurt much|
→˓False|111669149696|
|seth blog word se...|383221484023709697| 1.0|seth blog word se...|
→˓False|128849018880|
|teforia use machi...|660668007975268352| 1.0|teforia use machi...|
→˓False|137438953472|
+--------------------+------------------+-----+--------------------+--------+-
→˓-----------+
only showing top 4 rows

11. create final dataset

data = dedup_df.select('uid','id', 'text','label')
data.show(4)

+------------+------------------+--------------------+-----+
| uid| id| text|label|
+------------+------------------+--------------------+-----+
85899345920	1546813742	dragon	1.0
111669149696	1558492525	hurt much	1.0
128849018880	383221484023709697	seth blog word se...	1.0
137438953472	660668007975268352	teforia use machi...	1.0
+------------+------------------+--------------------+-----+
only showing top 4 rows

12. Create taining and test sets

278 Chapter 14. Text Mining

Learning Apache Spark with Python

Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = data.randomSplit([0.6, 0.4])

13. NaiveBayes Pipeline

from pyspark.ml.feature import HashingTF, IDF, Tokenizer
from pyspark.ml import Pipeline
from pyspark.ml.classification import NaiveBayes, RandomForestClassifier
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.tuning import ParamGridBuilder
from pyspark.ml.tuning import CrossValidator
from pyspark.ml.feature import IndexToString, StringIndexer, VectorIndexer
from pyspark.ml.feature import CountVectorizer

Configure an ML pipeline, which consists of tree stages: tokenizer,
→˓hashingTF, and nb.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol=
→˓"rawFeatures")
vectorizer = CountVectorizer(inputCol= "words", outputCol="rawFeatures")
idf = IDF(minDocFreq=3, inputCol="rawFeatures", outputCol="features")

Naive Bayes model
nb = NaiveBayes()

Pipeline Architecture
pipeline = Pipeline(stages=[tokenizer, hashingTF, idf, nb])

Train model. This also runs the indexers.
model = pipeline.fit(trainingData)

14. Make predictions

predictions = model.transform(testData)

Select example rows to display.
predictions.select("text", "label", "prediction").show(5,False)

+---+-----+----------+
|text |label|prediction|
+---+-----+----------+
finish	1.0	1.0
meet rolo dogsofthinkgeek happy nationaldogday	1.0	1.0
pumpkin family	1.0	1.0
meet jet dogsofthinkgeek happy nationaldogday	1.0	1.0
meet vixie dogsofthinkgeek happy nationaldogday	1.0	1.0
+---+-----+----------+
only showing top 5 rows

15. evaluation

14.3. Text Classification 279

Learning Apache Spark with Python

from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
evaluator.evaluate(predictions)

0.912655971479501

14.4 Sentiment analysis

14.4.1 Introduction

Sentiment analysis (sometimes known as opinion mining or emotion AI) refers to the use of natural language
processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quan-
tify, and study affective states and subjective information. Sentiment analysis is widely applied to voice
of the customer materials such as reviews and survey responses, online and social media, and healthcare
materials for applications that range from marketing to customer service to clinical medicine.

Generally speaking, sentiment analysis aims to determine the attitude of a speaker, writer, or other subject
with respect to some topic or the overall contextual polarity or emotional reaction to a document, interaction,
or event. The attitude may be a judgment or evaluation (see appraisal theory), affective state (that is to say,
the emotional state of the author or speaker), or the intended emotional communication (that is to say, the
emotional effect intended by the author or interlocutor).

Sentiment analysis in business, also known as opinion mining is a process of identifying and cataloging a
piece of text according to the tone conveyed by it. It has broad application:

• Sentiment Analysis in Business Intelligence Build up

• Sentiment Analysis in Business for Competitive Advantage

280 Chapter 14. Text Mining

https://en.wikipedia.org/wiki/Sentiment_analysis

Learning Apache Spark with Python

• Enhancing the Customer Experience through Sentiment Analysis in Business

14.4.2 Pipeline

Fig. 1: Sentiment Analysis Pipeline

14.4.3 Demo

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark Sentiment Analysis example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("../data/newtwitter.csv",header=True);

+--------------------+----------+-------+
| text| id|pubdate|
+--------------------+----------+-------+
10 Things Missing...	2602860537	18536
RT @_NATURALBWINN...	2602850443	18536
RT @HBO24 yo the ...	2602761852	18535
Aaaaaaaand I have...	2602738438	18535
can I please have...	2602684185	18535
+--------------------+----------+-------+
only showing top 5 rows

3. Text Preprocessing

• remove non ASCII characters

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

(continues on next page)

14.4. Sentiment analysis 281

Learning Apache Spark with Python

(continued from previous page)

from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import stopwords
from nltk import pos_tag
import string
import re

remove non ASCII characters
def strip_non_ascii(data_str):

''' Returns the string without non ASCII characters'''
stripped = (c for c in data_str if 0 < ord(c) < 127)
return ''.join(stripped)

setup pyspark udf function
strip_non_ascii_udf = udf(strip_non_ascii, StringType())

check:

df = df.withColumn('text_non_asci',strip_non_ascii_udf(df['text']))
df.show(5,True)

ouput:

+--------------------+----------+-------+--------------------+
| text| id|pubdate| text_non_asci|
+--------------------+----------+-------+--------------------+
10 Things Missing...	2602860537	18536	10 Things Missing...
RT @_NATURALBWINN...	2602850443	18536	RT @_NATURALBWINN...
RT @HBO24 yo the ...	2602761852	18535	RT @HBO24 yo the ...
Aaaaaaaand I have...	2602738438	18535	Aaaaaaaand I have...
can I please have...	2602684185	18535	can I please have...
+--------------------+----------+-------+--------------------+
only showing top 5 rows

• fixed abbreviation

fixed abbreviation
def fix_abbreviation(data_str):

data_str = data_str.lower()
data_str = re.sub(r'\bthats\b', 'that is', data_str)
data_str = re.sub(r'\bive\b', 'i have', data_str)
data_str = re.sub(r'\bim\b', 'i am', data_str)
data_str = re.sub(r'\bya\b', 'yeah', data_str)
data_str = re.sub(r'\bcant\b', 'can not', data_str)
data_str = re.sub(r'\bdont\b', 'do not', data_str)
data_str = re.sub(r'\bwont\b', 'will not', data_str)
data_str = re.sub(r'\bid\b', 'i would', data_str)
data_str = re.sub(r'wtf', 'what the fuck', data_str)
data_str = re.sub(r'\bwth\b', 'what the hell', data_str)
data_str = re.sub(r'\br\b', 'are', data_str)
data_str = re.sub(r'\bu\b', 'you', data_str)
data_str = re.sub(r'\bk\b', 'OK', data_str)
data_str = re.sub(r'\bsux\b', 'sucks', data_str)

(continues on next page)

282 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

data_str = re.sub(r'\bno+\b', 'no', data_str)
data_str = re.sub(r'\bcoo+\b', 'cool', data_str)
data_str = re.sub(r'rt\b', '', data_str)
data_str = data_str.strip()
return data_str

fix_abbreviation_udf = udf(fix_abbreviation, StringType())

check:

df = df.withColumn('fixed_abbrev',fix_abbreviation_udf(df['text_non_asci
→˓']))
df.show(5,True)

ouput:

+--------------------+----------+-------+--------------------+----------------
→˓----+
| text| id|pubdate| text_non_asci| fixed_
→˓abbrev|
+--------------------+----------+-------+--------------------+----------------
→˓----+
|10 Things Missing...|2602860537| 18536|10 Things Missing...|10 things
→˓missing...|
|RT @_NATURALBWINN...|2602850443| 18536|RT @_NATURALBWINN...|@_
→˓naturalbwinner ...|
|RT @HBO24 yo the ...|2602761852| 18535|RT @HBO24 yo the ...|@hbo24 yo the
→˓#ne...|
|Aaaaaaaand I have...|2602738438| 18535|Aaaaaaaand I have...|aaaaaaaand i
→˓have...|
|can I please have...|2602684185| 18535|can I please have...|can i please
→˓have...|
+--------------------+----------+-------+--------------------+----------------
→˓----+
only showing top 5 rows

• remove irrelevant features

def remove_features(data_str):
compile regex
url_re = re.compile('https?://(www.)?\w+\.\w+(/\w+)*/?')
punc_re = re.compile('[%s]' % re.escape(string.punctuation))
num_re = re.compile('(\\d+)')
mention_re = re.compile('@(\w+)')
alpha_num_re = re.compile("^[a-z0-9_.]+$")
convert to lowercase
data_str = data_str.lower()
remove hyperlinks
data_str = url_re.sub(' ', data_str)
remove @mentions
data_str = mention_re.sub(' ', data_str)

(continues on next page)

14.4. Sentiment analysis 283

Learning Apache Spark with Python

(continued from previous page)

remove puncuation
data_str = punc_re.sub(' ', data_str)
remove numeric 'words'
data_str = num_re.sub(' ', data_str)
remove non a-z 0-9 characters and words shorter than 1 characters
list_pos = 0
cleaned_str = ''
for word in data_str.split():

if list_pos == 0:
if alpha_num_re.match(word) and len(word) > 1:

cleaned_str = word
else:

cleaned_str = ' '
else:

if alpha_num_re.match(word) and len(word) > 1:
cleaned_str = cleaned_str + ' ' + word

else:
cleaned_str += ' '

list_pos += 1
remove unwanted space, *.split() will automatically split on
whitespace and discard duplicates, the " ".join() joins the
resulting list into one string.
return " ".join(cleaned_str.split())

setup pyspark udf function
remove_features_udf = udf(remove_features, StringType())

check:

df = df.withColumn('removed',remove_features_udf(df['fixed_abbrev']))
df.show(5,True)

ouput:

+--------------------+----------+-------+--------------------+----------------
→˓----+--------------------+
| text| id|pubdate| text_non_asci| fixed_
→˓abbrev| removed|
+--------------------+----------+-------+--------------------+----------------
→˓----+--------------------+
|10 Things Missing...|2602860537| 18536|10 Things Missing...|10 things
→˓missing...|things missing in...|
|RT @_NATURALBWINN...|2602850443| 18536|RT @_NATURALBWINN...|@_
→˓naturalbwinner ...|oh and do not lik...|
|RT @HBO24 yo the ...|2602761852| 18535|RT @HBO24 yo the ...|@hbo24 yo the
→˓#ne...|yo the newtwitter...|
|Aaaaaaaand I have...|2602738438| 18535|Aaaaaaaand I have...|aaaaaaaand i
→˓have...|aaaaaaaand have t...|
|can I please have...|2602684185| 18535|can I please have...|can i please
→˓have...|can please have t...|
+--------------------+----------+-------+--------------------+----------------
→˓----+--------------------+
only showing top 5 rows

284 Chapter 14. Text Mining

Learning Apache Spark with Python

4. Sentiment Analysis main function

from pyspark.sql.types import FloatType

from textblob import TextBlob

def sentiment_analysis(text):
return TextBlob(text).sentiment.polarity

sentiment_analysis_udf = udf(sentiment_analysis , FloatType())

df = df.withColumn("sentiment_score", sentiment_analysis_udf(df['removed']
→˓))
df.show(5,True)

• Sentiment score

+--------------------+---------------+
| removed|sentiment_score|
+--------------------+---------------+
things missing in...	-0.03181818
oh and do not lik...	-0.03181818
yo the newtwitter...	0.3181818
aaaaaaaand have t...	0.11818182
can please have t...	0.13636364
+--------------------+---------------+
only showing top 5 rows

• Words frequency

• Sentiment Classification

14.4. Sentiment analysis 285

Learning Apache Spark with Python

def condition(r):
if (r >=0.1):

label = "positive"
elif(r <= -0.1):

label = "negative"
else:

label = "neutral"
return label

sentiment_udf = udf(lambda x: condition(x), StringType())

5. Output

• Sentiment Class

• Top tweets from each sentiment class

+--------------------+---------------+---------+
| text|sentiment_score|sentiment|
+--------------------+---------------+---------+
and this #newtwit...	1.0	positive
"RT @SarahsJokes:...	1.0	positive
#newtwitter using...	1.0	positive
The #NewTwitter h...	1.0	positive
You can now undo ...	1.0	positive
+--------------------+---------------+---------+
only showing top 5 rows

+--------------------+---------------+---------+
| text|sentiment_score|sentiment|
+--------------------+---------------+---------+
|Lists on #NewTwit...| -0.1| neutral|
|Too bad most of m...| -0.1| neutral|

(continues on next page)

286 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

the #newtwitter i...	-0.1	neutral
Looks like our re...	-0.1	neutral
i switched to the...	-0.1	neutral
+--------------------+---------------+---------+
only showing top 5 rows

+--------------------+---------------+---------+
| text|sentiment_score|sentiment|
+--------------------+---------------+---------+
oh. #newtwitter i...	-1.0	negative
RT @chqwn: #NewTw...	-1.0	negative
Copy that - its W...	-1.0	negative
RT @chqwn: #NewTw...	-1.0	negative
#NewTwitter has t...	-1.0	negative
+--------------------+---------------+---------+
only showing top 5 rows

14.5 N-grams and Correlations

14.6 Topic Model: Latent Dirichlet Allocation

14.6.1 Introduction

In text mining, a topic model is a unsupervised model for discovering the abstract “topics” that occur in a
collection of documents.

Latent Dirichlet Allocation (LDA) is a mathematical method for estimating both of these at the same time:
finding the mixture of words that is associated with each topic, while also determining the mixture of topics
that describes each document.

14.5. N-grams and Correlations 287

Learning Apache Spark with Python

14.6.2 Demo

1. Load data

rawdata = spark.read.load("../data/airlines.csv", format="csv",
→˓header=True)
rawdata.show(5)

+-----+---------------+---------+--------+------+--------+-----+-----
→˓------+--------------------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review|
+-----+---------------+---------+--------+------+--------+-----+-----
→˓------+--------------------+
|10001|Delta Air Lines|21-Jun-14|Thailand| 7| Economy| 4|
→˓ YES|Flew Mar 30 NRT t...|
|10002|Delta Air Lines|19-Jun-14| USA| 0| Economy| 2|
→˓ NO|Flight 2463 leavi...|
|10003|Delta Air Lines|18-Jun-14| USA| 0| Economy| 1|
→˓ NO|Delta Website fro...|
|10004|Delta Air Lines|17-Jun-14| USA| 9|Business| 4|
→˓ YES|"I just returned ...|
|10005|Delta Air Lines|17-Jun-14| Ecuador| 7| Economy| 3|
→˓ YES|"Round-trip fligh...|
+-----+---------------+---------+--------+------+--------+-----+-----
→˓------+--------------------+
only showing top 5 rows

1. Text preprocessing

I will use the following raw column names to keep my table concise:

raw_cols = rawdata.columns
raw_cols

['id', 'airline', 'date', 'location', 'rating', 'cabin', 'value',
→˓'recommended', 'review']

rawdata = rawdata.dropDuplicates(['review'])

from pyspark.sql.functions import udf, col
from pyspark.sql.types import StringType, DoubleType, DateType

from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import stopwords
from nltk import pos_tag
import langid
import string
import re

• remove non ASCII characters

288 Chapter 14. Text Mining

Learning Apache Spark with Python

remove non ASCII characters
def strip_non_ascii(data_str):

''' Returns the string without non ASCII characters'''
stripped = (c for c in data_str if 0 < ord(c) < 127)
return ''.join(stripped)

• check it blank line or not

check to see if a row only contains whitespace
def check_blanks(data_str):

is_blank = str(data_str.isspace())
return is_blank

• check the language (a little bit slow, I skited this step)

check the language (only apply to english)
def check_lang(data_str):

from langid.langid import LanguageIdentifier, model
identifier = LanguageIdentifier.from_modelstring(model, norm_

→˓probs=True)
predict_lang = identifier.classify(data_str)

if predict_lang[1] >= .9:
language = predict_lang[0]

else:
language = predict_lang[0]

return language

• fixed abbreviation

fixed abbreviation
def fix_abbreviation(data_str):

data_str = data_str.lower()
data_str = re.sub(r'\bthats\b', 'that is', data_str)
data_str = re.sub(r'\bive\b', 'i have', data_str)
data_str = re.sub(r'\bim\b', 'i am', data_str)
data_str = re.sub(r'\bya\b', 'yeah', data_str)
data_str = re.sub(r'\bcant\b', 'can not', data_str)
data_str = re.sub(r'\bdont\b', 'do not', data_str)
data_str = re.sub(r'\bwont\b', 'will not', data_str)
data_str = re.sub(r'\bid\b', 'i would', data_str)
data_str = re.sub(r'wtf', 'what the fuck', data_str)
data_str = re.sub(r'\bwth\b', 'what the hell', data_str)
data_str = re.sub(r'\br\b', 'are', data_str)
data_str = re.sub(r'\bu\b', 'you', data_str)
data_str = re.sub(r'\bk\b', 'OK', data_str)
data_str = re.sub(r'\bsux\b', 'sucks', data_str)
data_str = re.sub(r'\bno+\b', 'no', data_str)
data_str = re.sub(r'\bcoo+\b', 'cool', data_str)
data_str = re.sub(r'rt\b', '', data_str)
data_str = data_str.strip()
return data_str

14.6. Topic Model: Latent Dirichlet Allocation 289

Learning Apache Spark with Python

• remove irrelevant features

remove irrelevant features
def remove_features(data_str):

compile regex
url_re = re.compile('https?://(www.)?\w+\.\w+(/\w+)*/?')
punc_re = re.compile('[%s]' % re.escape(string.punctuation))
num_re = re.compile('(\\d+)')
mention_re = re.compile('@(\w+)')
alpha_num_re = re.compile("^[a-z0-9_.]+$")
convert to lowercase
data_str = data_str.lower()
remove hyperlinks
data_str = url_re.sub(' ', data_str)
remove @mentions
data_str = mention_re.sub(' ', data_str)
remove puncuation
data_str = punc_re.sub(' ', data_str)
remove numeric 'words'
data_str = num_re.sub(' ', data_str)
remove non a-z 0-9 characters and words shorter than 1

→˓characters
list_pos = 0
cleaned_str = ''
for word in data_str.split():

if list_pos == 0:
if alpha_num_re.match(word) and len(word) > 1:

cleaned_str = word
else:

cleaned_str = ' '
else:

if alpha_num_re.match(word) and len(word) > 1:
cleaned_str = cleaned_str + ' ' + word

else:
cleaned_str += ' '

list_pos += 1
remove unwanted space, *.split() will automatically split on
whitespace and discard duplicates, the " ".join() joins the
resulting list into one string.
return " ".join(cleaned_str.split())

• removes stop words

removes stop words
def remove_stops(data_str):

expects a string
stops = set(stopwords.words("english"))
list_pos = 0
cleaned_str = ''
text = data_str.split()
for word in text:

if word not in stops:
rebuild cleaned_str

(continues on next page)

290 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

if list_pos == 0:
cleaned_str = word

else:
cleaned_str = cleaned_str + ' ' + word

list_pos += 1
return cleaned_str

• Part-of-Speech Tagging

Part-of-Speech Tagging
def tag_and_remove(data_str):

cleaned_str = ' '
noun tags
nn_tags = ['NN', 'NNP', 'NNP', 'NNPS', 'NNS']
adjectives
jj_tags = ['JJ', 'JJR', 'JJS']
verbs
vb_tags = ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ']
nltk_tags = nn_tags + jj_tags + vb_tags

break string into 'words'
text = data_str.split()

tag the text and keep only those with the right tags
tagged_text = pos_tag(text)
for tagged_word in tagged_text:

if tagged_word[1] in nltk_tags:
cleaned_str += tagged_word[0] + ' '

return cleaned_str

• lemmatization

lemmatization
def lemmatize(data_str):

expects a string
list_pos = 0
cleaned_str = ''
lmtzr = WordNetLemmatizer()
text = data_str.split()
tagged_words = pos_tag(text)
for word in tagged_words:

if 'v' in word[1].lower():
lemma = lmtzr.lemmatize(word[0], pos='v')

else:
lemma = lmtzr.lemmatize(word[0], pos='n')

if list_pos == 0:
cleaned_str = lemma

else:
cleaned_str = cleaned_str + ' ' + lemma

list_pos += 1
return cleaned_str

14.6. Topic Model: Latent Dirichlet Allocation 291

Learning Apache Spark with Python

• setup pyspark udf function

setup pyspark udf function
strip_non_ascii_udf = udf(strip_non_ascii, StringType())
check_blanks_udf = udf(check_blanks, StringType())
check_lang_udf = udf(check_lang, StringType())
fix_abbreviation_udf = udf(fix_abbreviation, StringType())
remove_stops_udf = udf(remove_stops, StringType())
remove_features_udf = udf(remove_features, StringType())
tag_and_remove_udf = udf(tag_and_remove, StringType())
lemmatize_udf = udf(lemmatize, StringType())

1. Text processing

• correct the data schema

rawdata = rawdata.withColumn('rating', rawdata.rating.cast('float'))

rawdata.printSchema()

root
|-- id: string (nullable = true)
|-- airline: string (nullable = true)
|-- date: string (nullable = true)
|-- location: string (nullable = true)
|-- rating: float (nullable = true)
|-- cabin: string (nullable = true)
|-- value: string (nullable = true)
|-- recommended: string (nullable = true)
|-- review: string (nullable = true)

from datetime import datetime
from pyspark.sql.functions import col

https://docs.python.org/2/library/datetime.html#strftime-and-
→˓strptime-behavior
21-Jun-14 <----> %d-%b-%y
to_date = udf (lambda x: datetime.strptime(x, '%d-%b-%y'),
→˓DateType())

rawdata = rawdata.withColumn('date', to_date(col('date')))

rawdata.printSchema()

root
|-- id: string (nullable = true)
|-- airline: string (nullable = true)
|-- date: date (nullable = true)
|-- location: string (nullable = true)
|-- rating: float (nullable = true)
|-- cabin: string (nullable = true)

(continues on next page)

292 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

|-- value: string (nullable = true)
|-- recommended: string (nullable = true)
|-- review: string (nullable = true)

rawdata.show(5)

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...|
|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...|
|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...|
|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+
only showing top 5 rows

rawdata = rawdata.withColumn('non_asci', strip_non_ascii_udf(rawdata[
→˓'review']))

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review| non_asci|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...|Flight 3246 from ...|
|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...|Flight from Manch...|
|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...|I'm Executive Pla...|
|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...|MSP-JFK-MXP and r...|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...|Worst airline I h...|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+
only showing top 5 rows

14.6. Topic Model: Latent Dirichlet Allocation 293

Learning Apache Spark with Python

rawdata = rawdata.select(raw_cols+['non_asci'])\
.withColumn('fixed_abbrev',fix_abbreviation_

→˓udf(rawdata['non_asci']))

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review| non_asci|
→˓ fixed_abbrev|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...|Flight 3246 from ...|flight 3246
→˓from ...|
|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...|Flight from Manch...|flight from
→˓manch...|
|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...|I'm Executive Pla...|i'm executive
→˓pla...|
|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...|MSP-JFK-MXP and r...|msp-jfk-mxp
→˓and r...|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...|Worst airline I h...|worst airline
→˓i h...|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
only showing top 5 rows

rawdata = rawdata.select(raw_cols+['fixed_abbrev'])\
.withColumn('stop_text',remove_stops_udf(rawdata[

→˓'fixed_abbrev']))

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review| fixed_abbrev|
→˓ stop_text|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...|flight 3246 from ...|flight 3246
→˓chica...|
|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...|flight from manch...|flight
→˓manchester...|

(continues on next page)

294 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...|i'm executive pla...|i'm executive
→˓pla...|
|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...|msp-jfk-mxp and r...|msp-jfk-mxp
→˓retur...|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...|worst airline i h...|worst airline
→˓eve...|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
only showing top 5 rows

rawdata = rawdata.select(raw_cols+['stop_text'])\
.withColumn('feat_text',remove_features_udf(rawdata[

→˓'stop_text']))

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review| stop_text|
→˓ feat_text|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...|flight 3246 chica...|flight
→˓chicago mi...|
|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...|flight manchester...|flight
→˓manchester...|
|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...|i'm executive pla...|executive
→˓platinu...|
|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...|msp-jfk-mxp retur...|msp jfk mxp
→˓retur...|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...|worst airline eve...|worst airline
→˓eve...|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
only showing top 5 rows

rawdata = rawdata.select(raw_cols+['feat_text'])\
.withColumn('tagged_text',tag_and_remove_

→˓udf(rawdata['feat_text']))

(continues on next page)

14.6. Topic Model: Latent Dirichlet Allocation 295

Learning Apache Spark with Python

(continued from previous page)

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review| feat_text|
→˓ tagged_text|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...|flight chicago mi...| flight
→˓chicago m...|
|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...|flight manchester...| flight
→˓mancheste...|
|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...|executive platinu...| executive
→˓platin...|
|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...|msp jfk mxp retur...| msp jfk mxp
→˓retu...|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...|worst airline eve...| worst
→˓airline ua...|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
only showing top 5 rows

rawdata = rawdata.select(raw_cols+['tagged_text']) \
.withColumn('lemm_text',lemmatize_udf(rawdata[

→˓'tagged_text'])

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review| tagged_text|
→˓ lemm_text|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...| flight chicago m...|flight
→˓chicago mi...|
|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...| flight mancheste...|flight
→˓manchester...|
|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...| executive platin...|executive
→˓platinu...|

(continues on next page)

296 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...| msp jfk mxp retu...|msp jfk mxp
→˓retur...|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...| worst airline ua...|worst airline
→˓ual...|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------------
→˓------+
only showing top 5 rows

rawdata = rawdata.select(raw_cols+['lemm_text']) \
.withColumn("is_blank", check_blanks_udf(rawdata[

→˓"lemm_text"]))

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review| lemm_
→˓text|is_blank|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...|flight chicago mi...| False|
|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...|flight manchester...| False|
|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...|executive platinu...| False|
|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...|msp jfk mxp retur...| False|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...|worst airline ual...| False|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------+
only showing top 5 rows

from pyspark.sql.functions import monotonically_increasing_id
Create Unique ID
rawdata = rawdata.withColumn("uid", monotonically_increasing_id())
data = rawdata.filter(rawdata["is_blank"] == "False")

+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------+---+
| id| airline| date|location|rating|
→˓cabin|value|recommended| review| lemm_
→˓text|is_blank|uid|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------+---+
|10551|Southwest Airlines|2013-11-06| USA| 1.0|Business| 2|
→˓ NO|Flight 3246 from ...|flight chicago mi...| False| 0|

(continues on next page)

14.6. Topic Model: Latent Dirichlet Allocation 297

Learning Apache Spark with Python

(continued from previous page)

|10298| US Airways|2014-03-31| UK| 1.0|Business| 0|
→˓ NO|Flight from Manch...|flight manchester...| False| 1|
|10564|Southwest Airlines|2013-09-06| USA| 10.0| Economy| 5|
→˓ YES|I'm Executive Pla...|executive platinu...| False| 2|
|10134| Delta Air Lines|2013-12-10| USA| 8.0| Economy| 4|
→˓ YES|MSP-JFK-MXP and r...|msp jfk mxp retur...| False| 3|
|10912| United Airlines|2014-04-07| USA| 3.0| Economy| 1|
→˓ NO|Worst airline I h...|worst airline ual...| False| 4|
+-----+------------------+----------+--------+------+--------+-----+-
→˓----------+--------------------+--------------------+--------+---+
only showing top 5 rows

Pipeline for LDA model

from pyspark.ml.feature import HashingTF, IDF, Tokenizer
from pyspark.ml import Pipeline
from pyspark.ml.classification import NaiveBayes,
→˓RandomForestClassifier
from pyspark.ml.clustering import LDA
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.tuning import ParamGridBuilder
from pyspark.ml.tuning import CrossValidator
from pyspark.ml.feature import IndexToString, StringIndexer,
→˓VectorIndexer
from pyspark.ml.feature import CountVectorizer

Configure an ML pipeline, which consists of tree stages: tokenizer,
→˓ hashingTF, and nb.
tokenizer = Tokenizer(inputCol="lemm_text", outputCol="words")
#data = tokenizer.transform(data)
vectorizer = CountVectorizer(inputCol= "words", outputCol=
→˓"rawFeatures")
idf = IDF(inputCol="rawFeatures", outputCol="features")
#idfModel = idf.fit(data)

lda = LDA(k=20, seed=1, optimizer="em")

pipeline = Pipeline(stages=[tokenizer, vectorizer,idf, lda])

model = pipeline.fit(data)

1. Results presentation

• Topics

+-----+--------------------+--------------------+
|topic| termIndices| termWeights|
+-----+--------------------+--------------------+
| 0|[60, 7, 12, 483, ...|[0.01349507958269...|
| 1|[363, 29, 187, 55...|[0.01247250144447...|

(continues on next page)

298 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

2	[46, 107, 672, 27...	[0.01188684264641...
3	[76, 43, 285, 152...	[0.01132638300115...
4	[201, 13, 372, 69...	[0.01337529863256...
5	[122, 103, 181, 4...	[0.00930415977117...
6	[14, 270, 18, 74,...	[0.01253817708163...
7	[111, 36, 341, 10...	[0.01269584954257...
8	[477, 266, 297, 1...	[0.01017486869509...
9	[10, 73, 46, 1, 2...	[0.01050875237546...
10	[57, 29, 411, 10,...	[0.01777350667863...
11	[293, 119, 385, 4...	[0.01280305149305...
12	[116, 218, 256, 1...	[0.01570714218509...
13	[433, 171, 176, 3...	[0.00819684813575...
14	[74, 84, 45, 108,...	[0.01700630002172...
15	[669, 215, 14, 58...	[0.00779310974971...
16	[198, 21, 98, 164...	[0.01030577084202...
17	[96, 29, 569, 444...	[0.01297142577633...
18	[18, 60, 140, 64,...	[0.01306356985169...
19	[33, 178, 95, 2, ...	[0.00907425683229...
+-----+--------------------+--------------------+

• Topic terms

from pyspark.sql.types import ArrayType, StringType

def termsIdx2Term(vocabulary):
def termsIdx2Term(termIndices):

return [vocabulary[int(index)] for index in termIndices]
return udf(termsIdx2Term, ArrayType(StringType()))

vectorizerModel = model.stages[1]
vocabList = vectorizerModel.vocabulary
final = ldatopics.withColumn("Terms", termsIdx2Term(vocabList)(
→˓"termIndices"))

+-----+--+-------------
→˓---
→˓-----+
|topic|termIndices |Terms
→˓

→˓ |
+-----+--+-------------
→˓---
→˓-----+
|0 |[60, 7, 12, 483, 292, 326, 88, 4, 808, 32] |[pm, plane,
→˓board, kid, online, lga, schedule, get, memphis, arrive]
→˓ |
|1 |[363, 29, 187, 55, 48, 647, 30, 9, 204, 457] |[dublin,
→˓class, th, sit, entertainment, express, say, delay, dl, son]
→˓ |
|2 |[46, 107, 672, 274, 92, 539, 23, 27, 279, 8] |[economy,
→˓sfo, milwaukee, decent, comfortable, iad, return, united, average,
→˓airline]| (continues on next page)

14.6. Topic Model: Latent Dirichlet Allocation 299

Learning Apache Spark with Python

(continued from previous page)

|3 |[76, 43, 285, 152, 102, 34, 300, 113, 24, 31] |[didn, pay,
→˓lose, different, extra, bag, mile, baggage, leave, day]
→˓ |
|4 |[201, 13, 372, 692, 248, 62, 211, 187, 105, 110]|[houston,
→˓crew, heathrow, louisville, london, great, denver, th, land, jfk]
→˓ |
|5 |[122, 103, 181, 48, 434, 10, 121, 147, 934, 169]|[lhr, serve,
→˓screen, entertainment, ny, delta, excellent, atl, sin, newark]
→˓ |
|6 |[14, 270, 18, 74, 70, 37, 16, 450, 3, 20] |[check,
→˓employee, gate, line, change, wait, take, fll, time, tell]
→˓ |
|7 |[111, 36, 341, 10, 320, 528, 844, 19, 195, 524] |[atlanta,
→˓first, toilet, delta, washington, card, global, staff, route,
→˓amsterdam] |
|8 |[477, 266, 297, 185, 1, 33, 22, 783, 17, 908] |[fuel, group,
→˓ pas, boarding, seat, trip, minute, orleans, make, select]
→˓ |
|9 |[10, 73, 46, 1, 248, 302, 213, 659, 48, 228] |[delta, lax,
→˓economy, seat, london, detroit, comfo, weren, entertainment, wife]
→˓ |
|10 |[57, 29, 411, 10, 221, 121, 661, 19, 805, 733] |[business,
→˓class, fra, delta, lounge, excellent, syd, staff, nov, mexico]
→˓ |
|11 |[293, 119, 385, 481, 503, 69, 13, 87, 176, 545] |[march, ua,
→˓manchester, phx, envoy, drink, crew, american, aa, canada]
→˓ |
|12 |[116, 218, 256, 156, 639, 20, 365, 18, 22, 136] |[san, clt,
→˓francisco, second, text, tell, captain, gate, minute, available]
→˓ |
|13 |[433, 171, 176, 339, 429, 575, 10, 26, 474, 796]|[daughter,
→˓small, aa, ba, segment, proceed, delta, passenger, size, similar]
→˓ |
|14 |[74, 84, 45, 108, 342, 111, 315, 87, 52, 4] |[line, agent,
→˓ next, hotel, standby, atlanta, dallas, american, book, get]
→˓ |
|15 |[669, 215, 14, 58, 561, 59, 125, 179, 93, 5] |[fit, carry,
→˓check, people, bathroom, ask, thing, row, don, fly]
→˓ |
|16 |[198, 21, 98, 164, 57, 141, 345, 62, 121, 174] |[ife, good,
→˓nice, much, business, lot, dfw, great, excellent, carrier]
→˓ |
|17 |[96, 29, 569, 444, 15, 568, 21, 103, 657, 505] |[phl, class,
→˓diego, lady, food, wheelchair, good, serve, miami, mia]
→˓ |
|18 |[18, 60, 140, 64, 47, 40, 31, 35, 2, 123] |[gate, pm,
→˓phoenix, connection, cancel, connect, day, airpo, hour, charlotte]
→˓ |
|19 |[33, 178, 95, 2, 9, 284, 42, 4, 89, 31] |[trip,
→˓counter, philadelphia, hour, delay, stay, way, get, southwest,
→˓day] |
+-----+--+-------------
→˓---
→˓-----+

(continues on next page)

300 Chapter 14. Text Mining

Learning Apache Spark with Python

(continued from previous page)

• LDA results

+-----+------------------+----------+-----------+------+-------------
→˓-------+--------------------+--------------------+
| id| airline| date| cabin|rating|
→˓ words| features| topicDistribution|
+-----+------------------+----------+-----------+------+-------------
→˓-------+--------------------+--------------------+
|10551|Southwest Airlines|2013-11-06| Business| 1.0|[flight,
→˓chicago,...|(4695,[0,2,3,6,11...|[0.03640342580508...|
|10298| US Airways|2014-03-31| Business| 1.0|[flight,
→˓manchest...|(4695,[0,1,2,6,7,...|[0.01381306271470...|
|10564|Southwest Airlines|2013-09-06| Economy| 10.0|[executive,
→˓plati...|(4695,[0,1,6,7,11...|[0.05063554352934...|
|10134| Delta Air Lines|2013-12-10| Economy| 8.0|[msp, jfk,
→˓mxp, r...|(4695,[0,1,3,10,1...|[0.01494708959842...|
|10912| United Airlines|2014-04-07| Economy| 3.0|[worst,
→˓airline, ...|(4695,[0,1,7,8,13...|[0.04421751181232...|
|10089| Delta Air Lines|2014-02-18| Economy| 2.0|[dl, mia,
→˓lax, im...|(4695,[2,4,5,7,8,...|[0.02158861273876...|
|10385| US Airways|2013-10-21| Economy| 10.0|[flew, gla,
→˓phl, ...|(4695,[0,1,3,5,14...|[0.03343845991816...|
|10249| US Airways|2014-06-17| Economy| 1.0|[friend,
→˓book, fl...|(4695,[0,2,3,4,5,...|[0.02362432562165...|
|10289| US Airways|2014-04-12| Economy| 10.0|[flew, air,
→˓rome,...|(4695,[0,1,5,8,13...|[0.01664012816210...|
|10654|Southwest Airlines|2012-07-10| Economy| 8.0|[lhr, jfk,
→˓think,...|(4695,[0,4,5,6,8,...|[0.01526072330297...|
|10754| American Airlines|2014-05-04| Economy| 10.0|[san, diego,
→˓moli...|(4695,[0,2,8,15,2...|[0.03571177612496...|
|10646|Southwest Airlines|2012-08-17| Economy| 7.0|[toledo, co,
→˓stop...|(4695,[0,2,3,4,7,...|[0.02394775146271...|
|10097| Delta Air Lines|2014-02-03|First Class| 10.0|[honolulu,
→˓la, fi...|(4695,[0,4,6,7,13...|[0.02008375619661...|
|10132| Delta Air Lines|2013-12-16| Economy| 7.0|[manchester,
→˓uk, ...|(4695,[0,1,2,3,5,...|[0.01463126146601...|
|10560|Southwest Airlines|2013-09-20| Economy| 9.0|[first, time,
→˓ sou...|(4695,[0,3,7,8,9,...|[0.04934836409896...|
|10579|Southwest Airlines|2013-07-25| Economy| 0.0|[plane, land,
→˓ pm,...|(4695,[2,3,4,5,7,...|[0.06106959241722...|
|10425| US Airways|2013-08-06| Economy| 3.0|[airway, bad,
→˓ pro...|(4695,[2,3,4,7,8,...|[0.01770471771322...|
|10650|Southwest Airlines|2012-07-27| Economy| 9.0|[flew, jfk,
→˓lhr, ...|(4695,[0,1,6,13,1...|[0.02676226245086...|
|10260| US Airways|2014-06-03| Economy| 1.0|[february,
→˓air, u...|(4695,[0,2,4,17,2...|[0.02887390875079...|
|10202| Delta Air Lines|2013-09-14| Economy| 10.0|[aug, lhr,
→˓jfk, b...|(4695,[1,2,4,7,10...|[0.02377704988307...|
+-----+------------------+----------+-----------+------+-------------
→˓-------+--------------------+--------------------+

(continues on next page)

14.6. Topic Model: Latent Dirichlet Allocation 301

Learning Apache Spark with Python

(continued from previous page)

only showing top 20 rows

• Average rating and airlines for each day

• Average rating and airlines for each month

• Topic 1 corresponding to time line

302 Chapter 14. Text Mining

Learning Apache Spark with Python

• reviews (documents) relate to topic 1

14.6. Topic Model: Latent Dirichlet Allocation 303

Learning Apache Spark with Python

304 Chapter 14. Text Mining

CHAPTER

FIFTEEN

SOCIAL NETWORK ANALYSIS

Chinese proverb

A Touch of Cloth,linked in countless ways. – old Chinese proverb

305

Learning Apache Spark with Python

15.1 Introduction

15.2 Co-occurrence Network

Co-occurrence networks are generally used to provide a graphic visualization of potential relationships
between people, organizations, concepts or other entities represented within written material. The generation
and visualization of co-occurrence networks has become practical with the advent of electronically stored
text amenable to text mining.

15.2.1 Methodology

• Build Corpus C

• Build Document-Term matrix D based on Corpus C

• Compute Term-Document matrix 𝐷𝑇

• Adjacency Matrix 𝐴 = 𝐷𝑇 ·𝐷

There are four main components in this algorithm in the algorithm: Corpus C, Document-Term matrix D,
Term-Document matrix 𝐷𝑇 and Adjacency Matrix A. In this demo part, I will show how to build those four
main components.

Given that we have three groups of friends, they are

+-------------------------------------+
|words |
+-------------------------------------+
|[[george] [jimmy] [john] [peter]] |
|[[vincent] [george] [stefan] [james]]|
|[[emma] [james] [olivia] [george]] |
+-------------------------------------+

1. Corpus C

Then we can build the following corpus based on the unique elements in the given group data:

[u'george', u'james', u'jimmy', u'peter', u'stefan', u'vincent', u
→˓'olivia', u'john', u'emma']

The corresponding elements frequency:

306 Chapter 15. Social Network Analysis

https://en.wikipedia.org/wiki/Co-occurrence_networks

Learning Apache Spark with Python

2. Document-Term matrix D based on Corpus C (CountVectorizer)

from pyspark.ml.feature import CountVectorizer
count_vectorizer_wo = CountVectorizer(inputCol='term', outputCol=
→˓'features')
with total unique vocabulary
countVectorizer_mod_wo = count_vectorizer_wo.fit(df)
countVectorizer_twitter_wo = countVectorizer_mod_wo.transform(df)
with truncated unique vocabulary (99%)
count_vectorizer = CountVectorizer(vocabSize=48,inputCol='term',
→˓outputCol='features')
countVectorizer_mod = count_vectorizer.fit(df)
countVectorizer_twitter = countVectorizer_mod.transform(df)

+-------------------------------+
|features |
+-------------------------------+
|(9,[0,2,3,7],[1.0,1.0,1.0,1.0])|
|(9,[0,1,4,5],[1.0,1.0,1.0,1.0])|
|(9,[0,1,6,8],[1.0,1.0,1.0,1.0])|
+-------------------------------+

• Term-Document matrix 𝐷𝑇

RDD:

[array([1., 1., 1.]), array([0., 1., 1.]), array([1., 0., 0.
→˓]),
array([1., 0., 0.]), array([0., 1., 0.]), array([0., 1., 0.
→˓]),
array([0., 0., 1.]), array([1., 0., 0.]), array([0., 0., 1.
→˓])]

15.2. Co-occurrence Network 307

Learning Apache Spark with Python

Matrix:

array([[1., 1., 1.],
[0., 1., 1.],
[1., 0., 0.],
[1., 0., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.],
[0., 0., 1.]])

3. Adjacency Matrix 𝐴 = 𝐷𝑇 ·𝐷

RDD:

[array([1., 1., 1.]), array([0., 1., 1.]), array([1., 0., 0.
→˓]),
array([1., 0., 0.]), array([0., 1., 0.]), array([0., 1., 0.
→˓]),
array([0., 0., 1.]), array([1., 0., 0.]), array([0., 0., 1.
→˓])]

Matrix:

array([[3., 2., 1., 1., 1., 1., 1., 1., 1.],
[2., 2., 0., 0., 1., 1., 1., 0., 1.],
[1., 0., 1., 1., 0., 0., 0., 1., 0.],
[1., 0., 1., 1., 0., 0., 0., 1., 0.],
[1., 1., 0., 0., 1., 1., 0., 0., 0.],
[1., 1., 0., 0., 1., 1., 0., 0., 0.],
[1., 1., 0., 0., 0., 0., 1., 0., 1.],
[1., 0., 1., 1., 0., 0., 0., 1., 0.],
[1., 1., 0., 0., 0., 0., 1., 0., 1.]])

15.2.2 Coding Puzzle from my interview

• Problem

The attached utf-8 encoded text file contains the tags associated with an online biomedical scientific article
formatted as follows (size: 100000). Each Scientific article is represented by a line in the file delimited by
carriage return.

+--------------------+
| words|
+--------------------+
|[ACTH Syndrome, E...|
|[Antibody Formati...|
|[Adaptation, Phys...|
|[Aerosol Propella...|
+--------------------+
only showing top 4 rows

308 Chapter 15. Social Network Analysis

Learning Apache Spark with Python

Write a program that, using this file as input, produces a list of pairs of tags which appear TOGETHER
in any order and position in at least fifty different Scientific articles. For example, in the above sample,
[Female] and [Humans] appear together twice, but every other pair appears only once. Your program should
output the pair list to stdout in the same form as the input (eg tag 1, tag 2n).

• My solution

The corresponding words frequency:

Fig. 1: Word frequency

Output:

+----------+------+-------+
| term.x|term.y| freq|
+----------+------+-------+
Female	Humans	16741.0
Male	Humans	13883.0
Adult	Humans	10391.0
Male	Female	9806.0
MiddleAged	Humans	8181.0
Adult	Female	7411.0
Adult	Male	7240.0
MiddleAged	Male	6328.0
MiddleAged	Female	6002.0
MiddleAged	Adult	5944.0
+----------+------+-------+
only showing top 10 rows

The corresponding Co-occurrence network:

15.2. Co-occurrence Network 309

Learning Apache Spark with Python

Fig. 2: Co-occurrence network

Then you will get Figure Co-occurrence network

15.3 Appendix: matrix multiplication in PySpark

1. load test matrix

df = spark.read.csv("matrix1.txt",sep=",",inferSchema=True)
df.show()

+---+---+---+---+
|_c0|_c1|_c2|_c3|
+---+---+---+---+
1.2	3.4	2.3	1.1
2.3	1.1	1.5	2.2
3.3	1.8	4.5	3.3

(continues on next page)

310 Chapter 15. Social Network Analysis

Learning Apache Spark with Python

(continued from previous page)

5.3	2.2	4.5	4.4
9.3	8.1	0.3	5.5
4.5	4.3	2.1	6.6
+---+---+---+---+

2. main function for matrix multiplication in PySpark

from pyspark.sql import functions as F
from functools import reduce
reference: https://stackoverflow.com/questions/44348527/matrix-
→˓multiplication-at-a-in-pyspark
do the sum of the multiplication that we want, and get
one data frame for each column
colDFs = []
for c2 in df.columns:

colDFs.append(df.select([F.sum(df[c1]*df[c2]).alias("op_{0}".
→˓format(i)) for i,c1 in enumerate(df.columns)]))
now union those separate data frames to build the "matrix"
mtxDF = reduce(lambda a,b: a.select(a.columns).union(b.select(a.columns)),
→˓colDFs)
mtxDF.show()

+------------------+------------------+------------------+------------------+
| op_0| op_1| op_2| op_3|
+------------------+------------------+------------------+------------------+
152.45	118.88999999999999	57.15	121.44000000000001
118.88999999999999	104.94999999999999	38.93	94.71
57.15	38.93	52.540000000000006	55.99
121.44000000000001	94.71	55.99	110.10999999999999
+------------------+------------------+------------------+------------------+

3. Validation with python version

import numpy as np
a = np.genfromtxt("matrix1.txt",delimiter=",")
np.dot(a.T, a)

array([[152.45, 118.89, 57.15, 121.44],
[118.89, 104.95, 38.93, 94.71],
[57.15, 38.93, 52.54, 55.99],
[121.44, 94.71, 55.99, 110.11]])

15.3. Appendix: matrix multiplication in PySpark 311

Learning Apache Spark with Python

15.4 Correlation Network

TODO ..

312 Chapter 15. Social Network Analysis

CHAPTER

SIXTEEN

ALS: STOCK PORTFOLIO RECOMMENDATIONS

Chinese proverb

Don’t put all your eggs in one basket.

Code for the above figure:

313

Learning Apache Spark with Python

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(10, 8), subplot_kw=dict(aspect="equal"))

recipe = ["375 k U.S. Large Cap Blend",
"300 k U.S. Large Cap Value",
"75 k U.S. Short-Term Bonds",
"50 k U.S. Small Cap Blend",
"55 k U.S. Small Cap Value",
"95 k U.S. Real Estate",
"250 k Intermediate-Term Bonds"]

data = [float(x.split()[0]) for x in recipe]
ingredients = [' '.join(x.split()[2:]) for x in recipe]

print(data)
print(ingredients)
def func(pct, allvals):

absolute = int(pct/100.*np.sum(allvals))
return "{:.1f}%\n({:d} k)".format(pct, absolute)

explode = np.empty(len(data))#(0.1, 0.1, 0.1, 0.1, 0.1, 0.1) # explode 1st
→˓slice
explode.fill(0.1)

wedges, texts, autotexts = ax.pie(data, explode=explode, autopct=lambda pct:
→˓func(pct, data),

textprops=dict(color="w"))
ax.legend(wedges, ingredients,

#title="Stock portfolio",
loc="center left",
bbox_to_anchor=(1, 0, 0.5, 1))

plt.setp(autotexts, size=8, weight="bold")

#ax.set_title("Stock portfolio")

plt.show()

16.1 Recommender systems

Recommender systems or recommendation systems (sometimes replacing “system” with a synonym such
as platform or engine) are a subclass of information filtering system that seek to predict the “rating” or
“preference” that a user would give to an item.”

The main idea is to build a matrix users R items rating values and try to factorize it, to recommend main
products rated by other users. A popular approach for this is matrix factorization is Alternating Least Squares
(ALS)

314 Chapter 16. ALS: Stock Portfolio Recommendations

Learning Apache Spark with Python

16.2 Alternating Least Squares

Apache Spark ML implements ALS for collaborative filtering, a very popular algorithm for making recom-
mendations.

ALS recommender is a matrix factorization algorithm that uses Alternating Least Squares with Weighted-
Lamda-Regularization (ALS-WR). It factors the user to item matrix A into the user-to-feature matrix U and
the item-to-feature matrix M: It runs the ALS algorithm in a parallel fashion. The ALS algorithm should
uncover the latent factors that explain the observed user to item ratings and tries to find optimal factor
weights to minimize the least squares between predicted and actual ratings.

https://www.elenacuoco.com/2016/12/22/alternating-least-squares-als-spark-ml/

16.3 Demo

• The Jupyter notebook can be download from ALS Recommender systems.

• The data can be downloaf from German Credit.

16.3.1 Load and clean data

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark RFM example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

df_raw = spark.read.format('com.databricks.spark.csv').\
options(header='true', \
inferschema='true').\

load("Online Retail.csv",header=True);

check the data set

df_raw.show(5)
df_raw.printSchema()

Then you will get

+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+
|InvoiceNo|StockCode| Description|Quantity|
→˓InvoiceDate|UnitPrice|CustomerID| Country|

(continues on next page)

16.2. Alternating Least Squares 315

https://www.elenacuoco.com/2016/12/22/alternating-least-squares-als-spark-ml/
_static/ALS.ipynb
_static/OnlineRetail.csv

Learning Apache Spark with Python

(continued from previous page)

+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+
| 536365| 85123A|WHITE HANGING HEA...| 6|12/1/10 8:26| 2.55|
→˓ 17850|United Kingdom|
| 536365| 71053| WHITE METAL LANTERN| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|
| 536365| 84406B|CREAM CUPID HEART...| 8|12/1/10 8:26| 2.75|
→˓ 17850|United Kingdom|
| 536365| 84029G|KNITTED UNION FLA...| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|
| 536365| 84029E|RED WOOLLY HOTTIE...| 6|12/1/10 8:26| 3.39|
→˓ 17850|United Kingdom|
+---------+---------+--------------------+--------+------------+---------+----
→˓------+--------------+
only showing top 5 rows

root
|-- InvoiceNo: string (nullable = true)
|-- StockCode: string (nullable = true)
|-- Description: string (nullable = true)
|-- Quantity: integer (nullable = true)
|-- InvoiceDate: string (nullable = true)
|-- UnitPrice: double (nullable = true)
|-- CustomerID: integer (nullable = true)
|-- Country: string (nullable = true)

3. Data clean and data manipulation

• check and remove the null values

from pyspark.sql.functions import count

def my_count(df_in):
df_in.agg(*[count(c).alias(c) for c in df_in.columns]).show()

import pyspark.sql.functions as F
from pyspark.sql.functions import round
df_raw = df_raw.withColumn('Asset',round(F.col('Quantity') * F.col('UnitPrice
→˓'), 2))
df = df_raw.withColumnRenamed('StockCode', 'Cusip')\

.select('CustomerID','Cusip','Quantity','UnitPrice','Asset')

my_count(df)

+----------+------+--------+---------+------+
|CustomerID| Cusip|Quantity|UnitPrice| Asset|
+----------+------+--------+---------+------+
| 406829|541909| 541909| 541909|541909|
+----------+------+--------+---------+------+

Since the count results are not the same, we have some null value in the CustomerID column. We can

316 Chapter 16. ALS: Stock Portfolio Recommendations

Learning Apache Spark with Python

drop these records from the dataset.

df = df.filter(F.col('Asset')>=0)
df = df.dropna(how='any')
my_count(df)

+----------+------+--------+---------+------+
|CustomerID| Cusip|Quantity|UnitPrice| Asset|
+----------+------+--------+---------+------+
| 397924|397924| 397924| 397924|397924|
+----------+------+--------+---------+------+

df.show(3)

+----------+------+--------+---------+-----+
|CustomerID| Cusip|Quantity|UnitPrice|Asset|
+----------+------+--------+---------+-----+
17850	85123A	6	2.55	15.3
17850	71053	6	3.39	20.34
17850	84406B	8	2.75	22.0
+----------+------+--------+---------+-----+
only showing top 3 rows

• Convert the Cusip to consistent format

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, DoubleType

def toUpper(s):
return s.upper()

upper_udf = udf(lambda x: toUpper(x), StringType())

• Find the most top n stockes

pop = df.groupBy('Cusip')\
.agg(F.count('CustomerID').alias('Customers'),F.round(F.sum('Asset'),2).

→˓alias('TotalAsset'))\
.sort([F.col('Customers'),F.col('TotalAsset')],ascending=[0,0])

pop.show(5)

+------+---------+----------+
| Cusip|Customers|TotalAsset|
+------+---------+----------+
85123A	2035	100603.5
22423	1724	142592.95
85099B	1618	85220.78
84879	1408	56580.34
47566	1397	68844.33
+------+---------+----------+
only showing top 5 rows

16.3. Demo 317

Learning Apache Spark with Python

16.3.2 Build feature matrix

• Fetch the top n cusip list

top = 10
cusip_lst = pd.DataFrame(pop.select('Cusip').head(top)).astype('str').iloc[:,
→˓0].tolist()
cusip_lst.insert(0,'CustomerID')

• Create the portfolio table for each customer

pivot_tab = df.groupBy('CustomerID').pivot('Cusip').sum('Asset')
pivot_tab = pivot_tab.fillna(0)

• Fetch the most n stock’s portfolio table for each customer

selected_tab = pivot_tab.select(cusip_lst)
selected_tab.show(4)

+----------+------+-----+------+-----+-----+-----+-----+-----+----+-----+
|CustomerID|85123A|22423|85099B|84879|47566|20725|22720|20727|POST|23203|
+----------+------+-----+------+-----+-----+-----+-----+-----+----+-----+
16503	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.0	0.0	0.0
15727	123.9	25.5	0.0	0.0	0.0	33.0	99.0	0.0	0.0	0.0
14570	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14450	0.0	0.0	8.32	0.0	0.0	0.0	49.5	0.0	0.0	0.0
+----------+------+-----+------+-----+-----+-----+-----+-----+----+-----+
only showing top 4 rows

• Build the rating matrix

def elemwiseDiv(df_in):
num = len(df_in.columns)
temp = df_in.rdd.map(lambda x: list(flatten([x[0],[x[i]/float(sum(x[1:]))

if sum(x[1:])>0 else
→˓x[i]

for i in range(1,
→˓num)]])))

return spark.createDataFrame(temp,df_in.columns)

ratings = elemwiseDiv(selected_tab)

ratings.show(4)

+----------+------+-----+------+-----+-----+-----+-----+-----+----+-----+
|CustomerID|85123A|22423|85099B|84879|47566|20725|22720|20727|POST|23203|
+----------+------+-----+------+-----+-----+-----+-----+-----+----+-----+
| 16503| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 1.0| 0.0| 0.0|
| 15727| 0.44| 0.09| 0.0| 0.0| 0.0| 0.12| 0.35| 0.0| 0.0| 0.0|

(continues on next page)

318 Chapter 16. ALS: Stock Portfolio Recommendations

Learning Apache Spark with Python

(continued from previous page)

| 14570| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0| 0.0|
| 14450| 0.0| 0.0| 0.14| 0.0| 0.0| 0.0| 0.86| 0.0| 0.0| 0.0|
+----------+------+-----+------+-----+-----+-----+-----+-----+----+-----+

• Convert rating matrix to long table

from pyspark.sql.functions import array, col, explode, struct, lit

def to_long(df, by):
"""
reference: https://stackoverflow.com/questions/37864222/transpose-

→˓column-to-row-with-spark
"""

Filter dtypes and split into column names and type description
cols, dtypes = zip(*((c, t) for (c, t) in df.dtypes if c not in by))
Spark SQL supports only homogeneous columns
assert len(set(dtypes)) == 1, "All columns have to be of the same type"

Create and explode an array of (column_name, column_value) structs
kvs = explode(array([

struct(lit(c).alias("Cusip"), col(c).alias("rating")) for c in cols
])).alias("kvs")

df_all = to_long(ratings,['CustomerID'])
df_all.show(5)

+----------+------+------+
|CustomerID| Cusip|rating|
+----------+------+------+
16503	85123A	0.0
16503	22423	0.0
16503	85099B	0.0
16503	84879	0.0
16503	47566	0.0
+----------+------+------+
only showing top 5 rows

• Convert the string Cusip to numerical index

from pyspark.ml.feature import StringIndexer
Index labels, adding metadata to the label column
labelIndexer = StringIndexer(inputCol='Cusip',

outputCol='indexedCusip').fit(df_all)
df_all = labelIndexer.transform(df_all)

df_all.show(5, True)
df_all.printSchema()

+----------+------+------+------------+

(continues on next page)

16.3. Demo 319

Learning Apache Spark with Python

(continued from previous page)

|CustomerID| Cusip|rating|indexedCusip|
+----------+------+------+------------+
16503	85123A	0.0	6.0
16503	22423	0.0	9.0
16503	85099B	0.0	5.0
16503	84879	0.0	1.0
16503	47566	0.0	0.0
+----------+------+------+------------+
only showing top 5 rows

root
|-- CustomerID: long (nullable = true)
|-- Cusip: string (nullable = false)
|-- rating: double (nullable = true)
|-- indexedCusip: double (nullable = true)

16.3.3 Train model

• build train and test dataset

train, test = df_all.randomSplit([0.8,0.2])

train.show(5)
test.show(5)

+----------+-----+------------+-------------------+
|CustomerID|Cusip|indexedCusip| rating|
+----------+-----+------------+-------------------+
12940	20725	2.0	0.0
12940	20727	4.0	0.0
12940	22423	9.0	0.49990198000392083
12940	22720	3.0	0.0
12940	23203	7.0	0.0
+----------+-----+------------+-------------------+
only showing top 5 rows

+----------+-----+------------+------------------+
|CustomerID|Cusip|indexedCusip| rating|
+----------+-----+------------+------------------+
12940	84879	1.0	0.1325230346990786
13285	20725	2.0	0.2054154995331466
13285	20727	4.0	0.2054154995331466
13285	47566	0.0	0.0
13623	23203	7.0	0.0
+----------+-----+------------+------------------+
only showing top 5 rows

• train model

320 Chapter 16. ALS: Stock Portfolio Recommendations

Learning Apache Spark with Python

import itertools
from math import sqrt
from operator import add
import sys
from pyspark.ml.recommendation import ALS

from pyspark.ml.evaluation import RegressionEvaluator

evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating",
predictionCol="prediction")

def computeRmse(model, data):
"""
Compute RMSE (Root mean Squared Error).
"""
predictions = model.transform(data)
rmse = evaluator.evaluate(predictions)
print("Root-mean-square error = " + str(rmse))
return rmse

#train models and evaluate them on the validation set

ranks = [4,5]
lambdas = [0.05]
numIters = [30]
bestModel = None
bestValidationRmse = float("inf")
bestRank = 0
bestLambda = -1.0
bestNumIter = -1

val = test.na.drop()
for rank, lmbda, numIter in itertools.product(ranks, lambdas, numIters):

als = ALS(rank=rank, maxIter=numIter, regParam=lmbda, numUserBlocks=10,
→˓numItemBlocks=10, implicitPrefs=False,

alpha=1.0,
userCol="CustomerID", itemCol="indexedCusip", seed=1, ratingCol=

→˓"rating", nonnegative=True)
model=als.fit(train)

validationRmse = computeRmse(model, val)
print("RMSE (validation) = %f for the model trained with " %

→˓validationRmse + \
"rank = %d, lambda = %.1f, and numIter = %d." % (rank, lmbda,

→˓numIter))
if (validationRmse, bestValidationRmse):

bestModel = model
bestValidationRmse = validationRmse
bestRank = rank
bestLambda = lmbda
bestNumIter = numIter

model = bestModel

16.3. Demo 321

Learning Apache Spark with Python

16.3.4 Make prediction

• make prediction

topredict=test[test['rating']==0]

predictions=model.transform(topredict)
predictions.filter(predictions.prediction>0)\

.sort([F.col('CustomerID'),F.col('Cusip')],ascending=[0,0]).show(5)

+----------+------+------------+------+------------+
|CustomerID| Cusip|indexedCusip|rating| prediction|
+----------+------+------------+------+------------+
18283	47566	0.0	0.0	0.01625076
18282	85123A	6.0	0.0	0.057172246
18282	84879	1.0	0.0	0.059531752
18282	23203	7.0	0.0	0.010502596
18282	22720	3.0	0.0	0.053893942
+----------+------+------------+------+------------+
only showing top 5 rows

322 Chapter 16. ALS: Stock Portfolio Recommendations

CHAPTER

SEVENTEEN

MONTE CARLO SIMULATION

Monte Carlo simulations are just a way of estimating a fixed parameter by repeatedly generating random
numbers. More details can be found at A Zero Math Introduction to Markov Chain Monte Carlo Methods.

Monte Carlo simulation is a technique used to understand the impact of risk and uncertainty in financial,
project management, cost, and other forecasting models. A Monte Carlo simulator helps one visualize most
or all of the potential outcomes to have a better idea regarding the risk of a decision. More details can be
found at The house always wins.

323

https://towardsdatascience.com/a-zero-math-introduction-to-markov-chain-monte-carlo-methods-dcba889e0c50
https://towardsdatascience.com/the-house-always-wins-monte-carlo-simulation-eb82787da2a3

Learning Apache Spark with Python

17.1 Simulating Casino Win

We assume that the player John has the 49% chance to win the game and the wager will be $5 per game.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

start_m =100
wager = 5
bets = 100
trials = 1000

trans = np.vectorize(lambda t: -wager if t <=0.51 else wager)

fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(1,1,1)

end_m = []

for i in range(trials):
money = reduce(lambda c, x: c + [c[-1] + x], trans(np.random.

→˓random(bets)), [start_m])
end_m.append(money[-1])
plt.plot(money)

plt.ylabel('Player Money in $')
plt.xlabel('Number of bets')
plt.title(("John starts the game with $ %.2f and ends with $ %.2f")%(start_m,
→˓sum(end_m)/len(end_m)))
plt.show()

324 Chapter 17. Monte Carlo Simulation

Learning Apache Spark with Python

17.1. Simulating Casino Win 325

Learning Apache Spark with Python

17.2 Simulating a Random Walk

17.2.1 Fetch the histrical stock price

1. Fecth the data. If you need the code for this piece, you can contact with me.

stock.tail(4)

+----------+----------+----------+----------+----------+----------+--------+
| Date| Open| High| Low| Close| Adj Close| Volume|
+----------+----------+----------+----------+----------+----------+--------+
2018-12-07	155.399994	158.050003	151.729996	153.059998	153.059998	17447900
2018-12-10	150.389999	152.809998	147.479996	151.429993	151.429993	15525500
2018-12-11	155.259995	156.240005	150.899994	151.830002	151.830002	13651900
2018-12-12	155.240005	156.169998	151.429993	151.5	151.5	16597900
+----------+----------+----------+----------+----------+----------+--------+

2. Convert the str type date to date type

stock['Date'] = pd.to_datetime(stock['Date'])

3. Data visualization

Plot everything by leveraging the very powerful matplotlib package
width = 10
height = 6
data = stock
fig = plt.figure(figsize=(width, height))
ax = fig.add_subplot(1,1,1)
ax.plot(data.Date, data.Close, label='Close')
ax.plot(data.Date, data.High, label='High')
ax.plot(data.Date, data.Low, label='Low')
ax.set_xlabel('Date')
ax.set_ylabel('price ($)')
ax.legend()
ax.set_title('Stock price: ' + ticker, y=1.01)
#plt.xticks(rotation=70)
plt.show()
Plot everything by leveraging the very powerful matplotlib package
fig = plt.figure(figsize=(width, height))
ax = fig.add_subplot(1,1,1)
ax.plot(data.Date, data.Volume, label='Volume')
#ax.plot(data.Date, data.High, label='High')
ax.plot(data.Date, data.Low, label='Low')
ax.set_xlabel('Date')
ax.set_ylabel('Volume')
ax.legend()
ax.set_title('Stock volume: ' + ticker, y=1.01)
#plt.xticks(rotation=70)
plt.show()

326 Chapter 17. Monte Carlo Simulation

Learning Apache Spark with Python

Fig. 1: Historical Stock Price

17.2. Simulating a Random Walk 327

Learning Apache Spark with Python

Fig. 2: Historical Stock Volume

17.2.2 Calulate the Compound Annual Growth Rate

The formula for Compound Annual Growth Rate (CAGR) is very useful for investment analysis. It may also
be referred to as the annualized rate of return or annual percent yield or effective annual rate, depending on
the algebraic form of the equation. Many investments such as stocks have returns that can vary wildly. The
CAGR formula allows you to calculate a “smoothed” rate of return that you can use to compare to other
investments. The formula is defined as (more details can be found at CAGR Calculator and Formula)

CAGR =

(︂
End Value
Start Value

)︂ 365
Days

− 1

days = (stock.Date.iloc[-1] - stock.Date.iloc[0]).days
cagr = ((((stock['Adj Close'].iloc[-1]) / stock['Adj Close'].iloc[0])) **
→˓(365.0/days)) - 1
print ('CAGR =',str(round(cagr,4)*100)+"%")
mu = cagr

328 Chapter 17. Monte Carlo Simulation

https://www.vertex42.com/Calculators/cagr-calculator.html

Learning Apache Spark with Python

17.2.3 Calulate the annual volatility

A stock’s volatility is the variation in its price over a period of time. For example, one stock may have a
tendency to swing wildly higher and lower, while another stock may move in much steadier, less turbulent
way. Both stocks may end up at the same price at the end of day, but their path to that point can vary wildly.
First, we create a series of percentage returns and calculate the annual volatility of returns Annualizing
volatility. To present this volatility in annualized terms, we simply need to multiply our daily standard
deviation by the square root of 252. This assumes there are 252 trading days in a given year. More details
can be found at How to Calculate Annualized Volatility.

stock['Returns'] = stock['Adj Close'].pct_change()
vol = stock['Returns'].std()*np.sqrt(252)

17.2.4 Create matrix of daily returns

1. Create matrix of daily returns using random normal distribution Generates an RDD matrix comprised
of i.i.d. samples from the uniform distribution U(0.0, 1.0).

S = stock['Adj Close'].iloc[-1] #starting stock price (i.e. last available
→˓real stock price)
T = 5 #Number of trading days
mu = cagr #Return
vol = vol #Volatility
trials = 10000

mat = RandomRDDs.normalVectorRDD(sc, trials, T, seed=1)

2. Transform the distribution in the generated RDD from U(0.0, 1.0) to U(a, b), use Random-
RDDs.uniformRDD(sc, n, p, seed) .map(lambda v: a + (b - a) * v)

a = mu/T
b = vol/math.sqrt(T)
v = mat.map(lambda x: a + (b - a)* x)

3. Convert Rdd matrix to dataframe

df = v.map(lambda x: [round(i,6)+1 for i in x]).toDF()
df.show(5)

+--------+--------+--------+--------+--------+
| _1| _2| _3| _4| _5|
+--------+--------+--------+--------+--------+
0.935234	1.162894	1.07972	1.238257	1.066136
0.878456	1.045922	0.990071	1.045552	0.854516
1.186472	0.944777	0.742247	0.940023	1.220934
0.872928	1.030882	1.248644	1.114262	1.063762
1.09742	1.188537	1.137283	1.162548	1.024612
+--------+--------+--------+--------+--------+
only showing top 5 rows

17.2. Simulating a Random Walk 329

https://www.fool.com/knowledge-center/how-to-calculate-annualized-volatility.aspx

Learning Apache Spark with Python

from pyspark.sql.functions import lit
S = stock['Adj Close'].iloc[-1]
price = df.withColumn('init_price' ,lit(S))

price.show(5)

+--------+--------+--------+--------+--------+----------+
| _1| _2| _3| _4| _5|init_price|
+--------+--------+--------+--------+--------+----------+
0.935234	1.162894	1.07972	1.238257	1.066136	151.5
0.878456	1.045922	0.990071	1.045552	0.854516	151.5
1.186472	0.944777	0.742247	0.940023	1.220934	151.5
0.872928	1.030882	1.248644	1.114262	1.063762	151.5
1.09742	1.188537	1.137283	1.162548	1.024612	151.5
+--------+--------+--------+--------+--------+----------+
only showing top 5 rows

price = price.withColumn('day_0', col('init_price'))
price.show(5)

+--------+--------+--------+--------+--------+----------+-----+
| _1| _2| _3| _4| _5|init_price|day_0|
+--------+--------+--------+--------+--------+----------+-----+
0.935234	1.162894	1.07972	1.238257	1.066136	151.5	151.5
0.878456	1.045922	0.990071	1.045552	0.854516	151.5	151.5
1.186472	0.944777	0.742247	0.940023	1.220934	151.5	151.5
0.872928	1.030882	1.248644	1.114262	1.063762	151.5	151.5
1.09742	1.188537	1.137283	1.162548	1.024612	151.5	151.5
+--------+--------+--------+--------+--------+----------+-----+
only showing top 5 rows

17.2.5 Monte Carlo Simulation

from pyspark.sql.functions import round
for name in price.columns[:-2]:

price = price.withColumn('day'+name, round(col(name)*col('init_price'),2))
price = price.withColumn('init_price',col('day'+name))

price.show(5)

+--------+--------+--------+--------+--------+----------+-----+------+------+-
→˓-----+------+------+
| _1| _2| _3| _4| _5|init_price|day_0| day_1| day_2|
→˓day_3| day_4| day_5|
+--------+--------+--------+--------+--------+----------+-----+------+------+-
→˓-----+------+------+
|0.935234|1.162894| 1.07972|1.238257|1.066136| 234.87|151.5|141.69|164.
→˓77|177.91| 220.3|234.87|
|0.878456|1.045922|0.990071|1.045552|0.854516| 123.14|151.5|133.09| 139.
→˓2|137.82| 144.1|123.14| (continues on next page)

330 Chapter 17. Monte Carlo Simulation

Learning Apache Spark with Python

(continued from previous page)

|1.186472|0.944777|0.742247|0.940023|1.220934| 144.67|151.5|179.75|169.
→˓82|126.05|118.49|144.67|
|0.872928|1.030882|1.248644|1.114262|1.063762| 201.77|151.5|132.25|136.
→˓33|170.23|189.68|201.77|
| 1.09742|1.188537|1.137283|1.162548|1.024612| 267.7|151.5|166.26|197.
→˓61|224.74|261.27| 267.7|
+--------+--------+--------+--------+--------+----------+-----+------+------+-
→˓-----+------+------+
only showing top 5 rows

17.2.6 Summary

selected_col = [name for name in price.columns if 'day_' in name]

simulated = price.select(selected_col)
simulated.describe().show()

+-------+----------+------------------+------------------+------------------+-
→˓-----------------+------------------+
|summary|2018-12-12| 2018-12-13| 2018-12-14| 2018-12-17|
→˓ 2018-12-18| 2018-12-19|
+-------+----------+------------------+------------------+------------------+-
→˓-----------------+------------------+
| count| 10000.0| 10000.0| 10000.0| 10000.0|
→˓ 10000.0| 10000.0|
| mean| 151.5|155.11643700000002| 158.489058|162.23713200000003|
→˓ 166.049375| 170.006525|
| std| 0.0|18.313783237787845|26.460919262517276| 33.
→˓37780495150803|39.369101074463416|45.148120695490846|
| min| 151.5| 88.2| 74.54| 65.87|
→˓ 68.21| 58.25|
| 25%| 151.5| 142.485| 140.15| 138.72|
→˓ 138.365| 137.33|
| 50%| 151.5| 154.97| 157.175| 159.82|
→˓ 162.59|165.04500000000002|
| 75%| 151.5| 167.445|175.48499999999999| 182.8625|
→˓ 189.725| 196.975|
| max| 151.5| 227.48| 275.94| 319.17|
→˓ 353.59| 403.68|
+-------+----------+------------------+------------------+------------------+-
→˓-----------------+------------------+

data_plt = simulated.toPandas()
days = pd.date_range(stock['Date'].iloc[-1], periods= T+1,freq='B').date

width = 10
height = 6
fig = plt.figure(figsize=(width, height))
ax = fig.add_subplot(1,1,1)

(continues on next page)

17.2. Simulating a Random Walk 331

Learning Apache Spark with Python

(continued from previous page)

days = pd.date_range(stock['Date'].iloc[-1], periods= T+1,freq='B').date

for i in range(trials):
plt.plot(days, data_plt.iloc[i])

ax.set_xlabel('Date')
ax.set_ylabel('price ($)')
ax.set_title('Simulated Stock price: ' + ticker, y=1.01)
plt.show()

332 Chapter 17. Monte Carlo Simulation

Learning Apache Spark with Python

17.2.7 One-year Stock price simulation

Fig. 3: Simulated Stock Price

17.2. Simulating a Random Walk 333

Learning Apache Spark with Python

Fig. 4: Simulated Stock Price distribution

334 Chapter 17. Monte Carlo Simulation

CHAPTER

EIGHTEEN

MARKOV CHAIN MONTE CARLO

Chinese proverb

A book is known in time of need.

Monte Carlo simulations are just a way of estimating a fixed parameter by repeatedly generating random
numbers. More details can be found at A Zero Math Introduction to Markov Chain Monte Carlo Methods.

Markov Chain Monte Carlo (MCMC) methods are used to approximate the posterior distribution of a pa-
rameter of interest by random sampling in a probabilistic space. More details can be found at A Zero Math
Introduction to Markov Chain Monte Carlo Methods.

The following theory and demo are from Dr. Rebecca C. Steorts’s Intro to Markov Chain Monte Carlo. More
details can be found at Dr. Rebecca C. Steorts’s STA 360/601: Bayesian Methods and Modern Statistics
class at Duke.

335

https://towardsdatascience.com/a-zero-math-introduction-to-markov-chain-monte-carlo-methods-dcba889e0c50
https://towardsdatascience.com/a-zero-math-introduction-to-markov-chain-monte-carlo-methods-dcba889e0c50
https://towardsdatascience.com/a-zero-math-introduction-to-markov-chain-monte-carlo-methods-dcba889e0c50
http://www2.stat.duke.edu/~rcs46/lecturesModernBayes/601-module6-markov/markov-chain-monte-carlo.pdf
http://www2.stat.duke.edu/~rcs46/bayes.html

Learning Apache Spark with Python

18.1 Metropolis algorithm

The Metropolis algorithm takes three main steps:

1. Sample 𝜃* ∼ 𝐽(𝜃|𝜃(𝑠))

2. Compute the acceptance ratio (𝑟)

𝑟 =
𝑝(𝜃*|𝑦)

𝑝(𝜃(𝑠)|𝑦)
=

𝑝(𝑦|𝜃*)𝑝(𝜃*)

𝑝(𝑦|𝜃(𝑠))𝑝(𝜃(𝑠))

3. Let

𝜃(𝑠+1) =

{︂
𝜃* with prob min(𝑟, 1)

𝜃(𝑠) otherwise
(18.1)

Note: Actually, the (18.1) in Step 3 can be replaced by sampling 𝑢 ∼ Uniform(0, 1) and setting 𝜃(𝑠+1) = 𝜃*

if 𝑢 < 𝑟 and setting 𝜃(𝑠+1) = 𝜃(𝑠) otherwise.

18.2 A Toy Example of Metropolis

The following example is going to test out the Metropolis algorithm for the conjugate Normal-Normal model
with a known variance situation.

18.2.1 Conjugate Normal-Normal model

𝑋1, · · · , 𝑋𝑛 𝜃
𝑖𝑖𝑑∼ Normal(𝜃, 𝜎2)

𝜃 ∼ Normal(𝜇, 𝜏2)

Recall that the posterior of 𝜃 is Normal(𝜇𝑛, 𝜏
2
𝑛), where

𝜇𝑛 = 𝑥̄
𝑛/𝜎2

𝑛/𝜎2 + 1/𝜏2
+ 𝜇

1/𝜏2

𝑛/𝜎2 + 1/𝜏2

and

𝜏2𝑛 =
1

𝑛/𝜎2 + 1/𝜏2

336 Chapter 18. Markov Chain Monte Carlo

Learning Apache Spark with Python

18.2.2 Example setup

The rest of the parameters are 𝜎2 = 1, 𝜏2 = 10, 𝜇 = 5, 𝑛 = 5 and

𝑦 = [9.37, 10.18, 9.16, 11.60, 10.33]

For this setup, we get that 𝜇𝑛 = 10.02745 and 𝜏2𝑛 = 0.1960784.

18.2.3 Essential mathematical derivation

In the Metropolis algorithm, we need to compute the acceptance ratio 𝑟, i.e.

𝑟 =
𝑝(𝜃*|𝑥)

𝑝(𝜃(𝑠)|𝑥)

=
𝑝(𝑥|𝜃*)𝑝(𝜃*)

𝑝(𝑥|𝜃(𝑠))𝑝(𝜃(𝑠))

=

(︂ ∏︀
𝑖 dnorm(𝑥𝑖, 𝜃

*, 𝜎)∏︀
𝑖 dnorm(𝑥𝑖, 𝜃(𝑠), 𝜎)

)︂(︂
dnorm(𝜃*, 𝜇, 𝜏)

dnorm(𝜃(𝑠), 𝜇, 𝜏)

)︂

In many cases, computing the ratio 𝑟 directly can be numerically unstable, however, this can be modified by
taking 𝑙𝑜𝑔𝑟. i.e.

𝑙𝑜𝑔𝑟 =
∑︁
𝑖

(︁
𝑙𝑜𝑔[dnorm(𝑥𝑖, 𝜃

*, 𝜎)] − 𝑙𝑜𝑔[dnorm(𝑥𝑖, 𝜃
(𝑠), 𝜎)]

)︁
+

∑︁
𝑖

(︁
𝑙𝑜𝑔[dnorm(𝜃*, 𝜇, 𝜏)] − 𝑙𝑜𝑔[dnorm(𝜃(𝑠), 𝜇, 𝜏)]

)︁

Then the criteria of the acceptance becomes: if 𝑙𝑜𝑔𝑢 < 𝑙𝑜𝑔𝑟, where 𝑢 is sample form the Uniform(0, 1).

18.3 Demos

Now, We generate 𝑆 iterations of the Metropolis algorithm starting at 𝜃(0) = 0 and using a normal proposal
distribution, where

𝜃(𝑠+1) ∼ Normal(𝜃(𝑠), 2).

18.3. Demos 337

Learning Apache Spark with Python

18.3.1 R results

setting values
set.seed(1)
s2<-1
t2<-10
mu<-5; n<-5

rounding the rnorm to 2 decimal places
y<-round(rnorm(n,10,1),2)
mean of the normal posterior
mu.n<-(mean(y)*n/s2 + mu/t2)/(n/s2+1/t2)
variance of the normal posterior
t2.n<-1/(n/s2+1/t2)
defining the data
y<-c(9.37, 10.18, 9.16, 11.60, 10.33)

####metropolis part####
##S = total num of simulations
theta<-0 ; delta<-2 ; S<-10000 ; THETA<-NULL ; set.seed(1)
for(s in 1:S){

simulating our proposal
#the new value of theta
#print(theta)
theta.star<-rnorm(1,theta,sqrt(delta))
##taking the log of the ratio r
log.r<-(sum(dnorm(y,theta.star,sqrt(s2),log=TRUE))+

dnorm(theta.star,mu,sqrt(t2),log=TRUE))-
(sum(dnorm(y,theta,sqrt(s2),log=TRUE))+

dnorm(theta,mu,sqrt(t2),log=TRUE))
#print(log.r)
if(log(runif(1))<log.r) { theta<-theta.star }
##updating THETA
#print(log(runif(1)))
THETA<-c(THETA,theta)

}

##two plots: trace of theta and comparing the empirical distribution
##of simulated values to the true posterior
par(mar=c(3,3,1,1),mgp=c(1.75,.75,0))
par(mfrow=c(1,2))
creating a sequence
skeep<-seq(10,S,by=10)
making a trace place
plot(skeep,THETA[skeep],type="l",

xlab="iteration",ylab=expression(theta))
making a histogram
hist(THETA[-(1:50)],prob=TRUE,main="",

xlab=expression(theta),ylab="density")
th<-seq(min(THETA),max(THETA),length=100)
lines(th,dnorm(th,mu.n,sqrt(t2.n)))

338 Chapter 18. Markov Chain Monte Carlo

Learning Apache Spark with Python

Fig. 1: Histogram for the Metropolis algorithm with r

Figure. Histogram for the Metropolis algorithm with r shows a trace plot for this run as well as a histogram
for the Metropolis algorithm compared with a draw from the true normal density.

18.3.2 Python results

coding: utf-8

In[1]:

import numpy as np

In[2]:

from scipy.stats import norm

def rnorm(n,mean,sd):
"""
same functions as rnorm in r
r: rnorm(n, mean=0, sd=1)
py: rvs(loc=0, scale=1, size=1, random_state=None)
"""
return norm.rvs(loc=mean,scale=sd,size=n)

(continues on next page)

18.3. Demos 339

Learning Apache Spark with Python

(continued from previous page)

def dnorm(x,mean,sd, log=False):
"""
same functions as dnorm in r
dnorm(x, mean=0, sd=1, log=FALSE)
pdf(x, loc=0, scale=1)
"""
if log:

return np.log(norm.pdf(x=x,loc=mean,scale=sd))
else:

return norm.pdf(x=x,loc=mean,scale=sd)

def runif(n,min=0, max=1):
"""
r: runif(n, min = 0, max = 1)
py: random.uniform(low=0.0, high=1.0, size=None)
"""
return np.random.uniform(min,max,size=n)

In[3]:

s2 = 1
t2 = 10
mu = 5
n = 5

In[4]:

y = rnorm(n,10,1)
y

In[5]:

mean of the normal posterior
mu_n = (np.mean(y)*n/s2 + mu/float(t2))/(n/float(s2)+1/float(t2))
mu_n

In[6]:

variance of the normal posterior
t2.n<-1/(n/s2+1/t2)

t2_n = 1.0/(n/float(s2)+1.0/t2)
t2_n

In[7]:
(continues on next page)

340 Chapter 18. Markov Chain Monte Carlo

Learning Apache Spark with Python

(continued from previous page)

defining the data
y<-c(9.37, 10.18, 9.16, 11.60, 10.33)

y = [9.37, 10.18, 9.16, 11.60, 10.33]

In[8]:

mu_n = (np.mean(y)*n/s2 + mu/float(t2))/(n/float(s2)+1/float(t2))
mu_n

In[9]:

####metropolis part####
##S = total num of simulations
theta<-0 ; delta<-2 ; S<-10000 ; THETA<-NULL ; set.seed(1)

theta = 0
delta = 2

S = 10000

theta_v = []

In[]:

for s in range(S):
theta_star = norm.rvs(theta,np.sqrt(delta),1)
logr = (sum(dnorm(y,theta_star,np.sqrt(s2),log=True)) +

sum(dnorm(theta_star,mu,np.sqrt(t2),log=True)))-
(sum(dnorm(y,theta,np.sqrt(s2),log=True)) +
sum(dnorm([theta],mu,np.sqrt(t2),log=True)))

#print(logr)
if np.log(runif(1))<logr:

theta = theta_star
#print(theta)
theta_v.append(theta)

In[]:

import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

plt.figure(figsize=(20, 8))

plt.subplot(1, 2, 1)
plt.plot(theta_v,'b-.')

(continues on next page)

18.3. Demos 341

Learning Apache Spark with Python

(continued from previous page)

plt.subplot(1, 2, 2)
#bins = np.arange(0, S, 10)
plt.hist(theta_v, density=True,bins='auto')
x = np.linspace(min(theta_v),max(theta_v),100)
y = norm.pdf(x,mu_n,np.sqrt(t2_n))
plt.plot(x,y,'y-.')
plt.xlim(right=12) # adjust the right leaving left unchanged
plt.xlim(left=8) # adjust the left leaving right unchanged
plt.show()

In[]:

Fig. 2: Histogram for the Metropolis algorithm with python

Figure. Histogram for the Metropolis algorithm with python shows a trace plot for this run as well as a
histogram for the Metropolis algorithm compared with a draw from the true normal density.

342 Chapter 18. Markov Chain Monte Carlo

Learning Apache Spark with Python

18.3.3 PySpark results

TODO. . .

Fig. 3: Histogram for the Metropolis algorithm with PySpark

Figure. Histogram for the Metropolis algorithm with PySpark shows a trace plot for this run as well as a
histogram for the Metropolis algorithm compared with a draw from the true normal density.

18.3. Demos 343

Learning Apache Spark with Python

344 Chapter 18. Markov Chain Monte Carlo

CHAPTER

NINETEEN

NEURAL NETWORK

Chinese proverb

Sharpening the knife longer can make it easier to hack the firewood – old Chinese proverb

19.1 Feedforward Neural Network

19.1.1 Introduction

A feedforward neural network is an artificial neural network wherein connections between the units do not
form a cycle. As such, it is different from recurrent neural networks.

The feedforward neural network was the first and simplest type of artificial neural network devised. In this
network, the information moves in only one direction, forward (see Fig. MultiLayer Neural Network), from
the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in
the network.

Fig. 1: MultiLayer Neural Network

345

Learning Apache Spark with Python

19.1.2 Demo

1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark Feedforward neural network example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

2. Load dataset

+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
|fixed|volatile|citric|sugar|chlorides|free|total|density|
→˓pH|sulphates|alcohol|quality|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
| 7.8| 0.88| 0.0| 2.6| 0.098|25.0| 67.0| 0.9968| 3.2| 0.68|
→˓9.8| 5|
| 7.8| 0.76| 0.04| 2.3| 0.092|15.0| 54.0| 0.997|3.26| 0.65|
→˓9.8| 5|
| 11.2| 0.28| 0.56| 1.9| 0.075|17.0| 60.0| 0.998|3.16| 0.58|
→˓9.8| 6|
| 7.4| 0.7| 0.0| 1.9| 0.076|11.0| 34.0| 0.9978|3.51| 0.56|
→˓9.4| 5|
+-----+--------+------+-----+---------+----+-----+-------+----+---------+-----
→˓--+-------+
only showing top 5 rows

3. change categorical variable size

Convert to float format
def string_to_float(x):

return float(x)

#
def condition(r):

if (0<= r <= 4):
label = "low"

elif(4< r <= 6):
label = "medium"

else:
label = "high"

return label

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType, DoubleType

(continues on next page)

346 Chapter 19. Neural Network

Learning Apache Spark with Python

(continued from previous page)

string_to_float_udf = udf(string_to_float, DoubleType())
quality_udf = udf(lambda x: condition(x), StringType())
df= df.withColumn("quality", quality_udf("quality"))

4. Convert the data to dense vector

convert the data to dense vector
def transData(data):

return data.rdd.map(lambda r: [r[-1], Vectors.dense(r[:-1])]).\
toDF(['label','features'])

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

data= transData(df)
data.show()

5. Split the data into training and test sets (40% held out for testing)

Split the data into train and test
(trainingData, testData) = data.randomSplit([0.6, 0.4])

6. Train neural network

specify layers for the neural network:
input layer of size 11 (features), two intermediate of size 5 and 4
and output of size 7 (classes)
layers = [11, 5, 4, 4, 3 , 7]

create the trainer and set its parameters
FNN = MultilayerPerceptronClassifier(labelCol="indexedLabel", \

featuresCol="indexedFeatures",\
maxIter=100, layers=layers, \
blockSize=128, seed=1234)

Convert indexed labels back to original labels.
labelConverter = IndexToString(inputCol="prediction", outputCol=
→˓"predictedLabel",

labels=labelIndexer.labels)
Chain indexers and forest in a Pipeline
from pyspark.ml import Pipeline
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, FNN,
→˓labelConverter])
train the model
Train model. This also runs the indexers.
model = pipeline.fit(trainingData)

7. Make predictions

Make predictions.
predictions = model.transform(testData)
Select example rows to display.
predictions.select("features","label","predictedLabel").show(5)

19.1. Feedforward Neural Network 347

Learning Apache Spark with Python

8. Evaluation

Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(

labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy
→˓")
accuracy = evaluator.evaluate(predictions)
print("Predictions accuracy = %g, Test Error = %g" % (accuracy,(1.0 -
→˓accuracy)))

348 Chapter 19. Neural Network

CHAPTER

TWENTY

AUTOMATION FOR CLOUDERA DISTRIBUTION HADOOP

CDH (Cloudera Distribution Hadoop) is the most complete, tested, and widely deployed distribution of
Apache Hadoop. A lot of small or middle size companies are using CHD. While Cloudera does not support
IPython or Jupyter notebooks on CDH and the Cloudera Data Science Workbench is expensive, many com-
paies are using CDH+zeppelin or CDH+jupyterhub infrastructure. This infrastructure works pretty
well, but it’s inconvenient for Data Engineer or Data Scientist to do automation during the production pro-
cess. This chapter will cover how to use Jinja2, spark sql and ML Pipelines to implement the automation for
Cloudera Distribution Hadoop.

20.1 Automation Pipeline

The automation pipeline mainly contains two parts:

1. Jinja2 + spark sql for data clean and manipulation automation

2. ML Pipelines for Machine Leanring automation

20.2 Data Clean and Manipulation Automation

20.2.1 Jinja 2

Jinja is a modern and designer-friendly templating language for Python, modelled after Django’s templates.
Use Jinja2 to generate SQL query will need two steps:

1. Get template

349

https://jinja.palletsprojects.com/en/2.10.x/
https://spark.apache.org/sql/
https://spark.apache.org/docs/latest/ml-pipeline.html
https://jinja.palletsprojects.com/en/2.10.x/
https://spark.apache.org/sql/
https://spark.apache.org/docs/latest/ml-pipeline.html

Learning Apache Spark with Python

temp = """
SELECT project, timesheet, hours
FROM timesheet
WHERE user_id = {{ user_id }}
{% if project_id %}
AND project_id = {{ project_id }}
{% endif %}

"""

2. render the tempalte

args = {"user_id": u"runawayhorse",
"project_id": 123}

query= Template(temp).render(args)

print(query)

Then, you will get the following SQL query:

SELECT project, timesheet, hours
FROM timesheet
WHERE user_id = runawayhorse

AND project_id = 123

Note

The Jinja is smart then you think. If you try this

args = {"user_id": u"runawayhorse"}

query= Template(temp).render(args)

print(query)

Then, you will get the following SQL query:

SELECT project, timesheet, hours
FROM timesheet
WHERE user_id = runawayhorse

If you have a long query, you can use Iinja get_template to read the tempalte:

import os
from jinja2 import Template
from jinja2 import Environment, FileSystemLoader

path = os.path.abspath(os.path.join(sys.path[0]))

(continues on next page)

350 Chapter 20. Automation for Cloudera Distribution Hadoop

Learning Apache Spark with Python

(continued from previous page)

try:
os.mkdir(path)

except OSError:
pass

os.chdir(path)
print(path)

jinja_env = Environment(loader=FileSystemLoader(path))
template = jinja_env.get_template('test.sql')
query = template.render(states=states)
print(query)

with test.sql file is as follows:

select id
{% for var in states %}
, (CASE WHEN (off_st = '{{var}}') THEN 1 ELSE 0 END) AS off_st_{{var}}
{% endfor %}
FROM table1

Then you will get the following query:

select id

, (CASE WHEN (off_st = 'MO') THEN 1 ELSE 0 END) AS off_st_MO

, (CASE WHEN (off_st = 'KS') THEN 1 ELSE 0 END) AS off_st_KS

, (CASE WHEN (off_st = 'KY') THEN 1 ELSE 0 END) AS off_st_KY

, (CASE WHEN (off_st = 'OH') THEN 1 ELSE 0 END) AS off_st_OH

FROM table1

20.2.2 Spark SQL

Spark SQL at here will be called to excute SQL or HiveQL queries which generated by Jinjia2 on existing
warehouses.

without output
spark.sql(query)

with output
df = spark.sql(query)

20.2. Data Clean and Manipulation Automation 351

Learning Apache Spark with Python

20.3 ML Pipeline Automation

I will not cover the details of the ML Pipeline at here, the interested reader is referred to ML Pipelines . The
The main steps for defining the stages are as follows:

scalering ='Standard'

from pyspark.ml.feature import Normalizer, StandardScaler, MinMaxScaler
if scalering=='Normal':

scaler = Normalizer(inputCol="features", outputCol="scaledFeatures", p=1.
→˓0)
elif scalering=='Standard':

scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
withStd=True, withMean=False)

else:
scaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")

from pyspark.ml.feature import StringIndexer
Index labels, adding metadata to the label column
labelIndexer = StringIndexer(inputCol='label',

outputCol='label').fit(transformed)

from pyspark.ml.feature import IndexToString
Convert indexed labels back to original labels.
labelConverter = IndexToString(inputCol="prediction", outputCol=
→˓"predictedLabel",

labels=labelIndexer.labels)

from pyspark.ml.classification import LogisticRegression
ml = LogisticRegression(featuresCol='scaledFeatures', labelCol='label',
→˓maxIter=100, regParam=0.01, elasticNetParam=0.6)

Chain indexers and tree in a Pipeline
pipeline_model = Pipeline(stages=[scaler,labelIndexer,ml,labelConverter])

Train model. This also runs the indexers.
model = pipeline_model.fit(trainingData)

Make predictions.
predictions = model.transform(testData)

352 Chapter 20. Automation for Cloudera Distribution Hadoop

https://spark.apache.org/docs/latest/ml-pipeline.html

Learning Apache Spark with Python

20.4 Save and Load PipelineModel

save PipelineModel
model.write().overwrite().save(out_path)

load PipelineModel
from pyspark.ml import PipelineModel

model = PipelineModel.load(out_path)

20.5 Ingest Results Back into Hadoop

df.createOrReplaceTempView("temp_table")

query = '''
create table database_name.prediction_{{dt}} AS
SELECT *
FROM temp_table
'''
output = Template(query).render(dt=dt)
spark.sql(output)

20.4. Save and Load PipelineModel 353

Learning Apache Spark with Python

354 Chapter 20. Automation for Cloudera Distribution Hadoop

CHAPTER

TWENTYONE

WRAP PYSPARK PACKAGE

It’s super easy to wrap your own package in Python. I packed some functions which I frequently used in my
daily work. You can download and install it from My PySpark Package. The hierarchical structure and the
directory structure of this package are as follows.

21.1 Package Wrapper

21.1.1 Hierarchical Structure

|-- build
| |-- bdist.linux-x86_64
| |-- lib.linux-x86_64-2.7
| |-- PySparkTools
| |-- __init__.py
| |-- Manipulation
| | |-- DataManipulation.py
| | |-- __init__.py
| | Visualization
| |-- __init__.py

|-- PyPlots.py
|-- dist

|-- PySParkTools-1.0-py2.7.egg
|-- __init__.py
|-- PySparkTools
| |-- __init__.py
| |-- Manipulation
| | |-- DataManipulation.py
| | |-- __init__.py
| |-- Visualization
| |-- __init__.py
| |-- PyPlots.py

|-- PyPlots.pyc
|-- PySParkTools.egg-info
| |-- dependency_links.txt
| |-- PKG-INFO
| |-- requires.txt
| |-- SOURCES.txt

(continues on next page)

355

https://github.com/runawayhorse001/PySparkAudit

Learning Apache Spark with Python

(continued from previous page)

| |-- top_level.txt
|-- README.md
|-- requirements.txt
|-- setup.py
|-- test

|-- spark-warehouse
|-- test1.py
|-- test2.py

From the above hierarchical structure, you will find that you have to have __init__.py in each directory.
I will explain the __init__.py file with the example below:

21.1.2 Set Up

from setuptools import setup, find_packages

try:
with open("README.md") as f:

long_description = f.read()
except IOError:

long_description = ""

try:
with open("requirements.txt") as f:

requirements = [x.strip() for x in f.read().splitlines() if x.strip()]
except IOError:

requirements = []

setup(name='PySParkTools',
install_requires=requirements,

version='1.0',
description='Python Spark Tools',
author='Wenqiang Feng',
author_email='von198@gmail.com',
url='https://github.com/runawayhorse001/PySparkTools',
packages=find_packages(),
long_description=long_description
)

21.1.3 ReadMe

PySparkTools

This is my PySpark Tools. If you want to colne and install it, you can use

- clone

```{bash}

(continues on next page)

356 Chapter 21. Wrap PySpark Package



Learning Apache Spark with Python

(continued from previous page)

git clone git@github.com:runawayhorse001/PySparkTools.git
```
- install

```{bash}
cd PySparkTools
pip install -r requirements.txt
python setup.py install
```

- test

```{bash}
cd PySparkTools/test
python test1.py
```

21.2 Pacakge Publishing on PyPI

21.2.1 Install twine

pip install twine

21.2.2 Build Your Package

python setup.py sdist bdist_wheel

Then you will get a new folder dist:

.
PySparkAudit-1.0.0-py2.7.egg
PySparkAudit-1.0.0-py2-none-any.whl
PySparkAudit-1.0.0.tar.gz

21.2.3 Upload Your Package

twine upload dist/*

During the uploading processing, you need to provide your PyPI account username and password:

Enter your username: runawayhorse001
Enter your password: ***************

21.2. Pacakge Publishing on PyPI 357

Learning Apache Spark with Python

21.2.4 Package at PyPI

Here is my PySparkAudit package at [PyPI](https://pypi.org/project/PySparkAudit). You can install
PySparkAudit using:

pip install PySparkAudit

358 Chapter 21. Wrap PySpark Package

https://pypi.org/project/PySparkAudit

CHAPTER

TWENTYTWO

PYSPARK DATA AUDIT LIBRARY

PySparkAudit: PySpark Data Audit Library. The PDF version can be downloaded from HERE. The python
version PyAudit: Python Data Audit Library API can be found at PyAudit.

22.1 Install with pip

You can install the PySparkAudit from [PyPI](https://pypi.org/project/PySparkAudit):

pip install PySparkAudit

22.2 Install from Repo

22.2.1 Clone the Repository

git clone https://github.com/runawayhorse001/PySparkAudit.git

22.2.2 Install

cd PySparkAudit
pip install -r requirements.txt
python setup.py install

22.3 Uninstall

pip uninstall PySparkAudit

359

https://runawayhorse001.github.io/PySparkAudit/
https://runawayhorse001.github.io/PySparkAudit/PySparkAudit.pdf
https://runawayhorse001.github.io/PyAudit/
https://pypi.org/project/PySparkAudit

Learning Apache Spark with Python

22.4 Test

22.4.1 Run test code

cd PySparkAudit/test
python test.py

test.py

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark regression example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

from PySparkAudit import dtypes_class, hist_plot, bar_plot, freq_items,
→˓feature_len
from PySparkAudit import dataset_summary, rates, trend_plot

path = '/home/feng/Desktop'

import PySpark Audit function
from PySparkAudit import auditing

load dataset
data = spark.read.csv(path='Heart.csv',

sep=',', encoding='UTF-8', comment=None, header=True,
→˓inferSchema=True)

auditing in one function
print(auditing(data, display=True))

360 Chapter 22. PySpark Data Audit Library

Learning Apache Spark with Python

22.4.2 Audited Results

The files in 00-audited_results.xlsx:

1. Dataset_summary

22.4. Test 361

Learning Apache Spark with Python

2. Numeric_summary

362 Chapter 22. PySpark Data Audit Library

Learning Apache Spark with Python

3. Category_summary

22.4. Test 363

Learning Apache Spark with Python

4. Correlation_matrix

364 Chapter 22. PySpark Data Audit Library

Learning Apache Spark with Python

5. Histograms in Histograms.pdf

22.4. Test 365

Learning Apache Spark with Python

6. Barplots in Bar_plots.pdf

366 Chapter 22. PySpark Data Audit Library

Learning Apache Spark with Python

22.5 Auditing on Big Dataset

In this section, we will demonstrate the auditing performance and audited results on the big data set. The
data set is Spanish High Speed Rail tickets pricing. It is available at : https://www.kaggle.
com/thegurus/spanish-high-speed-rail-system-ticket-pricing. This data set has 2579771 samples and 10
features.

From the following CPU time, you will see most of the time was spent on plotting the histograms. If your
time and memory are limited, we will suggest you to use sample_size to generate the subset of the the
dataset to plot histograms.

For example:

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName("Python Spark regression example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()

from PySparkAudit import dtypes_class, hist_plot, bar_plot, freq_items,
→˓feature_len
from PySparkAudit import dataset_summary, rates, trend_plot

Audited results output path
out_path = '/home/feng/Desktop'

import PySpark Audit function
from PySparkAudit import auditing

load dataset
Spanish High Speed Rail tickets pricing - Renfe (~2.58M)
https://www.kaggle.com/thegurus/spanish-high-speed-rail-system-ticket-
→˓pricing

data = spark.read.csv(path='/home/feng/Downloads/renfe.csv',
sep=',', encoding='UTF-8', comment=None, header=True,

→˓inferSchema=True)

auditing in one function
auditing(data, output_dir=out_path, tracking=True)

Result:

22.5. Auditing on Big Dataset 367

https://www.kaggle.com/thegurus/spanish-high-speed-rail-system-ticket-pricing
https://www.kaggle.com/thegurus/spanish-high-speed-rail-system-ticket-pricing

Learning Apache Spark with Python

22.5.1 print in bash

==
The audited results summary audited_results.xlsx was located at:
/home/feng/Desktop/Audited
Generate data set summary took = 60.535009145736694 s
==
Collecting data types.... Please be patient!
Generate counts took = 0.0016515254974365234 s
==
Collecting features' counts.... Please be patient!
Generate counts took = 6.502962350845337 s
==
Collecting data frame description.... Please be patient!
Generate data frame description took = 1.5562639236450195 s
==
Calculating percentiles.... Please be patient!
Generate percentiles took = 19.76785445213318 s
==
Calculating features' length.... Please be patient!
Generate features' length took = 4.953453540802002 s
==
Calculating top 5 frequent items.... Please be patient!
Generate rates took: 4.761325359344482 s
==
Calculating rates.... Please be patient!
Generate rates took: 17.201056718826294 s
Auditing numerical data took = 54.77840781211853 s
==
Collecting data types.... Please be patient!
Generate counts took = 0.001623392105102539 s
==
Collecting features' counts.... Please be patient!
Generate counts took = 12.59226107597351 s
==
Calculating features' length.... Please be patient!
Generate features' length took = 5.332952976226807 s
==
Calculating top 5 frequent items.... Please be patient!
Generate rates took: 6.832213878631592 s
==
Calculating rates.... Please be patient!
Generate rates took: 23.704302072525024 s
Auditing categorical data took = 48.484763622283936 s
==
The correlation matrix plot Corr.png was located at:
/home/feng/Desktop/Audited
Calculating correlation matrix... Please be patient!
Generate correlation matrix took = 19.61273431777954 s
==
The Histograms plots *.png were located at:
/home/feng/Desktop/Audited/02-hist

(continues on next page)

368 Chapter 22. PySpark Data Audit Library

Learning Apache Spark with Python

(continued from previous page)

Plotting histograms of _c0.... Please be patient!
Plotting histograms of price.... Please be patient!
Histograms plots are DONE!!!
Generate histograms plots took = 160.3421311378479 s
==
The Bar plot Bar_plots.pdf was located at:
/home/feng/Desktop/Audited
Plotting barplot of origin.... Please be patient!
Plotting barplot of destination.... Please be patient!
Plotting barplot of train_type.... Please be patient!
Plotting barplot of train_class.... Please be patient!
Plotting barplot of fare.... Please be patient!
Plotting barplot of insert_date.... Please be patient!
Plotting barplot of start_date.... Please be patient!
Plotting barplot of end_date.... Please be patient!
Bar plots are DONE!!!
Generate bar plots took = 24.17994236946106 s
==
The Trend plot Trend_plots.pdf was located at:
/home/feng/Desktop/Audited
Plotting trend plot of _c0.... Please be patient!
Plotting trend plot of price.... Please be patient!
Trend plots are DONE!!!
Generate trend plots took = 11.697550296783447 s
Generate all the figures took = 196.25823402404785 s
Generate all audited results took = 379.73954820632935 s
==
The auditing processes are DONE!!!

22.5. Auditing on Big Dataset 369

Learning Apache Spark with Python

22.5.2 Audited results folder

370 Chapter 22. PySpark Data Audit Library

CHAPTER

TWENTYTHREE

ZEPPELIN TO JUPYTER NOTEBOOK

The Zeppelin users may have same problem with me that the Zeppelin .json notebook is hard to open and
read. ze2nb: A piece of code to convert Zeppelin .json notebook to .ipynb Jupyter notebook, .py and
.html file. This library is based on Ryan Blue’s Jupyter/Zeppelin conversion: [jupyter-zeppelin]. The API
book can be found at ze2nb API or [zeppelin2nb]. You may download and distribute it. Please be aware,
however, that the note contains typos as well as inaccurate or incorrect description.

23.1 How to Install

23.1.1 Install with pip

You can install the ze2nb from [PyPI](https://pypi.org/project/ze2nb):

pip install ze2nb

23.1.2 Install from Repo

1. Clone the Repository

git clone https://github.com/runawayhorse001/ze2nb.git

2. Install

cd zeppelin2nb
pip install -r requirements.txt
python setup.py install

371

https://runawayhorse001.github.io/ze2nb/
https://pypi.org/project/ze2nb

Learning Apache Spark with Python

23.1.3 Uninstall

pip uninstall ze2nb

23.2 Converting Demos

The following demos are designed to show how to use zepplin2nb to convert the .json to .ipynb ,
.py and .html.

23.2.1 Converting in one function

For example:

import python library
import os, sys

import zeppelin2nb module
from ze2nb import ze2nb

scenario 1
file and output at the current directory
output path, the default output path will be the current directory
ze2nb('H2o_Sparking.json')

scenario 2
output = os.path.abspath(os.path.join(sys.path[0])) +'/output'
ze2nb('H2o_Sparking.json', out_path=output, to_html=True, to_py=True)

scenario 3
with load and output path
load_path = '/Users/dt216661/Documents/MyJson/'
output = os.path.abspath(os.path.join(sys.path[0])) +'/output1'
ze2nb('H2o_GBM.json', load_path=load_path, out_path=output, to_html=True, to_
→˓py=True)

23.2.2 Converted results

Result:

372 Chapter 23. Zeppelin to jupyter notebook

Learning Apache Spark with Python

Results in output:

23.2. Converting Demos 373

Learning Apache Spark with Python

Results in output1:

374 Chapter 23. Zeppelin to jupyter notebook

Learning Apache Spark with Python

23.2. Converting Demos 375

Learning Apache Spark with Python

376 Chapter 23. Zeppelin to jupyter notebook

CHAPTER

TWENTYFOUR

MY CHEAT SHEET

You can download the PDF version: PySpark Cheat Sheet and pdDataFrame vs rddDataFrame.

377

https://github.com/runawayhorse001/CheatSheet/blob/master/cheatSheet_pyspark.pdf
https://github.com/runawayhorse001/CheatSheet/blob/master/cheatSheet_pdrdd.pdf

Learning Apache Spark with Python

378 Chapter 24. My Cheat Sheet

Learning Apache Spark with Python

379

Learning Apache Spark with Python

380 Chapter 24. My Cheat Sheet

CHAPTER

TWENTYFIVE

JDBC CONNECTION

In this chapter, you will learn how to use JDBC source to write and read data in PySpark. The idea database
for spark is HDFS. But not many companies are not willing to move all the data (PII data) into Databricks’
HDFS. Then you have to use JDBC to connect to external database. While JDBC read and write are always
tricky and confusion for beginner.

25.1 JDBC Driver

For successfully connection, you need the corresponding JDBC driver for the specify Database. Here I will
use Greenplum database as an example to demonstrate how to get the correct .jar file and where to put
the .jar.

25.1.1 Get the .jar file

Since Greenplum is using PostgreSQL, you can search with ‘PostgreSQL JDBC Driver’. There is a high
chance that you will reach to this page: https://jdbc.postgresql.org/download.html. Then download the .
jar file.

25.1.2 Put .jar in the jars folder

Now what you need to do is putting the .jar file in the jar folder under your spark installation folder. Here
is my jar folder: /opt/spark/jars

381

https://jdbc.postgresql.org/download.html

Learning Apache Spark with Python

Fig. 1: JDBC connection jars folder

25.2 JDBC read

See code JDBC lower-upper Bound

stride = (upper_bound/partitions_number) - (lower_bound/partitions_number)
partition_nr = 0
while (partition_nr < partitions_number)

generate WHERE clause:
partition_column IS NULL OR partition_column < stride
if:

partition_nr == 0 AND partition_nr < partitions_number
or generate WHERE clause:

partition_column >= stride AND partition_column < next_stride
if:

partition_nr < 0 AND partition_nr < partitions_number
or generate WHERE clause

partition_column >= stride
if:

partition_nr > 0 AND partition_nr == partitions_number
where next_stride is calculated after computing the left sideo

(continues on next page)

382 Chapter 25. JDBC Connection

https://github.com/apache/spark/blob/17edfec59de8d8680f7450b4d07c147c086c105a/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/jdbc/JDBCRelation.scala#L85-L97

Learning Apache Spark with Python

(continued from previous page)

of the WHERE clause by next_stride += stride

(stride = (20/5) - (0/5) = 4
SELECT * FROM my_table WHERE partition_column IS NULL OR partition_column < 4
SELECT * FROM my_table WHERE partition_column >= 4 AND partition_column < 8
SELECT * FROM my_table WHERE partition_column >= 8 AND partition_column < 12
SELECT * FROM my_table WHERE partition_column >= 12 AND partition_column < 16
SELECT * FROM my_table WHERE partition_column >= 16

As you see, the above queries generate 5 partitions of data, each containing the values from: (0-3), (4-7),
(8-11), (12-15) and (16 and more).

25.3 JDBC write

TODO. . .

25.4 JDBC temp_view

TODO. . .

25.3. JDBC write 383

Learning Apache Spark with Python

384 Chapter 25. JDBC Connection

CHAPTER

TWENTYSIX

DATABRICKS TIPS

In this chapter, I will share some of the useful tips when using Databricks.

26.1 Display samples

In pyspark, we can use show() to display the given size of the sample. While in databricks environment,
we also have display() function to display the sample records. In general, the CPU time for big data
table/set is

display(df) < df.limit(n).show() < df.show(n)
n is the number of the given size

26.2 Auto files download

Databricks is the most powerful big data analytics and machine learning platform, while it’s not perfect.
The file management system is not that good like jupyter Notebook/Lab. Here I will provide one way
to download the files under dbfs:/FileStore (This method only works for the files under dbfs:/
FileStore).

In general, the file link for downloading is like:

f"{cluster_address}/files/{file_path}?o={cluster_no}"

Here I provided my auto click download functions:

import os
import IPython
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from jinja2 import Template
from pathlib import Path
from subprocess import Popen, PIPE

def get_hdfs_files(hdfs_path, relative_path=True):
"""

(continues on next page)

385

Learning Apache Spark with Python

(continued from previous page)

Get file names and file path or relative path for the given HDFS
path. Note: os.listdir does not work in ``community.cloud.databricks``.

:param hdfs_path: the input HDFS path
:param relative_path: flag of return full path or the path relative to

``dbfs:/FileStore`` (We need the relative for the
file download.)

:return file_names: file names under the given path
:return relative_p: file paths, full path if ``relative_path=False``

else paths relative to ``bdfs:/FileStore``
"""
get the file information
xx = dbutils.fs.ls(hdfs_path)

get hdfs path and folder name
file_names = [list(xx[i])[1] for i in range(len(xx))]
hdfs_paths = [list(xx[i])[0] for i in range(len(xx))]

if relative_path:
try:

relative_p = [os.path.relpath(hdfs_path, 'dbfs:/FileStore') for hdfs_
→˓path in hdfs_paths]

except:
print("Only suooprt the files under 'dbfs:/FileStore/'")

else:
relative_p = hdfs_paths

return file_names, relative_p

def azdb_files_download(files_path, cluster_address="https://community.cloud.
→˓databricks.com",

cluster_no='4622560542654492'):
"""
List the files download links.

:param files_path: the given file path ot folder path
:param cluster_address: Your databricks cluster address, i.e. the link before
→˓``/?o``
:param cluster_no: YOur databricks cluster number, i.e. the number after ``?
→˓o=``
"""

if not os.path.isfile(files_path): # os.path.isdir(files_path):
file_names, files_path = get_hdfs_files(files_path)

if not isinstance(files_path, list):
files_path = [files_path]

urls = [f"{cluster_address}/files/{file_path}?o={cluster_no}" for file_path
→˓in files_path]

(continues on next page)

386 Chapter 26. Databricks Tips

Learning Apache Spark with Python

(continued from previous page)

temp = """
<h2>AZDB files download</h2>
{% for i in range(len(urls)) %}

 Click me to download {
→˓{files_path[i].split('/')[-1]}}

{% endfor %}
"""

html = Template(temp).render(files_path=files_path, urls=urls, len=len)

get dbutils module
dbutils = IPython.get_ipython().user_ns["dbutils"]

dbutils.displayHTML(html)

Note: In commercial version of databricks, you can use

spark.conf.get("spark.databricks.clusterUsageTags.instanceWorkerEnvId")

to get the cluster_no. But it will not work for community version.

By using the above code, you can download the files relative to dbfs:/FileStore.

The files under dbfs:/FileStore/data

26.2. Auto files download 387

Learning Apache Spark with Python

Fig. 1: File under dbfs:/FileStore/data

Click download demos:

388 Chapter 26. Databricks Tips

Learning Apache Spark with Python

Fig. 2: File download in databricks

26.3 Working with AWS S3

Many companies chose to save sensitive data in AWS S3. So you may have to deal with data with python in
Databricks, while python will have many issues to operate in Databricks(PySpark will not have problems if
the environment was set up correctly in Databricks): such as the os.system command-like function can
not use any more; no unified way to upload or download different type files, etc. Here, I will provide my
way to work in AWS S3 with python in Databricks:

26.3. Working with AWS S3 389

Learning Apache Spark with Python

26.3.1 Credentials

I use Security Token Service (STS) to create the credentials to access AWS S3. STS enables you to re-
quest temporary, limited-privilege credentials for Identity and Access Management (IAM) users or for users
that you authenticate (federated users). More details can be found at: https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/sts.html

import boto3

response = boto3.client('sts')\
.assume_role(RoleArn='arn:aws:iam::123456789012:role/demo',

RoleSessionName='your_role_session_name')
credentials = response['Credentials']

26.3.2 File Upload to S3

The main idea at here is to save the file in memory or a temporary file, then use put_object to put the file
in S3. It’s a little bit tricky to save the corresponding formatted file in memory, I will list several common
types in the examples.

1. s3_file_upload Function

def s3_file_upload(data, path):

file_type = path.split('/')[-1].split('.')[-1].lower()
try:

content_type = s3_content_type(file_type)
except:

print('Do not support the current input type!!!')

s3_path = path.replace('s3://', '').replace('s3a://', '')
bucket = s3_path.split('/')[0]
key = s3_path.split('/', 1)[1]

try:
s3_resource.Bucket(bucket)\

.put_object(Key=key,
Body=data,
ContentType=content_type,
ACL='public-read')

print(f"{key.split('/')[-1]} has been successfully saved in s3!")
except Exception as err:

print(err)

2. s3_content_type Function

def s3_content_type(file_type):
mapping = {png:image/png}

return mapping[file_type]

390 Chapter 26. Databricks Tips

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sts.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sts.html

Learning Apache Spark with Python

The full mapping list can be found as follows:

3dm:x-world/x-3dmf
3dmf:x-world/x-3dmf
a:application/octet-stream
aab:application/x-authorware-bin
aam:application/x-authorware-map
aas:application/x-authorware-seg
abc:text/vnd.abc
acgi:text/html
afl:video/animaflex
ai:application/postscript
aif:audio/aiff
#aif:audio/x-aiff
aifc:audio/aiff
#aifc:audio/x-aiff
aiff:audio/aiff
#aiff:audio/x-aiff
aim:application/x-aim
aip:text/x-audiosoft-intra
ani:application/x-navi-animation
aos:application/x-nokia-9000-communicator-add-on-software
aps:application/mime
arc:application/octet-stream
arj:application/arj
art:image/x-jg
asf:video/x-ms-asf
asm:text/x-asm
asp:text/asp
asx:application/x-mplayer2
#asx:video/x-ms-asf
#asx:video/x-ms-asf-plugin
au:audio/basic
#au:audio/x-au
#avi:video/avi
#avi:video/msvideo
avi:video/x-msvideo
avs:video/avs-video
bcpio:application/x-bcpio
#bin:application/mac-binary
#bin:application/macbinary
#bin:application/octet-stream
bin:application/x-binary
#bin:application/x-macbinary
bm:image/bmp
bmp:image/bmp
boo:application/book
book:application/book
boz:application/x-bzip2
bsh:application/x-bsh
bz:application/x-bzip
bz2:application/x-bzip2
c:text/plain

(continues on next page)

26.3. Working with AWS S3 391

Learning Apache Spark with Python

(continued from previous page)

c++:text/plain
cat:application/vnd.ms-pki.seccat
cc:text/plain
ccad:application/clariscad
cco:application/x-cocoa
cdf:application/cdf
cer:application/pkix-cert
cha:application/x-chat
chat:application/x-chat
class:application/java
com:application/octet-stream
conf:text/plain
cpio:application/x-cpio
cpp:text/x-c
cpt:application/mac-compactpro
crl:application/pkcs-crl
crt:application/pkix-cert
csh:application/x-csh
css:text/css
cxx:text/plain
dcr:application/x-director
deepv:application/x-deepv
def:text/plain
der:application/x-x509-ca-cert
dif:video/x-dv
dir:application/x-director
dl:video/dl
doc:application/msword
dot:application/msword
dp:application/commonground
drw:application/drafting
dump:application/octet-stream
dv:video/x-dv
dvi:application/x-dvi
dwf:model/vnd.dwf
dwg:application/acad
dxf:application/dxf
dxr:application/x-director
el:text/x-script.elisp
elc:application/x-bytecode.elisp
env:application/x-envoy
eps:application/postscript
es:application/x-esrehber
etx:text/x-setext
evy:application/envoy
exe:application/octet-stream
f:text/plain
f77:text/x-fortran
f90:text/plain
fdf:application/vnd.fdf
fif:application/fractals
fli:video/fli

(continues on next page)

392 Chapter 26. Databricks Tips

Learning Apache Spark with Python

(continued from previous page)

flo:image/florian
flx:text/vnd.fmi.flexstor
fmf:video/x-atomic3d-feature
for:text/plain
fpx:image/vnd.fpx
frl:application/freeloader
funk:audio/make
g:text/plain
g3:image/g3fax
gif:image/gif
gl:video/gl
gsd:audio/x-gsm
gsm:audio/x-gsm
gsp:application/x-gsp
gss:application/x-gss
gtar:application/x-gtar
gz:application/x-gzip
gzip:application/x-gzip
h:text/plain
hdf:application/x-hdf
help:application/x-helpfile
hgl:application/vnd.hp-hpgl
hh:text/plain
hlp:application/hlp
hpg:application/vnd.hp-hpgl
hpgl:application/vnd.hp-hpgl
hqx:application/binhex
hta:application/hta
htc:text/x-component
htm:text/html
html:text/html
htmls:text/html
htt:text/webviewhtml
htx:text/html
ice:x-conference/x-cooltalk
ico:image/x-icon
idc:text/plain
ief:image/ief
iefs:image/ief
iges:application/iges
igs:application/iges
ima:application/x-ima
imap:application/x-httpd-imap
inf:application/inf
ins:application/x-internett-signup
ip:application/x-ip2
isu:video/x-isvideo
it:audio/it
iv:application/x-inventor
ivr:i-world/i-vrml
ivy:application/x-livescreen
jam:audio/x-jam

(continues on next page)

26.3. Working with AWS S3 393

Learning Apache Spark with Python

(continued from previous page)

java:text/plain
jcm:application/x-java-commerce
jfif:image/jpeg
jpeg:image/jpeg
jpg:image/jpeg
jps:image/x-jps
js:application/x-javascript
jut:image/jutvision
kar:audio/midi
ksh:text/x-script.ksh
la:audio/nspaudio
lam:audio/x-liveaudio
latex:application/x-latex
lha:application/octet-stream
lhx:application/octet-stream
list:text/plain
lma:audio/nspaudio
log:text/plain
lst:text/plain
lsx:text/x-la-asf
ltx:application/x-latex
lzh:application/octet-stream
lzx:application/octet-stream
m:text/plain
m1v:video/mpeg
m2a:audio/mpeg
m2v:video/mpeg
m3u:audio/x-mpequrl
m4v:video/x-m4v
man:application/x-troff-man
mht:message/rfc822
mhtml:message/rfc822
midi:audio/midi
mif:application/x-frame
mjf:audio/x-vnd.audioexplosion.mjuicemediafile
mjpg:video/x-motion-jpeg
mod:audio/mod
mov:video/quicktime
movie:video/x-sgi-movie
mp2:audio/mpeg
mp3:audio/mpeg
#mpa:audio/mpeg
mpa:video/mpeg
mpc:application/x-project
mpeg:video/mpeg
mpg:video/mpeg
mpga:audio/mpeg
ogg:video/ogg
ogv:video/ogg
p:text/x-pascal
p10:application/pkcs10
#p12:application/pkcs-12

(continues on next page)

394 Chapter 26. Databricks Tips

Learning Apache Spark with Python

(continued from previous page)

p12:application/x-pkcs12
p7a:application/x-pkcs7-signature
p7c:application/x-pkcs7-mime
p7m:application/pkcs7-mime
p7r:application/x-pkcs7-certreqresp
p7s:application/pkcs7-signature
part:application/pro_eng
pas:text/pascal
pbm:image/x-portable-bitmap
pcl:application/x-pcl
pct:image/x-pict
pcx:image/x-pcx
pdb:chemical/x-pdb
pdf:application/pdf
pfunk:audio/make
pgm:image/x-portable-graymap
pic:image/pict
pict:image/pict
pkg:application/x-newton-compatible-pkg
pko:application/vnd.ms-pki.pko
pl:text/plain
plx:application/x-pixclscript
pm:image/x-xpixmap
pm4:application/x-pagemaker
pm5:application/x-pagemaker
png:image/png
pnm:image/x-portable-anymap
pot:application/mspowerpoint
ppa:application/vnd.ms-powerpoint
ppm:image/x-portable-pixmap
pps:application/mspowerpoint
ppt:application/mspowerpoint
#ppt:application/powerpoint
#ppt:application/vnd.ms-powerpoint
#ppt:application/x-mspowerpoint
ppz:application/mspowerpoint
pre:application/x-freelance
prt:application/pro_eng
ps:application/postscript
psd:application/octet-stream
pvu:paleovu/x-pv
pwz:application/vnd.ms-powerpoint
py:text/x-script.phyton
pyc:applicaiton/x-bytecode.python
qcp:audio/vnd.qcelp
qd3:x-world/x-3dmf
#qd3d:x-world/x-3dmf
qif:image/x-quicktime
qt:video/quicktime
qtc:video/x-qtc
qti:image/x-quicktime
qtif:image/x-quicktime

(continues on next page)

26.3. Working with AWS S3 395

Learning Apache Spark with Python

(continued from previous page)

ra:audio/x-pn-realaudio
#ra:audio/x-pn-realaudio-plugin
#ra:audio/x-realaudio
ram:audio/x-pn-realaudio
ras:application/x-cmu-raster
#ras:image/cmu-raster
#ras:image/x-cmu-raster
#rast:image/cmu-raster
#rexx:text/x-script.rexx
#rf:image/vnd.rn-realflash
rgb:image/x-rgb
rm:application/vnd.rn-realmedia
#rm:audio/x-pn-realaudio
rmi:audio/mid
rmm:audio/x-pn-realaudio
rmp:audio/x-pn-realaudio
#rmp:audio/x-pn-realaudio-plugin
rng:application/ringing-tones
#rng:application/vnd.nokia.ringing-tone
rnx:application/vnd.rn-realplayer
roff:application/x-troff
rp:image/vnd.rn-realpix
rpm:audio/x-pn-realaudio-plugin
rt:text/richtext
#rt:text/vnd.rn-realtext
rtf:application/rtf
#rtf:application/x-rtf
#rtf:text/richtext
#rtx:application/rtf
#rtx:text/richtext
rv:video/vnd.rn-realvideo
s:text/x-asm
s3m:audio/s3m
#saveme:application/octet-stream
sbk:application/x-tbook
scm:application/x-lotusscreencam
#scm:text/x-script.guile
#scm:text/x-script.scheme
#scm:video/x-scm
sdml:text/plain
sdp:application/sdp
#sdp:application/x-sdp
sdr:application/sounder
sea:application/sea
#sea:application/x-sea
set:application/set
sgm:text/sgml
#sgm:text/x-sgml
sgml:text/sgml
#sgml:text/x-sgml
sh:application/x-bsh
#sh:application/x-sh

(continues on next page)

396 Chapter 26. Databricks Tips

Learning Apache Spark with Python

(continued from previous page)

#sh:application/x-shar
#sh:text/x-script.sh
shar:application/x-bsh
#shar:application/x-shar
shtml:text/html
#shtml:text/x-server-parsed-html
sid:audio/x-psid
#sit:application/x-sit
sit:application/x-stuffit
skd:application/x-koan
skm:application/x-koan
skp:application/x-koan
skt:application/x-koan
sl:application/x-seelogo
smi:application/smil
smil:application/smil
#snd:audio/basic
snd:audio/x-adpcm
sol:application/solids
#spc:application/x-pkcs7-certificates
spc:text/x-speech
spl:application/futuresplash
spr:application/x-sprite
sprite:application/x-sprite
src:application/x-wais-source
ssi:text/x-server-parsed-html
ssm:application/streamingmedia
sst:application/vnd.ms-pki.certstore
step:application/step
stl:application/sla
#stl:application/vnd.ms-pki.stl
#stl:application/x-navistyle
stp:application/step
sv4cpio:application/x-sv4cpio
sv4crc:application/x-sv4crc
svf:image/vnd.dwg
#svf:image/x-dwg
svr:application/x-world
#svr:x-world/x-svr
swf:application/x-shockwave-flash
t:application/x-troff
talk:text/x-speech
tar:application/x-tar
tbk:application/toolbook
#tbk:application/x-tbook
tcl:application/x-tcl
#tcl:text/x-script.tcl
tcsh:text/x-script.tcsh
tex:application/x-tex
texi:application/x-texinfo
texinfo:application/x-texinfo
#text:application/plain

(continues on next page)

26.3. Working with AWS S3 397

Learning Apache Spark with Python

(continued from previous page)

text:text/plain
#tgz:application/gnutar
tgz:application/x-compressed
tif:image/tiff
#tif:image/x-tiff
tiff:image/tiff
#tiff:image/x-tiff
tr:application/x-troff
tsi:audio/tsp-audio
tsp:application/dsptype
#tsp:audio/tsplayer
tsv:text/tab-separated-values
turbot:image/florian
txt:text/plain
uil:text/x-uil
uni:text/uri-list
unis:text/uri-list
unv:application/i-deas
uri:text/uri-list
uris:text/uri-list
ustar:application/x-ustar
#ustar:multipart/x-ustar
uu:application/octet-stream
#uu:text/x-uuencode
uue:text/x-uuencode
vcd:application/x-cdlink
vcs:text/x-vcalendar
vda:application/vda
vdo:video/vdo
vew:application/groupwise
viv:video/vivo
#viv:video/vnd.vivo
vivo:video/vivo
#vivo:video/vnd.vivo
vmd:application/vocaltec-media-desc
vmf:application/vocaltec-media-file
voc:audio/voc
#voc:audio/x-voc
vos:video/vosaic
vox:audio/voxware
vqe:audio/x-twinvq-plugin
vqf:audio/x-twinvq
vql:audio/x-twinvq-plugin
vrml:application/x-vrml
#vrml:model/vrml
#vrml:x-world/x-vrml
vrt:x-world/x-vrt
vsd:application/x-visio
vst:application/x-visio
vsw:application/x-visio
w60:application/wordperfect6.0
w61:application/wordperfect6.1

(continues on next page)

398 Chapter 26. Databricks Tips

Learning Apache Spark with Python

(continued from previous page)

w6w:application/msword
wav:audio/wav
#wav:audio/x-wav
wb1:application/x-qpro
wbmp:image/vnd.wap.wbmp
web:application/vnd.xara
wiz:application/msword
wk1:application/x-123
wmf:windows/metafile
wml:text/vnd.wap.wml
wmlc:application/vnd.wap.wmlc
wmls:text/vnd.wap.wmlscript
wmlsc:application/vnd.wap.wmlscriptc
word:application/msword
wp:application/wordperfect
wp5:application/wordperfect
#wp5:application/wordperfect6.0
wp6:application/wordperfect
wpd:application/wordperfect
#wpd:application/x-wpwin
wq1:application/x-lotus
wri:application/mswrite
#wri:application/x-wri
#wrl:application/x-world
wrl:model/vrml
#wrl:x-world/x-vrml
#wrz:model/vrml
#wrz:x-world/x-vrml
#wsc:text/scriplet
wsrc:application/x-wais-source
wtk:application/x-wintalk
#xbm:image/x-xbitmap
#xbm:image/x-xbm
xbm:image/xbm
xdr:video/x-amt-demorun
xgz:xgl/drawing
xif:image/vnd.xiff
xl:application/excel
xla:application/excel
#xla:application/x-excel
#xla:application/x-msexcel
#xlb:application/excel
#xlb:application/vnd.ms-excel
xlb:application/x-excel
#xlc:application/excel
#xlc:application/vnd.ms-excel
#xlc:application/x-excel
xld:application/excel
#xld:application/x-excel
#xlk:application/excel
xlk:application/x-excel
#xll:application/excel

(continues on next page)

26.3. Working with AWS S3 399

Learning Apache Spark with Python

(continued from previous page)

#xll:application/vnd.ms-excel
xll:application/x-excel
#xlm:application/excel
#xlm:application/vnd.ms-excel
xlm:application/x-excel
#xls:application/excel
#xls:application/vnd.ms-excel
#xls:application/x-excel
xls:application/x-msexcel
#xlt:application/excel
xlt:application/x-excel
#xlv:application/excel
xlv:application/x-excel
#xlw:application/excel
#xlw:application/vnd.ms-excel
#xlw:application/x-excel
xlw:application/x-msexcel
xm:audio/xm
#xml:application/xml
xml:text/xml
xmz:xgl/movie
xpix:application/x-vnd.ls-xpix
#xpm:image/x-xpixmap
xpm:image/xpm
x-png:image/png
xsr:video/x-amt-showrun
#xwd:image/x-xwd
xwd:image/x-xwindowdump
xyz:chemical/x-pdb
#z:application/x-compress
z:application/x-compressed
#zip:application/x-compressed
#zip:application/x-zip-compressed
zip:application/zip
#zip:multipart/x-zip
zoo:application/octet-stream
zsh:text/x-script.zsh

3. Examples

a. .csv file

save csv file in memory:

csv_io = io.StringIO()
df.to_csv(csv_io, sep='\t', header=True, index=False)
csv_io.seek(0)
the csv data need encode
csv_data = io.BytesIO(csv_io.getvalue().encode())

Note:

400 Chapter 26. Databricks Tips

Learning Apache Spark with Python

The alternative way by using tempfile:

with tempfile.TemporaryFile(mode='r+') as fp:
df.to_csv(fp, sep='\t', header=True, index=False)
fp.seek(0)

#
s3_file_upload(csv_data, file_path)

Upload file

>>> file_path = 'my_bucket/~~/~~/test/test.csv'
>>> s3_file_upload(csv_data, file_path)
test.csv has been successfully saved in S3!

b. .json file

>>> json_object = """ your json content"""
>>> json_data = json.dumps(json_object)
>>> file_path = 'my_bucket/~~/~~/test/test.json'
>>> s3_file_upload(json_data, file_path)
test.json has been successfully saved in S3!

Note:

The alternative way by using tempfile:

with tempfile.TemporaryFile() as fp:
joblib.dump(json_data, fp)
fp.seek(0)

#
s3_file_upload(json_data, file_path)

c. .png, .jpeg or .pdf

Save the image in memory:

flights = sns.load_dataset("flights")
may_flights = flights.query("month == 'May'")
fig = plt.figure(figsize=(20,8))
sns.lineplot(data=may_flights, x="year", y="passengers")

img_data = io.BytesIO()
plt.savefig(img_data, format='png')
img_data.seek(0)

Save the in-memory image data in S3:

path = 'my_bucket/my_key'
s3_file_save(img_data, path)

26.3. Working with AWS S3 401

Learning Apache Spark with Python

Note: The above method also works for .jpeg and .pdf format.

26.3.3 File Download from S3

The main idea is using the s3 resource function to download the file and save it at /temp as a temporary
file, the use the corresponding formatted functions to read it.

1. s3_file_download Function

def s3_file_download(path):

extract bucket and key from the given path
s3_path = path.replace('s3://', '').replace('s3a://', '')
bucket = s3_path.split('/')[0]
key = s3_path.split('/', 1)[1]

download file and save it as a temp file
file_name = os.path.join('/tmp', path.split('/')[-1])
s3_resource.Bucket(bucket).download_file(key, file_name)

return saved file path
return file_name

2. Examples

>>> file_path = 'my_bucket/***/***/test/test.json'
>>> file_name = s3_file_download(file_path)
'/temp/test.json'
>>> joblib.load(filename)

26.3.4 File Management in S3

I mainly use my s3_fs to help me do the file management in S3.

1. s3_fs Function

The s3_fs is mainly based on s3fs package. The top-level class s3fs holds connection information
and allows typical file-system style operations like cp, mv, ls, walk, du, glob, etc. More details can be
found at: https://s3fs.readthedocs.io/en/latest/index.html

import s3fs

s3_fs = s3fs.S3FileSystem(anon=False,
key=credentials['AccessKeyId'],
secret=credentials['SecretAccessKey'],
token=credentials['SessionToken'])

2. Examples

402 Chapter 26. Databricks Tips

https://s3fs.readthedocs.io/en/latest/index.html

Learning Apache Spark with Python

Simple locate and read a file:

>>> s3_fs.ls('my-bucket')
['demo-file.csv']
>>> with fs.open('my-bucket/demo-file.csv', 'rb') as f:
... print(f.read())
b'UserId\tdate\nuser_id1\t2019-05-02\nuser_id2\t2019-12-02\n'

26.4 delta format

TODO. . .

26.5 mlflow

TODO. . .

26.4. delta format 403

Learning Apache Spark with Python

404 Chapter 26. Databricks Tips

CHAPTER

TWENTYSEVEN

PYSPARK API

Those APIs are automatically generated from PySpark package, so all the CopyRights belong to Spark.

27.1 Stat API

class pyspark.ml.stat.ChiSquareTest

Note: Experimental

Conduct Pearson’s independence test for every feature against the label. For each feature, the (feature,
label) pairs are converted into a contingency matrix for which the Chi-squared statistic is computed.
All label and feature values must be categorical.

The null hypothesis is that the occurrence of the outcomes is statistically independent.

New in version 2.2.0.

static test(dataset, featuresCol, labelCol)
Perform a Pearson’s independence test using dataset.

Parameters

• dataset – DataFrame of categorical labels and categorical features. Real-
valued features will be treated as categorical for each distinct value.

• featuresCol – Name of features column in dataset, of type 𝑉 𝑒𝑐𝑡𝑜𝑟
(𝑉 𝑒𝑐𝑡𝑜𝑟𝑈𝐷𝑇).

• labelCol – Name of label column in dataset, of any numerical type.

Returns DataFrame containing the test result for every feature against the label. This
DataFrame will contain a single Row with the following fields: - 𝑝𝑉 𝑎𝑙𝑢𝑒𝑠 :
𝑉 𝑒𝑐𝑡𝑜𝑟 - 𝑑𝑒𝑔𝑟𝑒𝑒𝑠𝑂𝑓𝐹𝑟𝑒𝑒𝑑𝑜𝑚 : 𝐴𝑟𝑟𝑎𝑦[𝐼𝑛𝑡] - 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 : 𝑉 𝑒𝑐𝑡𝑜𝑟 Each of these
fields has one value per feature.

405

Learning Apache Spark with Python

>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.ml.stat import ChiSquareTest
>>> dataset = [[0, Vectors.dense([0, 0, 1])],
... [0, Vectors.dense([1, 0, 1])],
... [1, Vectors.dense([2, 1, 1])],
... [1, Vectors.dense([3, 1, 1])]]
>>> dataset = spark.createDataFrame(dataset, ["label", "features"])
>>> chiSqResult = ChiSquareTest.test(dataset, 'features', 'label')
>>> chiSqResult.select("degreesOfFreedom").collect()[0]
Row(degreesOfFreedom=[3, 1, 0])

New in version 2.2.0.

class pyspark.ml.stat.Correlation

Note: Experimental

Compute the correlation matrix for the input dataset of Vectors using the specified method. Methods
currently supported: 𝑝𝑒𝑎𝑟𝑠𝑜𝑛 (default), 𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛.

Note: For Spearman, a rank correlation, we need to create an RDD[Double] for each column and sort
it in order to retrieve the ranks and then join the columns back into an RDD[Vector], which is fairly
costly. Cache the input Dataset before calling corr with 𝑚𝑒𝑡ℎ𝑜𝑑 =′ 𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛′ to avoid recomputing
the common lineage.

New in version 2.2.0.

static corr(dataset, column, method='pearson')
Compute the correlation matrix with specified method using dataset.

Parameters

• dataset – A Dataset or a DataFrame.

• column – The name of the column of vectors for which the correlation coeffi-
cient needs to be computed. This must be a column of the dataset, and it must
contain Vector objects.

• method – String specifying the method to use for computing correlation. Sup-
ported: 𝑝𝑒𝑎𝑟𝑠𝑜𝑛 (default), 𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛.

Returns A DataFrame that contains the correlation matrix of the column of vectors.
This DataFrame contains a single row and a single column of name ‘$METHOD-
NAME($COLUMN)’.

>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.ml.stat import Correlation
>>> dataset = [[Vectors.dense([1, 0, 0, -2])],
... [Vectors.dense([4, 5, 0, 3])],

(continues on next page)

406 Chapter 27. PySpark API

Learning Apache Spark with Python

(continued from previous page)

... [Vectors.dense([6, 7, 0, 8])],

... [Vectors.dense([9, 0, 0, 1])]]
>>> dataset = spark.createDataFrame(dataset, ['features'])
>>> pearsonCorr = Correlation.corr(dataset, 'features', 'pearson').
→˓collect()[0][0]
>>> print(str(pearsonCorr).replace('nan', 'NaN'))
DenseMatrix([[1. , 0.0556..., NaN, 0.4004...],

[0.0556..., 1. , NaN, 0.9135...],
[NaN, NaN, 1. , NaN],
[0.4004..., 0.9135..., NaN, 1.]])

>>> spearmanCorr = Correlation.corr(dataset, 'features', method=
→˓'spearman').collect()[0][0]
>>> print(str(spearmanCorr).replace('nan', 'NaN'))
DenseMatrix([[1. , 0.1054..., NaN, 0.4],

[0.1054..., 1. , NaN, 0.9486...],
[NaN, NaN, 1. , NaN],
[0.4 , 0.9486... , NaN, 1.]])

New in version 2.2.0.

class pyspark.ml.stat.KolmogorovSmirnovTest

Note: Experimental

Conduct the two-sided Kolmogorov Smirnov (KS) test for data sampled from a continuous distribu-
tion.

By comparing the largest difference between the empirical cumulative distribution of the sample data
and the theoretical distribution we can provide a test for the the null hypothesis that the sample data
comes from that theoretical distribution.

New in version 2.4.0.

static test(dataset, sampleCol, distName, *params)
Conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equal-
ity. Currently supports the normal distribution, taking as parameters the mean and standard
deviation.

Parameters

• dataset – a Dataset or a DataFrame containing the sample of data to test.

• sampleCol – Name of sample column in dataset, of any numerical type.

• distName – a 𝑠𝑡𝑟𝑖𝑛𝑔 name for a theoretical distribution, currently only sup-
port “norm”.

• params – a list of 𝐷𝑜𝑢𝑏𝑙𝑒 values specifying the parameters to be used for the
theoretical distribution. For “norm” distribution, the parameters includes mean
and variance.

27.1. Stat API 407

Learning Apache Spark with Python

Returns A DataFrame that contains the Kolmogorov-Smirnov test result for the input
sampled data. This DataFrame will contain a single Row with the following fields:
- 𝑝𝑉 𝑎𝑙𝑢𝑒 : 𝐷𝑜𝑢𝑏𝑙𝑒 - 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 : 𝐷𝑜𝑢𝑏𝑙𝑒

>>> from pyspark.ml.stat import KolmogorovSmirnovTest
>>> dataset = [[-1.0], [0.0], [1.0]]
>>> dataset = spark.createDataFrame(dataset, ['sample'])
>>> ksResult = KolmogorovSmirnovTest.test(dataset, 'sample', 'norm',
→˓0.0, 1.0).first()
>>> round(ksResult.pValue, 3)
1.0
>>> round(ksResult.statistic, 3)
0.175
>>> dataset = [[2.0], [3.0], [4.0]]
>>> dataset = spark.createDataFrame(dataset, ['sample'])
>>> ksResult = KolmogorovSmirnovTest.test(dataset, 'sample', 'norm',
→˓3.0, 1.0).first()
>>> round(ksResult.pValue, 3)
1.0
>>> round(ksResult.statistic, 3)
0.175

New in version 2.4.0.

class pyspark.ml.stat.Summarizer

Note: Experimental

Tools for vectorized statistics on MLlib Vectors. The methods in this package provide various statistics
for Vectors contained inside DataFrames. This class lets users pick the statistics they would like to
extract for a given column.

>>> from pyspark.ml.stat import Summarizer
>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> summarizer = Summarizer.metrics("mean", "count")
>>> df = sc.parallelize([Row(weight=1.0, features=Vectors.dense(1.0, 1.0,
→˓ 1.0)),
... Row(weight=0.0, features=Vectors.dense(1.0, 2.0,
→˓ 3.0))]).toDF()
>>> df.select(summarizer.summary(df.features, df.weight)).
→˓show(truncate=False)
+-----------------------------------+
|aggregate_metrics(features, weight)|
+-----------------------------------+
|[[1.0,1.0,1.0], 1] |
+-----------------------------------+

>>> df.select(summarizer.summary(df.features)).show(truncate=False)
+--------------------------------+

(continues on next page)

408 Chapter 27. PySpark API

Learning Apache Spark with Python

(continued from previous page)

|aggregate_metrics(features, 1.0)|
+--------------------------------+
|[[1.0,1.5,2.0], 2] |
+--------------------------------+

>>> df.select(Summarizer.mean(df.features, df.weight)).
→˓show(truncate=False)
+--------------+
|mean(features)|
+--------------+
|[1.0,1.0,1.0] |
+--------------+

>>> df.select(Summarizer.mean(df.features)).show(truncate=False)
+--------------+
|mean(features)|
+--------------+
|[1.0,1.5,2.0] |
+--------------+

New in version 2.4.0.

static count(col, weightCol=None)
return a column of count summary

New in version 2.4.0.

static max(col, weightCol=None)
return a column of max summary

New in version 2.4.0.

static mean(col, weightCol=None)
return a column of mean summary

New in version 2.4.0.

static metrics(*metrics)
Given a list of metrics, provides a builder that it turns computes metrics from a column.

See the documentation of [[Summarizer]] for an example.

The following metrics are accepted (case sensitive):

• mean: a vector that contains the coefficient-wise mean.

• variance: a vector tha contains the coefficient-wise variance.

• count: the count of all vectors seen.

• numNonzeros: a vector with the number of non-zeros for each coefficients

• max: the maximum for each coefficient.

• min: the minimum for each coefficient.

• normL2: the Euclidian norm for each coefficient.

27.1. Stat API 409

Learning Apache Spark with Python

• normL1: the L1 norm of each coefficient (sum of the absolute values).

Parameters metrics – metrics that can be provided.

Returns an object of pyspark.ml.stat.SummaryBuilder

Note: Currently, the performance of this interface is about 2x~3x slower then using the RDD
interface.

New in version 2.4.0.

static min(col, weightCol=None)
return a column of min summary

New in version 2.4.0.

static normL1(col, weightCol=None)
return a column of normL1 summary

New in version 2.4.0.

static normL2(col, weightCol=None)
return a column of normL2 summary

New in version 2.4.0.

static numNonZeros(col, weightCol=None)
return a column of numNonZero summary

New in version 2.4.0.

static variance(col, weightCol=None)
return a column of variance summary

New in version 2.4.0.

class pyspark.ml.stat.SummaryBuilder(jSummaryBuilder)

Note: Experimental

A builder object that provides summary statistics about a given column.

Users should not directly create such builders, but instead use one of the methods in pyspark.ml.
stat.Summarizer

New in version 2.4.0.

summary(featuresCol, weightCol=None)
Returns an aggregate object that contains the summary of the column with the requested metrics.

Parameters

• featuresCol – a column that contains features Vector object.

• weightCol – a column that contains weight value. Default weight is 1.0.

410 Chapter 27. PySpark API

Learning Apache Spark with Python

Returns an aggregate column that contains the statistics. The exact content of this
structure is determined during the creation of the builder.

New in version 2.4.0.

27.2 Regression API

class pyspark.ml.regression.AFTSurvivalRegression(*args, **kwargs)

Note: Experimental

Accelerated Failure Time (AFT) Model Survival Regression

Fit a parametric AFT survival regression model based on the Weibull distribution of the survival time.

See also:

AFT Model

>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(1.0), 1.0),
... (1e-40, Vectors.sparse(1, [], []), 0.0)], ["label", "features",
→˓"censor"])
>>> aftsr = AFTSurvivalRegression()
>>> model = aftsr.fit(df)
>>> model.predict(Vectors.dense(6.3))
1.0
>>> model.predictQuantiles(Vectors.dense(6.3))
DenseVector([0.0101, 0.0513, 0.1054, 0.2877, 0.6931, 1.3863, 2.3026, 2.
→˓9957, 4.6052])
>>> model.transform(df).show()
+-------+---------+------+----------+
| label| features|censor|prediction|
+-------+---------+------+----------+
| 1.0| [1.0]| 1.0| 1.0|
|1.0E-40|(1,[],[])| 0.0| 1.0|
+-------+---------+------+----------+
...
>>> aftsr_path = temp_path + "/aftsr"
>>> aftsr.save(aftsr_path)
>>> aftsr2 = AFTSurvivalRegression.load(aftsr_path)
>>> aftsr2.getMaxIter()
100
>>> model_path = temp_path + "/aftsr_model"
>>> model.save(model_path)
>>> model2 = AFTSurvivalRegressionModel.load(model_path)
>>> model.coefficients == model2.coefficients
True

(continues on next page)

27.2. Regression API 411

https://en.wikipedia.org/wiki/Accelerated_failure_time_model

Learning Apache Spark with Python

(continued from previous page)

>>> model.intercept == model2.intercept
True
>>> model.scale == model2.scale
True

New in version 1.6.0.

getCensorCol()
Gets the value of censorCol or its default value.

New in version 1.6.0.

getQuantileProbabilities()
Gets the value of quantileProbabilities or its default value.

New in version 1.6.0.

getQuantilesCol()
Gets the value of quantilesCol or its default value.

New in version 1.6.0.

setCensorCol(value)
Sets the value of censorCol.

New in version 1.6.0.

setParams(featuresCol='features', labelCol='label', predictionCol='prediction', fitInter-
cept=True, maxIter=100, tol=1e-06, censorCol='censor', quantileProbabili-
ties=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, ag-
gregationDepth=2)

setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, fitInter-
cept=True, maxIter=100, tol=1E-6, censorCol=”censor”, quantileProbabilities=[0.01, 0.05, 0.1,
0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2):

New in version 1.6.0.

setQuantileProbabilities(value)
Sets the value of quantileProbabilities.

New in version 1.6.0.

setQuantilesCol(value)
Sets the value of quantilesCol.

New in version 1.6.0.

class pyspark.ml.regression.AFTSurvivalRegressionModel(java_model=None)

Note: Experimental

Model fitted by AFTSurvivalRegression.

412 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 1.6.0.

property coefficients
Model coefficients.

New in version 2.0.0.

property intercept
Model intercept.

New in version 1.6.0.

predict(features)
Predicted value

New in version 2.0.0.

predictQuantiles(features)
Predicted Quantiles

New in version 2.0.0.

property scale
Model scale parameter.

New in version 1.6.0.

class pyspark.ml.regression.DecisionTreeRegressionModel(java_model=None)
Model fitted by DecisionTreeRegressor.

New in version 1.4.0.

property featureImportances
Estimate of the importance of each feature.

This generalizes the idea of “Gini” importance to other losses, following the explanation of
Gini importance from “Random Forests” documentation by Leo Breiman and Adele Cutler, and
following the implementation from scikit-learn.

This feature importance is calculated as follows:

• importance(feature j) = sum (over nodes which split on feature j) of the gain, where
gain is scaled by the number of instances passing through node

• Normalize importances for tree to sum to 1.

Note: Feature importance for single decision trees can have high variance due to correlated
predictor variables. Consider using a RandomForestRegressor to determine feature im-
portance instead.

New in version 2.0.0.

class pyspark.ml.regression.DecisionTreeRegressor(*args, **kwargs)
Decision tree learning algorithm for regression. It supports both continuous and categorical features.

27.2. Regression API 413

http://en.wikipedia.org/wiki/Decision_tree_learning

Learning Apache Spark with Python

>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> dt = DecisionTreeRegressor(maxDepth=2, varianceCol="variance")
>>> model = dt.fit(df)
>>> model.depth
1
>>> model.numNodes
3
>>> model.featureImportances
SparseVector(1, {0: 1.0})
>>> model.numFeatures
1
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], [
→˓"features"])
>>> model.transform(test1).head().prediction
1.0
>>> dtr_path = temp_path + "/dtr"
>>> dt.save(dtr_path)
>>> dt2 = DecisionTreeRegressor.load(dtr_path)
>>> dt2.getMaxDepth()
2
>>> model_path = temp_path + "/dtr_model"
>>> model.save(model_path)
>>> model2 = DecisionTreeRegressionModel.load(model_path)
>>> model.numNodes == model2.numNodes
True
>>> model.depth == model2.depth
True
>>> model.transform(test1).head().variance
0.0

New in version 1.4.0.

setParams(self, featuresCol='features', labelCol='label', predictionCol='prediction',
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impu-
rity='variance', seed=None, varianceCol=None)

Sets params for the DecisionTreeRegressor.

New in version 1.4.0.

class pyspark.ml.regression.GBTRegressionModel(java_model=None)
Model fitted by GBTRegressor.

New in version 1.4.0.

evaluateEachIteration(dataset, loss)
Method to compute error or loss for every iteration of gradient boosting.

414 Chapter 27. PySpark API

Learning Apache Spark with Python

Parameters

• dataset – Test dataset to evaluate model on, where dataset is an instance of
pyspark.sql.DataFrame

• loss – The loss function used to compute error. Supported options: squared,
absolute

New in version 2.4.0.

property featureImportances
Estimate of the importance of each feature.

Each feature’s importance is the average of its importance across all trees in the ensemble The
importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie,
Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows
the implementation from scikit-learn.

See also:

DecisionTreeRegressionModel.featureImportances

New in version 2.0.0.

property trees
These have null parent Estimators.

New in version 2.0.0.

Type Trees in this ensemble. Warning

class pyspark.ml.regression.GBTRegressor(*args, **kwargs)
Gradient-Boosted Trees (GBTs) learning algorithm for regression. It supports both continuous and
categorical features.

>>> from numpy import allclose
>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> gbt = GBTRegressor(maxIter=5, maxDepth=2, seed=42)
>>> print(gbt.getImpurity())
variance
>>> print(gbt.getFeatureSubsetStrategy())
all
>>> model = gbt.fit(df)
>>> model.featureImportances
SparseVector(1, {0: 1.0})
>>> model.numFeatures
1
>>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1])
True
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0

(continues on next page)

27.2. Regression API 415

http://en.wikipedia.org/wiki/Gradient_boosting

Learning Apache Spark with Python

(continued from previous page)

>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], [
→˓"features"])
>>> model.transform(test1).head().prediction
1.0
>>> gbtr_path = temp_path + "gbtr"
>>> gbt.save(gbtr_path)
>>> gbt2 = GBTRegressor.load(gbtr_path)
>>> gbt2.getMaxDepth()
2
>>> model_path = temp_path + "gbtr_model"
>>> model.save(model_path)
>>> model2 = GBTRegressionModel.load(model_path)
>>> model.featureImportances == model2.featureImportances
True
>>> model.treeWeights == model2.treeWeights
True
>>> model.trees
[DecisionTreeRegressionModel (uid=...) of depth...,
→˓DecisionTreeRegressionModel...]
>>> validation = spark.createDataFrame([(0.0, Vectors.dense(-1.0))],
... ["label", "features"])
>>> model.evaluateEachIteration(validation, "squared")
[0.0, 0.0, 0.0, 0.0, 0.0]

New in version 1.4.0.

getLossType()
Gets the value of lossType or its default value.

New in version 1.4.0.

setFeatureSubsetStrategy(value)
Sets the value of featureSubsetStrategy.

New in version 2.4.0.

setLossType(value)
Sets the value of lossType.

New in version 1.4.0.

setParams(self, featuresCol='features', labelCol='label', predictionCol='prediction',
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, check-
pointInterval=10, lossType='squared', maxIter=20, stepSize=0.1, seed=None,
impurity='variance', featureSubsetStrategy='all')

Sets params for Gradient Boosted Tree Regression.

New in version 1.4.0.

class pyspark.ml.regression.GeneralizedLinearRegression(*args,
**kwargs)

416 Chapter 27. PySpark API

Learning Apache Spark with Python

Note: Experimental

Generalized Linear Regression.

Fit a Generalized Linear Model specified by giving a symbolic description of the linear predictor
(link function) and a description of the error distribution (family). It supports “gaussian”, “binomial”,
“poisson”, “gamma” and “tweedie” as family. Valid link functions for each family is listed below.
The first link function of each family is the default one.

• “gaussian” -> “identity”, “log”, “inverse”

• “binomial” -> “logit”, “probit”, “cloglog”

• “poisson” -> “log”, “identity”, “sqrt”

• “gamma” -> “inverse”, “identity”, “log”

• “tweedie” -> power link function specified through “linkPower”. The default link power in the
tweedie family is 1 - variancePower.

See also:

GLM

>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(0.0, 0.0)),
... (1.0, Vectors.dense(1.0, 2.0)),
... (2.0, Vectors.dense(0.0, 0.0)),
... (2.0, Vectors.dense(1.0, 1.0)),], ["label", "features"])
>>> glr = GeneralizedLinearRegression(family="gaussian", link="identity",
→˓ linkPredictionCol="p")
>>> model = glr.fit(df)
>>> transformed = model.transform(df)
>>> abs(transformed.head().prediction - 1.5) < 0.001
True
>>> abs(transformed.head().p - 1.5) < 0.001
True
>>> model.coefficients
DenseVector([1.5..., -1.0...])
>>> model.numFeatures
2
>>> abs(model.intercept - 1.5) < 0.001
True
>>> glr_path = temp_path + "/glr"
>>> glr.save(glr_path)
>>> glr2 = GeneralizedLinearRegression.load(glr_path)
>>> glr.getFamily() == glr2.getFamily()
True
>>> model_path = temp_path + "/glr_model"
>>> model.save(model_path)
>>> model2 = GeneralizedLinearRegressionModel.load(model_path)
>>> model.intercept == model2.intercept

(continues on next page)

27.2. Regression API 417

https://en.wikipedia.org/wiki/Generalized_linear_model

Learning Apache Spark with Python

(continued from previous page)

True
>>> model.coefficients[0] == model2.coefficients[0]
True

New in version 2.0.0.

getFamily()
Gets the value of family or its default value.

New in version 2.0.0.

getLink()
Gets the value of link or its default value.

New in version 2.0.0.

getLinkPower()
Gets the value of linkPower or its default value.

New in version 2.2.0.

getLinkPredictionCol()
Gets the value of linkPredictionCol or its default value.

New in version 2.0.0.

getOffsetCol()
Gets the value of offsetCol or its default value.

New in version 2.3.0.

getVariancePower()
Gets the value of variancePower or its default value.

New in version 2.2.0.

setFamily(value)
Sets the value of family.

New in version 2.0.0.

setLink(value)
Sets the value of link.

New in version 2.0.0.

setLinkPower(value)
Sets the value of linkPower.

New in version 2.2.0.

setLinkPredictionCol(value)
Sets the value of linkPredictionCol.

New in version 2.0.0.

418 Chapter 27. PySpark API

Learning Apache Spark with Python

setOffsetCol(value)
Sets the value of offsetCol.

New in version 2.3.0.

setParams(self, labelCol='label', featuresCol='features', predictionCol='prediction', fam-
ily='gaussian', link=None, fitIntercept=True, maxIter=25, tol=1e-06, reg-
Param=0.0, weightCol=None, solver='irls', linkPredictionCol=None, variance-
Power=0.0, linkPower=None, offsetCol=None)

Sets params for generalized linear regression.

New in version 2.0.0.

setVariancePower(value)
Sets the value of variancePower.

New in version 2.2.0.

class pyspark.ml.regression.GeneralizedLinearRegressionModel(java_model=None)

Note: Experimental

Model fitted by GeneralizedLinearRegression.

New in version 2.0.0.

property coefficients
Model coefficients.

New in version 2.0.0.

evaluate(dataset)
Evaluates the model on a test dataset.

Parameters dataset – Test dataset to evaluate model on, where dataset is an in-
stance of pyspark.sql.DataFrame

New in version 2.0.0.

property hasSummary
Indicates whether a training summary exists for this model instance.

New in version 2.0.0.

property intercept
Model intercept.

New in version 2.0.0.

property summary
Gets summary (e.g. residuals, deviance, pValues) of model on training set. An exception is
thrown if 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝑖𝑠𝑁𝑜𝑛𝑒.

New in version 2.0.0.

27.2. Regression API 419

Learning Apache Spark with Python

class pyspark.ml.regression.GeneralizedLinearRegressionSummary(java_obj=None)

Note: Experimental

Generalized linear regression results evaluated on a dataset.

New in version 2.0.0.

property aic
Akaike’s “An Information Criterion”(AIC) for the fitted model.

New in version 2.0.0.

property degreesOfFreedom
Degrees of freedom.

New in version 2.0.0.

property deviance
The deviance for the fitted model.

New in version 2.0.0.

property dispersion
The dispersion of the fitted model. It is taken as 1.0 for the “binomial” and “poisson” families,
and otherwise estimated by the residual Pearson’s Chi-Squared statistic (which is defined as sum
of the squares of the Pearson residuals) divided by the residual degrees of freedom.

New in version 2.0.0.

property nullDeviance
The deviance for the null model.

New in version 2.0.0.

property numInstances
Number of instances in DataFrame predictions.

New in version 2.2.0.

property predictionCol
Field in predictions which gives the predicted value of each instance. This is set to a new
column name if the original model’s 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑙 is not set.

New in version 2.0.0.

property predictions
Predictions output by the model’s 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 method.

New in version 2.0.0.

property rank
The numeric rank of the fitted linear model.

New in version 2.0.0.

420 Chapter 27. PySpark API

Learning Apache Spark with Python

property residualDegreeOfFreedom
The residual degrees of freedom.

New in version 2.0.0.

property residualDegreeOfFreedomNull
The residual degrees of freedom for the null model.

New in version 2.0.0.

residuals(residualsType='deviance')
Get the residuals of the fitted model by type.

Parameters residualsType – The type of residuals which should be returned.
Supported options: deviance (default), pearson, working, and response.

New in version 2.0.0.

class pyspark.ml.regression.GeneralizedLinearRegressionTrainingSummary(java_obj=None)

Note: Experimental

Generalized linear regression training results.

New in version 2.0.0.

property coefficientStandardErrors
Standard error of estimated coefficients and intercept.

If GeneralizedLinearRegression.fitIntercept is set to True, then the last ele-
ment returned corresponds to the intercept.

New in version 2.0.0.

property numIterations
Number of training iterations.

New in version 2.0.0.

property pValues
Two-sided p-value of estimated coefficients and intercept.

If GeneralizedLinearRegression.fitIntercept is set to True, then the last ele-
ment returned corresponds to the intercept.

New in version 2.0.0.

property solver
The numeric solver used for training.

New in version 2.0.0.

property tValues
T-statistic of estimated coefficients and intercept.

27.2. Regression API 421

Learning Apache Spark with Python

If GeneralizedLinearRegression.fitIntercept is set to True, then the last ele-
ment returned corresponds to the intercept.

New in version 2.0.0.

class pyspark.ml.regression.IsotonicRegression(*args, **kwargs)
Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single
feature) algorithm supported.

>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> ir = IsotonicRegression()
>>> model = ir.fit(df)
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> model.boundaries
DenseVector([0.0, 1.0])
>>> ir_path = temp_path + "/ir"
>>> ir.save(ir_path)
>>> ir2 = IsotonicRegression.load(ir_path)
>>> ir2.getIsotonic()
True
>>> model_path = temp_path + "/ir_model"
>>> model.save(model_path)
>>> model2 = IsotonicRegressionModel.load(model_path)
>>> model.boundaries == model2.boundaries
True
>>> model.predictions == model2.predictions
True

New in version 1.6.0.

getFeatureIndex()
Gets the value of featureIndex or its default value.

getIsotonic()
Gets the value of isotonic or its default value.

setFeatureIndex(value)
Sets the value of featureIndex.

setIsotonic(value)
Sets the value of isotonic.

setParams(featuresCol='features', labelCol='label', predictionCol='prediction', weight-
Col=None, isotonic=True, featureIndex=0)

setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, weight-
Col=None, isotonic=True, featureIndex=0): Set the params for IsotonicRegression.

class pyspark.ml.regression.IsotonicRegressionModel(java_model=None)
Model fitted by IsotonicRegression.

422 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 1.6.0.

property boundaries
Boundaries in increasing order for which predictions are known.

New in version 1.6.0.

property predictions
Predictions associated with the boundaries at the same index, monotone because of isotonic
regression.

New in version 1.6.0.

class pyspark.ml.regression.LinearRegression(*args, **kwargs)
Linear regression.

The learning objective is to minimize the specified loss function, with regularization. This supports
two kinds of loss:

• squaredError (a.k.a squared loss)

• huber (a hybrid of squared error for relatively small errors and absolute error for relatively large
ones, and we estimate the scale parameter from training data)

This supports multiple types of regularization:

• none (a.k.a. ordinary least squares)

• L2 (ridge regression)

• L1 (Lasso)

• L2 + L1 (elastic net)

Note: Fitting with huber loss only supports none and L2 regularization.

>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... (1.0, 2.0, Vectors.dense(1.0)),
... (0.0, 2.0, Vectors.sparse(1, [], []))], ["label", "weight",
→˓"features"])
>>> lr = LinearRegression(maxIter=5, regParam=0.0, solver="normal",
→˓weightCol="weight")
>>> model = lr.fit(df)
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> abs(model.transform(test0).head().prediction - (-1.0)) < 0.001
True
>>> abs(model.coefficients[0] - 1.0) < 0.001
True
>>> abs(model.intercept - 0.0) < 0.001
True
>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], [
→˓"features"])
>>> abs(model.transform(test1).head().prediction - 1.0) < 0.001
True
>>> lr.setParams("vector")

(continues on next page)

27.2. Regression API 423

Learning Apache Spark with Python

(continued from previous page)

Traceback (most recent call last):
...

TypeError: Method setParams forces keyword arguments.
>>> lr_path = temp_path + "/lr"
>>> lr.save(lr_path)
>>> lr2 = LinearRegression.load(lr_path)
>>> lr2.getMaxIter()
5
>>> model_path = temp_path + "/lr_model"
>>> model.save(model_path)
>>> model2 = LinearRegressionModel.load(model_path)
>>> model.coefficients[0] == model2.coefficients[0]
True
>>> model.intercept == model2.intercept
True
>>> model.numFeatures
1
>>> model.write().format("pmml").save(model_path + "_2")

New in version 1.4.0.

getEpsilon()
Gets the value of epsilon or its default value.

New in version 2.3.0.

setEpsilon(value)
Sets the value of epsilon.

New in version 2.3.0.

setParams(self, featuresCol='features', labelCol='label', predictionCol='prediction', max-
Iter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-06, fitIntercept=True,
standardization=True, solver='auto', weightCol=None, aggregationDepth=2,
loss='squaredError', epsilon=1.35)

Sets params for linear regression.

New in version 1.4.0.

class pyspark.ml.regression.LinearRegressionModel(java_model=None)
Model fitted by LinearRegression.

New in version 1.4.0.

property coefficients
Model coefficients.

New in version 2.0.0.

evaluate(dataset)
Evaluates the model on a test dataset.

Parameters dataset – Test dataset to evaluate model on, where dataset is an in-
stance of pyspark.sql.DataFrame

424 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 2.0.0.

property hasSummary
Indicates whether a training summary exists for this model instance.

New in version 2.0.0.

property intercept
Model intercept.

New in version 1.4.0.

property scale
The value by which ‖𝑦 −𝑋 ′𝑤‖ is scaled down when loss is “huber”, otherwise 1.0.

New in version 2.3.0.

property summary
Gets summary (e.g. residuals, mse, r-squared) of model on training set. An exception is thrown
if 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝑖𝑠𝑁𝑜𝑛𝑒.

New in version 2.0.0.

class pyspark.ml.regression.LinearRegressionSummary(java_obj=None)

Note: Experimental

Linear regression results evaluated on a dataset.

New in version 2.0.0.

property coefficientStandardErrors
Standard error of estimated coefficients and intercept. This value is only available when using
the “normal” solver.

If LinearRegression.fitIntercept is set to True, then the last element returned cor-
responds to the intercept.

See also:

LinearRegression.solver

New in version 2.0.0.

property degreesOfFreedom
Degrees of freedom.

New in version 2.2.0.

property devianceResiduals
The weighted residuals, the usual residuals rescaled by the square root of the instance weights.

New in version 2.0.0.

27.2. Regression API 425

Learning Apache Spark with Python

property explainedVariance
Returns the explained variance regression score. explainedVariance = 1 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦−𝑦)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦)

See also:

Wikipedia explain variation

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property featuresCol
Field in “predictions” which gives the features of each instance as a vector.

New in version 2.0.0.

property labelCol
Field in “predictions” which gives the true label of each instance.

New in version 2.0.0.

property meanAbsoluteError
Returns the mean absolute error, which is a risk function corresponding to the expected value of
the absolute error loss or l1-norm loss.

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property meanSquaredError
Returns the mean squared error, which is a risk function corresponding to the expected value of
the squared error loss or quadratic loss.

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property numInstances
Number of instances in DataFrame predictions

New in version 2.0.0.

property pValues
Two-sided p-value of estimated coefficients and intercept. This value is only available when
using the “normal” solver.

If LinearRegression.fitIntercept is set to True, then the last element returned cor-
responds to the intercept.

426 Chapter 27. PySpark API

http://en.wikipedia.org/wiki/Explained_variation

Learning Apache Spark with Python

See also:

LinearRegression.solver

New in version 2.0.0.

property predictionCol
Field in “predictions” which gives the predicted value of the label at each instance.

New in version 2.0.0.

property predictions
Dataframe outputted by the model’s 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 method.

New in version 2.0.0.

property r2
Returns R^2, the coefficient of determination.

See also:

Wikipedia coefficient of determination

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property r2adj
Returns Adjusted R^2, the adjusted coefficient of determination.

See also:

Wikipedia coefficient of determination, Adjusted R^2

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.4.0.

property residuals
Residuals (label - predicted value)

New in version 2.0.0.

property rootMeanSquaredError
Returns the root mean squared error, which is defined as the square root of the mean squared
error.

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

27.2. Regression API 427

http://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2

Learning Apache Spark with Python

New in version 2.0.0.

property tValues
T-statistic of estimated coefficients and intercept. This value is only available when using the
“normal” solver.

If LinearRegression.fitIntercept is set to True, then the last element returned cor-
responds to the intercept.

See also:

LinearRegression.solver

New in version 2.0.0.

class pyspark.ml.regression.LinearRegressionTrainingSummary(java_obj=None)

Note: Experimental

Linear regression training results. Currently, the training summary ignores the training weights except
for the objective trace.

New in version 2.0.0.

property objectiveHistory
Objective function (scaled loss + regularization) at each iteration. This value is only available
when using the “l-bfgs” solver.

See also:

LinearRegression.solver

New in version 2.0.0.

property totalIterations
Number of training iterations until termination. This value is only available when using the
“l-bfgs” solver.

See also:

LinearRegression.solver

New in version 2.0.0.

class pyspark.ml.regression.RandomForestRegressionModel(java_model=None)
Model fitted by RandomForestRegressor.

New in version 1.4.0.

property featureImportances
Estimate of the importance of each feature.

Each feature’s importance is the average of its importance across all trees in the ensemble The
importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie,

428 Chapter 27. PySpark API

Learning Apache Spark with Python

Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows
the implementation from scikit-learn.

See also:

DecisionTreeRegressionModel.featureImportances

New in version 2.0.0.

property trees
These have null parent Estimators.

New in version 2.0.0.

Type Trees in this ensemble. Warning

class pyspark.ml.regression.RandomForestRegressor(*args, **kwargs)
Random Forest learning algorithm for regression. It supports both continuous and categorical features.

>>> from numpy import allclose
>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> rf = RandomForestRegressor(numTrees=2, maxDepth=2, seed=42)
>>> model = rf.fit(df)
>>> model.featureImportances
SparseVector(1, {0: 1.0})
>>> allclose(model.treeWeights, [1.0, 1.0])
True
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> model.numFeatures
1
>>> model.trees
[DecisionTreeRegressionModel (uid=...) of depth...,
→˓DecisionTreeRegressionModel...]
>>> model.getNumTrees
2
>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], [
→˓"features"])
>>> model.transform(test1).head().prediction
0.5
>>> rfr_path = temp_path + "/rfr"
>>> rf.save(rfr_path)
>>> rf2 = RandomForestRegressor.load(rfr_path)
>>> rf2.getNumTrees()
2
>>> model_path = temp_path + "/rfr_model"
>>> model.save(model_path)
>>> model2 = RandomForestRegressionModel.load(model_path)
>>> model.featureImportances == model2.featureImportances
True

27.2. Regression API 429

http://en.wikipedia.org/wiki/Random_forest

Learning Apache Spark with Python

New in version 1.4.0.

setFeatureSubsetStrategy(value)
Sets the value of featureSubsetStrategy.

New in version 2.4.0.

setParams(self, featuresCol='features', labelCol='label', predictionCol='prediction',
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impu-
rity='variance', subsamplingRate=1.0, seed=None, numTrees=20, featureSub-
setStrategy='auto')

Sets params for linear regression.

New in version 1.4.0.

27.3 Classification API

class pyspark.ml.classification.BinaryLogisticRegressionSummary(java_obj=None)

Note: Experimental

Binary Logistic regression results for a given model.

New in version 2.0.0.

property areaUnderROC
Computes the area under the receiver operating characteristic (ROC) curve.

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property fMeasureByThreshold
Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0.

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property pr
Returns the precision-recall curve, which is a Dataframe containing two fields recall, precision
with (0.0, 1.0) prepended to it.

430 Chapter 27. PySpark API

Learning Apache Spark with Python

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property precisionByThreshold
Returns a dataframe with two fields (threshold, precision) curve. Every possible probability
obtained in transforming the dataset are used as thresholds used in calculating the precision.

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property recallByThreshold
Returns a dataframe with two fields (threshold, recall) curve. Every possible probability obtained
in transforming the dataset are used as thresholds used in calculating the recall.

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

property roc
Returns the receiver operating characteristic (ROC) curve, which is a Dataframe having two
fields (FPR, TPR) with (0.0, 0.0) prepended and (1.0, 1.0) appended to it.

See also:

Wikipedia reference

Note: This ignores instance weights (setting all to 1.0) from 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑙.
This will change in later Spark versions.

New in version 2.0.0.

class pyspark.ml.classification.BinaryLogisticRegressionTrainingSummary(java_obj=None)

Note: Experimental

Binary Logistic regression training results for a given model.

New in version 2.0.0.

27.3. Classification API 431

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Learning Apache Spark with Python

class pyspark.ml.classification.DecisionTreeClassificationModel(java_model=None)
Model fitted by DecisionTreeClassifier.

New in version 1.4.0.

property featureImportances
Estimate of the importance of each feature.

This generalizes the idea of “Gini” importance to other losses, following the explanation of
Gini importance from “Random Forests” documentation by Leo Breiman and Adele Cutler, and
following the implementation from scikit-learn.

This feature importance is calculated as follows:

• importance(feature j) = sum (over nodes which split on feature j) of the gain, where
gain is scaled by the number of instances passing through node

• Normalize importances for tree to sum to 1.

Note: Feature importance for single decision trees can have high variance due to correlated
predictor variables. Consider using a RandomForestClassifier to determine feature im-
portance instead.

New in version 2.0.0.

class pyspark.ml.classification.DecisionTreeClassifier(*args, **kwargs)
Decision tree learning algorithm for classification. It supports both binary and multiclass labels, as
well as both continuous and categorical features.

>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> dt = DecisionTreeClassifier(maxDepth=2, labelCol="indexed")
>>> model = dt.fit(td)
>>> model.numNodes
3
>>> model.depth
1
>>> model.featureImportances
SparseVector(1, {0: 1.0})
>>> model.numFeatures
1
>>> model.numClasses
2
>>> print(model.toDebugString)
DecisionTreeClassificationModel (uid=...) of depth 1 with 3 nodes...
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])

(continues on next page)

432 Chapter 27. PySpark API

http://en.wikipedia.org/wiki/Decision_tree_learning

Learning Apache Spark with Python

(continued from previous page)

>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> result.probability
DenseVector([1.0, 0.0])
>>> result.rawPrediction
DenseVector([1.0, 0.0])
>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], [
→˓"features"])
>>> model.transform(test1).head().prediction
1.0

>>> dtc_path = temp_path + "/dtc"
>>> dt.save(dtc_path)
>>> dt2 = DecisionTreeClassifier.load(dtc_path)
>>> dt2.getMaxDepth()
2
>>> model_path = temp_path + "/dtc_model"
>>> model.save(model_path)
>>> model2 = DecisionTreeClassificationModel.load(model_path)
>>> model.featureImportances == model2.featureImportances
True

New in version 1.4.0.

setParams(self, featuresCol='features', labelCol='label', predictionCol='prediction', prob-
abilityCol='probability', rawPredictionCol='rawPrediction', maxDepth=5,
maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemory-
InMB=256, cacheNodeIds=False, checkpointInterval=10, impurity='gini',
seed=None)

Sets params for the DecisionTreeClassifier.

New in version 1.4.0.

class pyspark.ml.classification.GBTClassificationModel(java_model=None)
Model fitted by GBTClassifier.

New in version 1.4.0.

evaluateEachIteration(dataset)
Method to compute error or loss for every iteration of gradient boosting.

Parameters dataset – Test dataset to evaluate model on, where dataset is an in-
stance of pyspark.sql.DataFrame

New in version 2.4.0.

property featureImportances
Estimate of the importance of each feature.

Each feature’s importance is the average of its importance across all trees in the ensemble The
importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie,

27.3. Classification API 433

Learning Apache Spark with Python

Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows
the implementation from scikit-learn.

See also:

DecisionTreeClassificationModel.featureImportances

New in version 2.0.0.

property trees
These have null parent Estimators.

New in version 2.0.0.

Type Trees in this ensemble. Warning

class pyspark.ml.classification.GBTClassifier(*args, **kwargs)
Gradient-Boosted Trees (GBTs) learning algorithm for classification. It supports binary labels, as
well as both continuous and categorical features.

The implementation is based upon: J.H. Friedman. “Stochastic Gradient Boosting.” 1999.

Notes on Gradient Boosting vs. TreeBoost: - This implementation is for Stochastic Gradient Boosting,
not for TreeBoost. - Both algorithms learn tree ensembles by minimizing loss functions. - TreeBoost
(Friedman, 1999) additionally modifies the outputs at tree leaf nodes based on the loss function,
whereas the original gradient boosting method does not. - We expect to implement TreeBoost in the
future: SPARK-4240

Note: Multiclass labels are not currently supported.

>>> from numpy import allclose
>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed",
→˓seed=42)
>>> gbt.getFeatureSubsetStrategy()
'all'
>>> model = gbt.fit(td)
>>> model.featureImportances
SparseVector(1, {0: 1.0})
>>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1])
True
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], [
→˓"features"])

(continues on next page)

434 Chapter 27. PySpark API

http://en.wikipedia.org/wiki/Gradient_boosting
https://issues.apache.org/jira/browse/SPARK-4240

Learning Apache Spark with Python

(continued from previous page)

>>> model.transform(test1).head().prediction
1.0
>>> model.totalNumNodes
15
>>> print(model.toDebugString)
GBTClassificationModel (uid=...)...with 5 trees...
>>> gbtc_path = temp_path + "gbtc"
>>> gbt.save(gbtc_path)
>>> gbt2 = GBTClassifier.load(gbtc_path)
>>> gbt2.getMaxDepth()
2
>>> model_path = temp_path + "gbtc_model"
>>> model.save(model_path)
>>> model2 = GBTClassificationModel.load(model_path)
>>> model.featureImportances == model2.featureImportances
True
>>> model.treeWeights == model2.treeWeights
True
>>> model.trees
[DecisionTreeRegressionModel (uid=...) of depth...,
→˓DecisionTreeRegressionModel...]
>>> validation = spark.createDataFrame([(0.0, Vectors.dense(-1.0),)],
... ["indexed", "features"])
>>> model.evaluateEachIteration(validation)
[0.25..., 0.23..., 0.21..., 0.19..., 0.18...]
>>> model.numClasses
2

New in version 1.4.0.

getLossType()
Gets the value of lossType or its default value.

New in version 1.4.0.

setFeatureSubsetStrategy(value)
Sets the value of featureSubsetStrategy.

New in version 2.4.0.

setLossType(value)
Sets the value of lossType.

New in version 1.4.0.

setParams(self, featuresCol='features', labelCol='label', predictionCol='prediction',
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
lossType='logistic', maxIter=20, stepSize=0.1, seed=None, subsamplin-
gRate=1.0, featureSubsetStrategy='all')

Sets params for Gradient Boosted Tree Classification.

New in version 1.4.0.

27.3. Classification API 435

Learning Apache Spark with Python

class pyspark.ml.classification.LinearSVC(*args, **kwargs)

Note: Experimental

Linear SVM Classifier

This binary classifier optimizes the Hinge Loss using the OWLQN optimizer. Only supports L2
regularization currently.

>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> df = sc.parallelize([
... Row(label=1.0, features=Vectors.dense(1.0, 1.0, 1.0)),
... Row(label=0.0, features=Vectors.dense(1.0, 2.0, 3.0))]).toDF()
>>> svm = LinearSVC(maxIter=5, regParam=0.01)
>>> model = svm.fit(df)
>>> model.coefficients
DenseVector([0.0, -0.2792, -0.1833])
>>> model.intercept
1.0206118982229047
>>> model.numClasses
2
>>> model.numFeatures
3
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, -1.0, -1.
→˓0))]).toDF()
>>> result = model.transform(test0).head()
>>> result.prediction
1.0
>>> result.rawPrediction
DenseVector([-1.4831, 1.4831])
>>> svm_path = temp_path + "/svm"
>>> svm.save(svm_path)
>>> svm2 = LinearSVC.load(svm_path)
>>> svm2.getMaxIter()
5
>>> model_path = temp_path + "/svm_model"
>>> model.save(model_path)
>>> model2 = LinearSVCModel.load(model_path)
>>> model.coefficients[0] == model2.coefficients[0]
True
>>> model.intercept == model2.intercept
True

New in version 2.2.0.

setParams(featuresCol='features', labelCol='label', predictionCol='prediction', max-
Iter=100, regParam=0.0, tol=1e-06, rawPredictionCol='rawPrediction',
fitIntercept=True, standardization=True, threshold=0.0, weightCol=None,
aggregationDepth=2)

setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, max-

436 Chapter 27. PySpark API

https://en.wikipedia.org/wiki/Support_vector_machine#Linear_SVM

Learning Apache Spark with Python

Iter=100, regParam=0.0, tol=1e-6, rawPredictionCol=”rawPrediction”, fitIntercept=True, stan-
dardization=True, threshold=0.0, weightCol=None, aggregationDepth=2): Sets params for Lin-
ear SVM Classifier.

New in version 2.2.0.

class pyspark.ml.classification.LinearSVCModel(java_model=None)

Note: Experimental

Model fitted by LinearSVC.

New in version 2.2.0.

property coefficients
Model coefficients of Linear SVM Classifier.

New in version 2.2.0.

property intercept
Model intercept of Linear SVM Classifier.

New in version 2.2.0.

class pyspark.ml.classification.LogisticRegression(*args, **kwargs)
Logistic regression. This class supports multinomial logistic (softmax) and binomial logistic regres-
sion.

>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> bdf = sc.parallelize([
... Row(label=1.0, weight=1.0, features=Vectors.dense(0.0, 5.0)),
... Row(label=0.0, weight=2.0, features=Vectors.dense(1.0, 2.0)),
... Row(label=1.0, weight=3.0, features=Vectors.dense(2.0, 1.0)),
... Row(label=0.0, weight=4.0, features=Vectors.dense(3.0, 3.0))]).
→˓toDF()
>>> blor = LogisticRegression(regParam=0.01, weightCol="weight")
>>> blorModel = blor.fit(bdf)
>>> blorModel.coefficients
DenseVector([-1.080..., -0.646...])
>>> blorModel.intercept
3.112...
>>> data_path = "data/mllib/sample_multiclass_classification_data.txt"
>>> mdf = spark.read.format("libsvm").load(data_path)
>>> mlor = LogisticRegression(regParam=0.1, elasticNetParam=1.0, family=
→˓"multinomial")
>>> mlorModel = mlor.fit(mdf)
>>> mlorModel.coefficientMatrix
SparseMatrix(3, 4, [0, 1, 2, 3], [3, 2, 1], [1.87..., -2.75..., -0.50...
→˓], 1)
>>> mlorModel.interceptVector
DenseVector([0.04..., -0.42..., 0.37...])

(continues on next page)

27.3. Classification API 437

Learning Apache Spark with Python

(continued from previous page)

>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 1.0))]).
→˓toDF()
>>> result = blorModel.transform(test0).head()
>>> result.prediction
1.0
>>> result.probability
DenseVector([0.02..., 0.97...])
>>> result.rawPrediction
DenseVector([-3.54..., 3.54...])
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.
→˓0]))]).toDF()
>>> blorModel.transform(test1).head().prediction
1.0
>>> blor.setParams("vector")
Traceback (most recent call last):

...
TypeError: Method setParams forces keyword arguments.
>>> lr_path = temp_path + "/lr"
>>> blor.save(lr_path)
>>> lr2 = LogisticRegression.load(lr_path)
>>> lr2.getRegParam()
0.01
>>> model_path = temp_path + "/lr_model"
>>> blorModel.save(model_path)
>>> model2 = LogisticRegressionModel.load(model_path)
>>> blorModel.coefficients[0] == model2.coefficients[0]
True
>>> blorModel.intercept == model2.intercept
True
>>> model2
LogisticRegressionModel: uid = ..., numClasses = 2, numFeatures = 2

New in version 1.3.0.

getFamily()
Gets the value of family or its default value.

New in version 2.1.0.

getLowerBoundsOnCoefficients()
Gets the value of lowerBoundsOnCoefficients

New in version 2.3.0.

getLowerBoundsOnIntercepts()
Gets the value of lowerBoundsOnIntercepts

New in version 2.3.0.

getThreshold()
Get threshold for binary classification.

If thresholds is set with length 2 (i.e., binary classification), this returns the equivalent
threshold: 1

1+
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠(0)
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠(1)

. Otherwise, returns threshold if set or its default value if unset.

438 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 1.4.0.

getThresholds()
If thresholds is set, return its value. Otherwise, if threshold is set, return the equivalent
thresholds for binary classification: (1-threshold, threshold). If neither are set, throw an error.

New in version 1.5.0.

getUpperBoundsOnCoefficients()
Gets the value of upperBoundsOnCoefficients

New in version 2.3.0.

getUpperBoundsOnIntercepts()
Gets the value of upperBoundsOnIntercepts

New in version 2.3.0.

setFamily(value)
Sets the value of family.

New in version 2.1.0.

setLowerBoundsOnCoefficients(value)
Sets the value of lowerBoundsOnCoefficients

New in version 2.3.0.

setLowerBoundsOnIntercepts(value)
Sets the value of lowerBoundsOnIntercepts

New in version 2.3.0.

setParams(featuresCol='features', labelCol='label', predictionCol='prediction', max-
Iter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-06, fitIntercept=True,
threshold=0.5, thresholds=None, probabilityCol='probability', rawPrediction-
Col='rawPrediction', standardization=True, weightCol=None, aggregation-
Depth=2, family='auto', lowerBoundsOnCoefficients=None, upperBoundsOn-
Coefficients=None, lowerBoundsOnIntercepts=None, upperBoundsOnInter-
cepts=None)

setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, max-
Iter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, threshold=0.5,
thresholds=None, probabilityCol=”probability”, rawPredictionCol=”rawPrediction”, standard-
ization=True, weightCol=None, aggregationDepth=2, family=”auto”, lowerBoundsOnCoef-
ficients=None, upperBoundsOnCoefficients=None, lowerBoundsOnIntercepts=None, upper-
BoundsOnIntercepts=None): Sets params for logistic regression. If the threshold and thresholds
Params are both set, they must be equivalent.

New in version 1.3.0.

setThreshold(value)
Sets the value of threshold. Clears value of thresholds if it has been set.

New in version 1.4.0.

27.3. Classification API 439

Learning Apache Spark with Python

setThresholds(value)
Sets the value of thresholds. Clears value of threshold if it has been set.

New in version 1.5.0.

setUpperBoundsOnCoefficients(value)
Sets the value of upperBoundsOnCoefficients

New in version 2.3.0.

setUpperBoundsOnIntercepts(value)
Sets the value of upperBoundsOnIntercepts

New in version 2.3.0.

class pyspark.ml.classification.LogisticRegressionModel(java_model=None)
Model fitted by LogisticRegression.

New in version 1.3.0.

property coefficientMatrix
Model coefficients.

New in version 2.1.0.

property coefficients
Model coefficients of binomial logistic regression. An exception is thrown in the case of multi-
nomial logistic regression.

New in version 2.0.0.

evaluate(dataset)
Evaluates the model on a test dataset.

Parameters dataset – Test dataset to evaluate model on, where dataset is an in-
stance of pyspark.sql.DataFrame

New in version 2.0.0.

property hasSummary
Indicates whether a training summary exists for this model instance.

New in version 2.0.0.

property intercept
Model intercept of binomial logistic regression. An exception is thrown in the case of multino-
mial logistic regression.

New in version 1.4.0.

property interceptVector
Model intercept.

New in version 2.1.0.

property summary
Gets summary (e.g. accuracy/precision/recall, objective history, total iterations) of model trained
on the training set. An exception is thrown if 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝑖𝑠𝑁𝑜𝑛𝑒.

440 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 2.0.0.

class pyspark.ml.classification.LogisticRegressionSummary(java_obj=None)

Note: Experimental

Abstraction for Logistic Regression Results for a given model.

New in version 2.0.0.

property accuracy
Returns accuracy. (equals to the total number of correctly classified instances out of the total
number of instances.)

New in version 2.3.0.

fMeasureByLabel(beta=1.0)
Returns f-measure for each label (category).

New in version 2.3.0.

property falsePositiveRateByLabel
Returns false positive rate for each label (category).

New in version 2.3.0.

property featuresCol
Field in “predictions” which gives the features of each instance as a vector.

New in version 2.0.0.

property labelCol
Field in “predictions” which gives the true label of each instance.

New in version 2.0.0.

property labels
Returns the sequence of labels in ascending order. This order matches the order used in metrics
which are specified as arrays over labels, e.g., truePositiveRateByLabel.

Note: In most cases, it will be values {0.0, 1.0, . . . , numClasses-1}, However, if the training set
is missing a label, then all of the arrays over labels (e.g., from truePositiveRateByLabel) will be
of length numClasses-1 instead of the expected numClasses.

New in version 2.3.0.

property precisionByLabel
Returns precision for each label (category).

New in version 2.3.0.

property predictionCol
Field in “predictions” which gives the prediction of each class.

New in version 2.3.0.

27.3. Classification API 441

Learning Apache Spark with Python

property predictions
Dataframe outputted by the model’s 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 method.

New in version 2.0.0.

property probabilityCol
Field in “predictions” which gives the probability of each class as a vector.

New in version 2.0.0.

property recallByLabel
Returns recall for each label (category).

New in version 2.3.0.

property truePositiveRateByLabel
Returns true positive rate for each label (category).

New in version 2.3.0.

weightedFMeasure(beta=1.0)
Returns weighted averaged f-measure.

New in version 2.3.0.

property weightedFalsePositiveRate
Returns weighted false positive rate.

New in version 2.3.0.

property weightedPrecision
Returns weighted averaged precision.

New in version 2.3.0.

property weightedRecall
Returns weighted averaged recall. (equals to precision, recall and f-measure)

New in version 2.3.0.

property weightedTruePositiveRate
Returns weighted true positive rate. (equals to precision, recall and f-measure)

New in version 2.3.0.

class pyspark.ml.classification.LogisticRegressionTrainingSummary(java_obj=None)

Note: Experimental

Abstraction for multinomial Logistic Regression Training results. Currently, the training summary
ignores the training weights except for the objective trace.

New in version 2.0.0.

property objectiveHistory
Objective function (scaled loss + regularization) at each iteration.

442 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 2.0.0.

property totalIterations
Number of training iterations until termination.

New in version 2.0.0.

class pyspark.ml.classification.MultilayerPerceptronClassificationModel(java_model=None)
Model fitted by MultilayerPerceptronClassifier.

New in version 1.6.0.

property layers
array of layer sizes including input and output layers.

New in version 1.6.0.

property weights
the weights of layers.

New in version 2.0.0.

class pyspark.ml.classification.MultilayerPerceptronClassifier(*args,
**kwargs)

Classifier trainer based on the Multilayer Perceptron. Each layer has sigmoid activation function,
output layer has softmax. Number of inputs has to be equal to the size of feature vectors. Number of
outputs has to be equal to the total number of labels.

>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... (0.0, Vectors.dense([0.0, 0.0])),
... (1.0, Vectors.dense([0.0, 1.0])),
... (1.0, Vectors.dense([1.0, 0.0])),
... (0.0, Vectors.dense([1.0, 1.0]))], ["label", "features"])
>>> mlp = MultilayerPerceptronClassifier(maxIter=100, layers=[2, 2, 2],
→˓blockSize=1, seed=123)
>>> model = mlp.fit(df)
>>> model.layers
[2, 2, 2]
>>> model.weights.size
12
>>> testDF = spark.createDataFrame([
... (Vectors.dense([1.0, 0.0]),),
... (Vectors.dense([0.0, 0.0]),)], ["features"])
>>> model.transform(testDF).select("features", "prediction").show()
+---------+----------+
| features|prediction|
+---------+----------+
|[1.0,0.0]| 1.0|
|[0.0,0.0]| 0.0|
+---------+----------+
...
>>> mlp_path = temp_path + "/mlp"
>>> mlp.save(mlp_path)
>>> mlp2 = MultilayerPerceptronClassifier.load(mlp_path)

(continues on next page)

27.3. Classification API 443

Learning Apache Spark with Python

(continued from previous page)

>>> mlp2.getBlockSize()
1
>>> model_path = temp_path + "/mlp_model"
>>> model.save(model_path)
>>> model2 = MultilayerPerceptronClassificationModel.load(model_path)
>>> model.layers == model2.layers
True
>>> model.weights == model2.weights
True
>>> mlp2 = mlp2.setInitialWeights(list(range(0, 12)))
>>> model3 = mlp2.fit(df)
>>> model3.weights != model2.weights
True
>>> model3.layers == model.layers
True

New in version 1.6.0.

getBlockSize()
Gets the value of blockSize or its default value.

New in version 1.6.0.

getInitialWeights()
Gets the value of initialWeights or its default value.

New in version 2.0.0.

getLayers()
Gets the value of layers or its default value.

New in version 1.6.0.

getStepSize()
Gets the value of stepSize or its default value.

New in version 2.0.0.

setBlockSize(value)
Sets the value of blockSize.

New in version 1.6.0.

setInitialWeights(value)
Sets the value of initialWeights.

New in version 2.0.0.

setLayers(value)
Sets the value of layers.

New in version 1.6.0.

444 Chapter 27. PySpark API

Learning Apache Spark with Python

setParams(featuresCol='features', labelCol='label', predictionCol='prediction', max-
Iter=100, tol=1e-06, seed=None, layers=None, blockSize=128, stepSize=0.03,
solver='l-bfgs', initialWeights=None, probabilityCol='probability', rawPredic-
tionCol='rawPrediction')

setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, max-
Iter=100, tol=1e-6, seed=None, layers=None, blockSize=128, stepSize=0.03, solver=”l-bfgs”,
initialWeights=None, probabilityCol=”probability”, rawPredictionCol=”rawPrediction”): Sets
params for MultilayerPerceptronClassifier.

New in version 1.6.0.

setStepSize(value)
Sets the value of stepSize.

New in version 2.0.0.

class pyspark.ml.classification.NaiveBayes(*args, **kwargs)
Naive Bayes Classifiers. It supports both Multinomial and Bernoulli NB. Multinomial NB can handle
finitely supported discrete data. For example, by converting documents into TF-IDF vectors, it can be
used for document classification. By making every vector a binary (0/1) data, it can also be used as
Bernoulli NB. The input feature values must be nonnegative.

>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... Row(label=0.0, weight=0.1, features=Vectors.dense([0.0, 0.0])),
... Row(label=0.0, weight=0.5, features=Vectors.dense([0.0, 1.0])),
... Row(label=1.0, weight=1.0, features=Vectors.dense([1.0, 0.0]))])
>>> nb = NaiveBayes(smoothing=1.0, modelType="multinomial", weightCol=
→˓"weight")
>>> model = nb.fit(df)
>>> model.pi
DenseVector([-0.81..., -0.58...])
>>> model.theta
DenseMatrix(2, 2, [-0.91..., -0.51..., -0.40..., -1.09...], 1)
>>> test0 = sc.parallelize([Row(features=Vectors.dense([1.0, 0.0]))]).
→˓toDF()
>>> result = model.transform(test0).head()
>>> result.prediction
1.0
>>> result.probability
DenseVector([0.32..., 0.67...])
>>> result.rawPrediction
DenseVector([-1.72..., -0.99...])
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.
→˓0]))]).toDF()
>>> model.transform(test1).head().prediction
1.0
>>> nb_path = temp_path + "/nb"
>>> nb.save(nb_path)
>>> nb2 = NaiveBayes.load(nb_path)
>>> nb2.getSmoothing()
1.0

(continues on next page)

27.3. Classification API 445

http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

Learning Apache Spark with Python

(continued from previous page)

>>> model_path = temp_path + "/nb_model"
>>> model.save(model_path)
>>> model2 = NaiveBayesModel.load(model_path)
>>> model.pi == model2.pi
True
>>> model.theta == model2.theta
True
>>> nb = nb.setThresholds([0.01, 10.00])
>>> model3 = nb.fit(df)
>>> result = model3.transform(test0).head()
>>> result.prediction
0.0

New in version 1.5.0.

getModelType()
Gets the value of modelType or its default value.

New in version 1.5.0.

getSmoothing()
Gets the value of smoothing or its default value.

New in version 1.5.0.

setModelType(value)
Sets the value of modelType.

New in version 1.5.0.

setParams(self, featuresCol='features', labelCol='label', predictionCol='prediction', prob-
abilityCol='probability', rawPredictionCol='rawPrediction', smoothing=1.0,
modelType='multinomial', thresholds=None, weightCol=None)

Sets params for Naive Bayes.

New in version 1.5.0.

setSmoothing(value)
Sets the value of smoothing.

New in version 1.5.0.

class pyspark.ml.classification.NaiveBayesModel(java_model=None)
Model fitted by NaiveBayes.

New in version 1.5.0.

property pi
log of class priors.

New in version 2.0.0.

property theta
log of class conditional probabilities.

New in version 2.0.0.

446 Chapter 27. PySpark API

Learning Apache Spark with Python

class pyspark.ml.classification.OneVsRest(*args, **kwargs)

Note: Experimental

Reduction of Multiclass Classification to Binary Classification. Performs reduction using one against
all strategy. For a multiclass classification with k classes, train k models (one per class). Each example
is scored against all k models and the model with highest score is picked to label the example.

>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> data_path = "data/mllib/sample_multiclass_classification_data.txt"
>>> df = spark.read.format("libsvm").load(data_path)
>>> lr = LogisticRegression(regParam=0.01)
>>> ovr = OneVsRest(classifier=lr)
>>> model = ovr.fit(df)
>>> model.models[0].coefficients
DenseVector([0.5..., -1.0..., 3.4..., 4.2...])
>>> model.models[1].coefficients
DenseVector([-2.1..., 3.1..., -2.6..., -2.3...])
>>> model.models[2].coefficients
DenseVector([0.3..., -3.4..., 1.0..., -1.1...])
>>> [x.intercept for x in model.models]
[-2.7..., -2.5..., -1.3...]
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 0.0, 1.0, 1.
→˓0))]).toDF()
>>> model.transform(test0).head().prediction
0.0
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(4, [0], [1.
→˓0]))]).toDF()
>>> model.transform(test1).head().prediction
2.0
>>> test2 = sc.parallelize([Row(features=Vectors.dense(0.5, 0.4, 0.3, 0.
→˓2))]).toDF()
>>> model.transform(test2).head().prediction
0.0
>>> model_path = temp_path + "/ovr_model"
>>> model.save(model_path)
>>> model2 = OneVsRestModel.load(model_path)
>>> model2.transform(test0).head().prediction
0.0

New in version 2.0.0.

copy(extra=None)
Creates a copy of this instance with a randomly generated uid and some extra params. This
creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters
over.

Parameters extra – Extra parameters to copy to the new instance

Returns Copy of this instance

27.3. Classification API 447

Learning Apache Spark with Python

New in version 2.0.0.

setParams(featuresCol='features', labelCol='label', predictionCol='prediction', classi-
fier=None, weightCol=None, parallelism=1)

setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, classi-
fier=None, weightCol=None, parallelism=1): Sets params for OneVsRest.

New in version 2.0.0.

class pyspark.ml.classification.OneVsRestModel(models)

Note: Experimental

Model fitted by OneVsRest. This stores the models resulting from training k binary classifiers: one
for each class. Each example is scored against all k models, and the model with the highest score is
picked to label the example.

New in version 2.0.0.

copy(extra=None)
Creates a copy of this instance with a randomly generated uid and some extra params. This
creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters
over.

Parameters extra – Extra parameters to copy to the new instance

Returns Copy of this instance

New in version 2.0.0.

class pyspark.ml.classification.RandomForestClassificationModel(java_model=None)
Model fitted by RandomForestClassifier.

New in version 1.4.0.

property featureImportances
Estimate of the importance of each feature.

Each feature’s importance is the average of its importance across all trees in the ensemble The
importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie,
Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows
the implementation from scikit-learn.

See also:

DecisionTreeClassificationModel.featureImportances

New in version 2.0.0.

property trees
These have null parent Estimators.

New in version 2.0.0.

Type Trees in this ensemble. Warning

448 Chapter 27. PySpark API

Learning Apache Spark with Python

class pyspark.ml.classification.RandomForestClassifier(*args, **kwargs)
Random Forest learning algorithm for classification. It supports both binary and multiclass labels, as
well as both continuous and categorical features.

>>> import numpy
>>> from numpy import allclose
>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = spark.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="indexed
→˓", seed=42)
>>> model = rf.fit(td)
>>> model.featureImportances
SparseVector(1, {0: 1.0})
>>> allclose(model.treeWeights, [1.0, 1.0, 1.0])
True
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> numpy.argmax(result.probability)
0
>>> numpy.argmax(result.rawPrediction)
0
>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], [
→˓"features"])
>>> model.transform(test1).head().prediction
1.0
>>> model.trees
[DecisionTreeClassificationModel (uid=...) of depth...,
→˓DecisionTreeClassificationModel...]
>>> rfc_path = temp_path + "/rfc"
>>> rf.save(rfc_path)
>>> rf2 = RandomForestClassifier.load(rfc_path)
>>> rf2.getNumTrees()
3
>>> model_path = temp_path + "/rfc_model"
>>> model.save(model_path)
>>> model2 = RandomForestClassificationModel.load(model_path)
>>> model.featureImportances == model2.featureImportances
True

New in version 1.4.0.

setFeatureSubsetStrategy(value)
Sets the value of featureSubsetStrategy.

New in version 2.4.0.

27.3. Classification API 449

http://en.wikipedia.org/wiki/Random_forest

Learning Apache Spark with Python

setParams(self, featuresCol='features', labelCol='label', predictionCol='prediction', prob-
abilityCol='probability', rawPredictionCol='rawPrediction', maxDepth=5,
maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemory-
InMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None, impu-
rity='gini', numTrees=20, featureSubsetStrategy='auto', subsamplingRate=1.0)

Sets params for linear classification.

New in version 1.4.0.

27.4 Clustering API

class pyspark.ml.clustering.BisectingKMeans(*args, **kwargs)
A bisecting k-means algorithm based on the paper “A comparison of document clustering techniques”
by Steinbach, Karypis, and Kumar, with modification to fit Spark. The algorithm starts from a single
cluster that contains all points. Iteratively it finds divisible clusters on the bottom level and bisects
each of them using k-means, until there are 𝑘 leaf clusters in total or no leaf clusters are divisible. The
bisecting steps of clusters on the same level are grouped together to increase parallelism. If bisecting
all divisible clusters on the bottom level would result more than 𝑘 leaf clusters, larger clusters get
higher priority.

>>> from pyspark.ml.linalg import Vectors
>>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),),
... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)]
>>> df = spark.createDataFrame(data, ["features"])
>>> bkm = BisectingKMeans(k=2, minDivisibleClusterSize=1.0)
>>> model = bkm.fit(df)
>>> centers = model.clusterCenters()
>>> len(centers)
2
>>> model.computeCost(df)
2.000...
>>> model.hasSummary
True
>>> summary = model.summary
>>> summary.k
2
>>> summary.clusterSizes
[2, 2]
>>> transformed = model.transform(df).select("features", "prediction")
>>> rows = transformed.collect()
>>> rows[0].prediction == rows[1].prediction
True
>>> rows[2].prediction == rows[3].prediction
True
>>> bkm_path = temp_path + "/bkm"
>>> bkm.save(bkm_path)
>>> bkm2 = BisectingKMeans.load(bkm_path)
>>> bkm2.getK()
2
>>> bkm2.getDistanceMeasure()

(continues on next page)

450 Chapter 27. PySpark API

Learning Apache Spark with Python

(continued from previous page)

'euclidean'
>>> model_path = temp_path + "/bkm_model"
>>> model.save(model_path)
>>> model2 = BisectingKMeansModel.load(model_path)
>>> model2.hasSummary
False
>>> model.clusterCenters()[0] == model2.clusterCenters()[0]
array([True, True], dtype=bool)
>>> model.clusterCenters()[1] == model2.clusterCenters()[1]
array([True, True], dtype=bool)

New in version 2.0.0.

getDistanceMeasure()
Gets the value of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒 or its default value.

New in version 2.4.0.

getK()
Gets the value of 𝑘 or its default value.

New in version 2.0.0.

getMinDivisibleClusterSize()
Gets the value of 𝑚𝑖𝑛𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒 or its default value.

New in version 2.0.0.

setDistanceMeasure(value)
Sets the value of distanceMeasure.

New in version 2.4.0.

setK(value)
Sets the value of k.

New in version 2.0.0.

setMinDivisibleClusterSize(value)
Sets the value of minDivisibleClusterSize.

New in version 2.0.0.

setParams(self, featuresCol='features', predictionCol='prediction', maxIter=20,
seed=None, k=4, minDivisibleClusterSize=1.0, distanceMeasure='euclidean')

Sets params for BisectingKMeans.

New in version 2.0.0.

class pyspark.ml.clustering.BisectingKMeansModel(java_model=None)
Model fitted by BisectingKMeans.

New in version 2.0.0.

clusterCenters()
Get the cluster centers, represented as a list of NumPy arrays.

27.4. Clustering API 451

Learning Apache Spark with Python

New in version 2.0.0.

computeCost(dataset)
Computes the sum of squared distances between the input points and their corresponding cluster
centers.

New in version 2.0.0.

property hasSummary
Indicates whether a training summary exists for this model instance.

New in version 2.1.0.

property summary
Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set.
An exception is thrown if no summary exists.

New in version 2.1.0.

class pyspark.ml.clustering.BisectingKMeansSummary(java_obj=None)

Note: Experimental

Bisecting KMeans clustering results for a given model.

New in version 2.1.0.

class pyspark.ml.clustering.DistributedLDAModel(java_model=None)
Distributed model fitted by LDA. This type of model is currently only produced by Expectation-
Maximization (EM).

This model stores the inferred topics, the full training dataset, and the topic distribution for each
training document.

New in version 2.0.0.

getCheckpointFiles()
If using checkpointing and LDA.keepLastCheckpoint is set to true, then there may be
saved checkpoint files. This method is provided so that users can manage those files.

Note: Removing the checkpoints can cause failures if a partition is lost and is needed by certain
DistributedLDAModel methods. Reference counting will clean up the checkpoints when
this model and derivative data go out of scope.

:return List of checkpoint files from training

New in version 2.0.0.

logPrior()
Log probability of the current parameter estimate: log P(topics, topic distributions for docs |
alpha, eta)

452 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 2.0.0.

toLocal()
Convert this distributed model to a local representation. This discards info about the training
dataset.

WARNING: This involves collecting a large topicsMatrix() to the driver.

New in version 2.0.0.

trainingLogLikelihood()
Log likelihood of the observed tokens in the training set, given the current parameter estimates:
log P(docs | topics, topic distributions for docs, Dirichlet hyperparameters)

Notes:

• This excludes the prior; for that, use logPrior().

• Even with logPrior(), this is NOT the same as the data log likelihood given the
hyperparameters.

• This is computed from the topic distributions computed during training. If you call
logLikelihood() on the same training dataset, the topic distributions will be com-
puted again, possibly giving different results.

New in version 2.0.0.

class pyspark.ml.clustering.GaussianMixture(*args, **kwargs)
GaussianMixture clustering. This class performs expectation maximization for multivariate Gaussian
Mixture Models (GMMs). A GMM represents a composite distribution of independent Gaussian
distributions with associated “mixing” weights specifying each’s contribution to the composite.

Given a set of sample points, this class will maximize the log-likelihood for a mixture of k Gaussians,
iterating until the log-likelihood changes by less than convergenceTol, or until it has reached the max
number of iterations. While this process is generally guaranteed to converge, it is not guaranteed to
find a global optimum.

Note: For high-dimensional data (with many features), this algorithm may perform poorly. This is
due to high-dimensional data (a) making it difficult to cluster at all (based on statistical/theoretical
arguments) and (b) numerical issues with Gaussian distributions.

>>> from pyspark.ml.linalg import Vectors

>>> data = [(Vectors.dense([-0.1, -0.05]),),
... (Vectors.dense([-0.01, -0.1]),),
... (Vectors.dense([0.9, 0.8]),),
... (Vectors.dense([0.75, 0.935]),),
... (Vectors.dense([-0.83, -0.68]),),
... (Vectors.dense([-0.91, -0.76]),)]
>>> df = spark.createDataFrame(data, ["features"])
>>> gm = GaussianMixture(k=3, tol=0.0001,
... maxIter=10, seed=10)

(continues on next page)

27.4. Clustering API 453

Learning Apache Spark with Python

(continued from previous page)

>>> model = gm.fit(df)
>>> model.hasSummary
True
>>> summary = model.summary
>>> summary.k
3
>>> summary.clusterSizes
[2, 2, 2]
>>> summary.logLikelihood
8.14636...
>>> weights = model.weights
>>> len(weights)
3
>>> model.gaussiansDF.select("mean").head()
Row(mean=DenseVector([0.825, 0.8675]))
>>> model.gaussiansDF.select("cov").head()
Row(cov=DenseMatrix(2, 2, [0.0056, -0.0051, -0.0051, 0.0046], False))
>>> transformed = model.transform(df).select("features", "prediction")
>>> rows = transformed.collect()
>>> rows[4].prediction == rows[5].prediction
True
>>> rows[2].prediction == rows[3].prediction
True
>>> gmm_path = temp_path + "/gmm"
>>> gm.save(gmm_path)
>>> gm2 = GaussianMixture.load(gmm_path)
>>> gm2.getK()
3
>>> model_path = temp_path + "/gmm_model"
>>> model.save(model_path)
>>> model2 = GaussianMixtureModel.load(model_path)
>>> model2.hasSummary
False
>>> model2.weights == model.weights
True
>>> model2.gaussiansDF.select("mean").head()
Row(mean=DenseVector([0.825, 0.8675]))
>>> model2.gaussiansDF.select("cov").head()
Row(cov=DenseMatrix(2, 2, [0.0056, -0.0051, -0.0051, 0.0046], False))

New in version 2.0.0.

getK()
Gets the value of 𝑘

New in version 2.0.0.

setK(value)
Sets the value of k.

New in version 2.0.0.

setParams(self, featuresCol='features', predictionCol='prediction', k=2, probability-
Col='probability', tol=0.01, maxIter=100, seed=None)

454 Chapter 27. PySpark API

Learning Apache Spark with Python

Sets params for GaussianMixture.

New in version 2.0.0.

class pyspark.ml.clustering.GaussianMixtureModel(java_model=None)
Model fitted by GaussianMixture.

New in version 2.0.0.

property gaussiansDF
Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution.
The DataFrame has two columns: mean (Vector) and cov (Matrix).

New in version 2.0.0.

property hasSummary
Indicates whether a training summary exists for this model instance.

New in version 2.1.0.

property summary
Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set.
An exception is thrown if no summary exists.

New in version 2.1.0.

property weights
Weight for each Gaussian distribution in the mixture. This is a multinomial probability distri-
bution over the k Gaussians, where weights[i] is the weight for Gaussian i, and weights sum to
1.

New in version 2.0.0.

class pyspark.ml.clustering.GaussianMixtureSummary(java_obj=None)

Note: Experimental

Gaussian mixture clustering results for a given model.

New in version 2.1.0.

property logLikelihood
Total log-likelihood for this model on the given data.

New in version 2.2.0.

property probability
DataFrame of probabilities of each cluster for each training data point.

New in version 2.1.0.

property probabilityCol
Name for column of predicted probability of each cluster in 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠.

New in version 2.1.0.

27.4. Clustering API 455

Learning Apache Spark with Python

class pyspark.ml.clustering.KMeans(*args, **kwargs)
K-means clustering with a k-means++ like initialization mode (the k-means|| algorithm by Bahmani
et al).

>>> from pyspark.ml.linalg import Vectors
>>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),),
... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)]
>>> df = spark.createDataFrame(data, ["features"])
>>> kmeans = KMeans(k=2, seed=1)
>>> model = kmeans.fit(df)
>>> centers = model.clusterCenters()
>>> len(centers)
2
>>> model.computeCost(df)
2.000...
>>> transformed = model.transform(df).select("features", "prediction")
>>> rows = transformed.collect()
>>> rows[0].prediction == rows[1].prediction
True
>>> rows[2].prediction == rows[3].prediction
True
>>> model.hasSummary
True
>>> summary = model.summary
>>> summary.k
2
>>> summary.clusterSizes
[2, 2]
>>> summary.trainingCost
2.000...
>>> kmeans_path = temp_path + "/kmeans"
>>> kmeans.save(kmeans_path)
>>> kmeans2 = KMeans.load(kmeans_path)
>>> kmeans2.getK()
2
>>> model_path = temp_path + "/kmeans_model"
>>> model.save(model_path)
>>> model2 = KMeansModel.load(model_path)
>>> model2.hasSummary
False
>>> model.clusterCenters()[0] == model2.clusterCenters()[0]
array([True, True], dtype=bool)
>>> model.clusterCenters()[1] == model2.clusterCenters()[1]
array([True, True], dtype=bool)

New in version 1.5.0.

getDistanceMeasure()
Gets the value of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒

New in version 2.4.0.

getInitMode()
Gets the value of 𝑖𝑛𝑖𝑡𝑀𝑜𝑑𝑒

456 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 1.5.0.

getInitSteps()
Gets the value of 𝑖𝑛𝑖𝑡𝑆𝑡𝑒𝑝𝑠

New in version 1.5.0.

getK()
Gets the value of 𝑘

New in version 1.5.0.

setDistanceMeasure(value)
Sets the value of distanceMeasure.

New in version 2.4.0.

setInitMode(value)
Sets the value of initMode.

New in version 1.5.0.

setInitSteps(value)
Sets the value of initSteps.

New in version 1.5.0.

setK(value)
Sets the value of k.

New in version 1.5.0.

setParams(self, featuresCol='features', predictionCol='prediction', k=2, initMode='k-
means||', initSteps=2, tol=0.0001, maxIter=20, seed=None, distanceMea-
sure='euclidean')

Sets params for KMeans.

New in version 1.5.0.

class pyspark.ml.clustering.KMeansModel(java_model=None)
Model fitted by KMeans.

New in version 1.5.0.

clusterCenters()
Get the cluster centers, represented as a list of NumPy arrays.

New in version 1.5.0.

computeCost(dataset)
Return the K-means cost (sum of squared distances of points to their nearest center) for this
model on the given data.

..note:: Deprecated in 2.4.0. It will be removed in 3.0.0. Use ClusteringEvaluator instead.
You can also get the cost on the training dataset in the summary.

New in version 2.0.0.

27.4. Clustering API 457

Learning Apache Spark with Python

property hasSummary
Indicates whether a training summary exists for this model instance.

New in version 2.1.0.

property summary
Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set.
An exception is thrown if no summary exists.

New in version 2.1.0.

class pyspark.ml.clustering.LDA(*args, **kwargs)
Latent Dirichlet Allocation (LDA), a topic model designed for text documents.

Terminology:

• “term” = “word”: an element of the vocabulary

• “token”: instance of a term appearing in a document

• “topic”: multinomial distribution over terms representing some concept

• “document”: one piece of text, corresponding to one row in the input data

Original LDA paper (journal version): Blei, Ng, and Jordan. “Latent Dirichlet Allocation.” JMLR,
2003.

Input data (featuresCol): LDA is given a collection of documents as input data, via the featuresCol
parameter. Each document is specified as a Vector of length vocabSize, where each entry is the
count for the corresponding term (word) in the document. Feature transformers such as pyspark.
ml.feature.Tokenizer and pyspark.ml.feature.CountVectorizer can be useful
for converting text to word count vectors.

>>> from pyspark.ml.linalg import Vectors, SparseVector
>>> from pyspark.ml.clustering import LDA
>>> df = spark.createDataFrame([[1, Vectors.dense([0.0, 1.0])],
... [2, SparseVector(2, {0: 1.0})],], ["id", "features"])
>>> lda = LDA(k=2, seed=1, optimizer="em")
>>> model = lda.fit(df)
>>> model.isDistributed()
True
>>> localModel = model.toLocal()
>>> localModel.isDistributed()
False
>>> model.vocabSize()
2
>>> model.describeTopics().show()
+-----+-----------+--------------------+
|topic|termIndices| termWeights|
+-----+-----------+--------------------+
| 0| [1, 0]|[0.50401530077160...|
| 1| [0, 1]|[0.50401530077160...|
+-----+-----------+--------------------+
...

(continues on next page)

458 Chapter 27. PySpark API

Learning Apache Spark with Python

(continued from previous page)

>>> model.topicsMatrix()
DenseMatrix(2, 2, [0.496, 0.504, 0.504, 0.496], 0)
>>> lda_path = temp_path + "/lda"
>>> lda.save(lda_path)
>>> sameLDA = LDA.load(lda_path)
>>> distributed_model_path = temp_path + "/lda_distributed_model"
>>> model.save(distributed_model_path)
>>> sameModel = DistributedLDAModel.load(distributed_model_path)
>>> local_model_path = temp_path + "/lda_local_model"
>>> localModel.save(local_model_path)
>>> sameLocalModel = LocalLDAModel.load(local_model_path)

New in version 2.0.0.

getDocConcentration()
Gets the value of docConcentration or its default value.

New in version 2.0.0.

getK()
Gets the value of k or its default value.

New in version 2.0.0.

getKeepLastCheckpoint()
Gets the value of keepLastCheckpoint or its default value.

New in version 2.0.0.

getLearningDecay()
Gets the value of learningDecay or its default value.

New in version 2.0.0.

getLearningOffset()
Gets the value of learningOffset or its default value.

New in version 2.0.0.

getOptimizeDocConcentration()
Gets the value of optimizeDocConcentration or its default value.

New in version 2.0.0.

getOptimizer()
Gets the value of optimizer or its default value.

New in version 2.0.0.

getSubsamplingRate()
Gets the value of subsamplingRate or its default value.

New in version 2.0.0.

getTopicConcentration()
Gets the value of topicConcentration or its default value.

27.4. Clustering API 459

Learning Apache Spark with Python

New in version 2.0.0.

getTopicDistributionCol()
Gets the value of topicDistributionCol or its default value.

New in version 2.0.0.

setDocConcentration(value)
Sets the value of docConcentration.

>>> algo = LDA().setDocConcentration([0.1, 0.2])
>>> algo.getDocConcentration()
[0.1..., 0.2...]

New in version 2.0.0.

setK(value)
Sets the value of k.

>>> algo = LDA().setK(10)
>>> algo.getK()
10

New in version 2.0.0.

setKeepLastCheckpoint(value)
Sets the value of keepLastCheckpoint.

>>> algo = LDA().setKeepLastCheckpoint(False)
>>> algo.getKeepLastCheckpoint()
False

New in version 2.0.0.

setLearningDecay(value)
Sets the value of learningDecay.

>>> algo = LDA().setLearningDecay(0.1)
>>> algo.getLearningDecay()
0.1...

New in version 2.0.0.

setLearningOffset(value)
Sets the value of learningOffset.

>>> algo = LDA().setLearningOffset(100)
>>> algo.getLearningOffset()
100.0

New in version 2.0.0.

setOptimizeDocConcentration(value)
Sets the value of optimizeDocConcentration.

460 Chapter 27. PySpark API

Learning Apache Spark with Python

>>> algo = LDA().setOptimizeDocConcentration(True)
>>> algo.getOptimizeDocConcentration()
True

New in version 2.0.0.

setOptimizer(value)
Sets the value of optimizer. Currently only support ‘em’ and ‘online’.

>>> algo = LDA().setOptimizer("em")
>>> algo.getOptimizer()
'em'

New in version 2.0.0.

setParams(self, featuresCol='features', maxIter=20, seed=None, checkpointInterval=10,
k=10, optimizer='online', learningOffset=1024.0, learningDecay=0.51, subsam-
plingRate=0.05, optimizeDocConcentration=True, docConcentration=None,
topicConcentration=None, topicDistributionCol='topicDistribution', keepLas-
tCheckpoint=True)

Sets params for LDA.

New in version 2.0.0.

setSubsamplingRate(value)
Sets the value of subsamplingRate.

>>> algo = LDA().setSubsamplingRate(0.1)
>>> algo.getSubsamplingRate()
0.1...

New in version 2.0.0.

setTopicConcentration(value)
Sets the value of topicConcentration.

>>> algo = LDA().setTopicConcentration(0.5)
>>> algo.getTopicConcentration()
0.5...

New in version 2.0.0.

setTopicDistributionCol(value)
Sets the value of topicDistributionCol.

>>> algo = LDA().setTopicDistributionCol("topicDistributionCol")
>>> algo.getTopicDistributionCol()
'topicDistributionCol'

New in version 2.0.0.

class pyspark.ml.clustering.LDAModel(java_model=None)
Latent Dirichlet Allocation (LDA) model. This abstraction permits for different underlying represen-
tations, including local and distributed data structures.

27.4. Clustering API 461

Learning Apache Spark with Python

New in version 2.0.0.

describeTopics(maxTermsPerTopic=10)
Return the topics described by their top-weighted terms.

New in version 2.0.0.

estimatedDocConcentration()
Value for LDA.docConcentration estimated from data. If Online LDA was used and LDA.
optimizeDocConcentration was set to false, then this returns the fixed (given) value for
the LDA.docConcentration parameter.

New in version 2.0.0.

isDistributed()
Indicates whether this instance is of type DistributedLDAModel

New in version 2.0.0.

logLikelihood(dataset)
Calculates a lower bound on the log likelihood of the entire corpus. See Equation (16) in the
Online LDA paper (Hoffman et al., 2010).

WARNING: If this model is an instance of DistributedLDAModel (produced when
optimizer is set to “em”), this involves collecting a large topicsMatrix() to the driver.
This implementation may be changed in the future.

New in version 2.0.0.

logPerplexity(dataset)
Calculate an upper bound on perplexity. (Lower is better.) See Equation (16) in the Online LDA
paper (Hoffman et al., 2010).

WARNING: If this model is an instance of DistributedLDAModel (produced when
optimizer is set to “em”), this involves collecting a large topicsMatrix() to the driver.
This implementation may be changed in the future.

New in version 2.0.0.

topicsMatrix()
Inferred topics, where each topic is represented by a distribution over terms. This is a matrix of
size vocabSize x k, where each column is a topic. No guarantees are given about the ordering of
the topics.

WARNING: If this model is actually a DistributedLDAModel instance produced by the
Expectation-Maximization (“em”) 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, then this method could involve collecting a large
amount of data to the driver (on the order of vocabSize x k).

New in version 2.0.0.

vocabSize()
Vocabulary size (number of terms or words in the vocabulary)

New in version 2.0.0.

462 Chapter 27. PySpark API

Learning Apache Spark with Python

class pyspark.ml.clustering.LocalLDAModel(java_model=None)
Local (non-distributed) model fitted by LDA. This model stores the inferred topics only; it does not
store info about the training dataset.

New in version 2.0.0.

class pyspark.ml.clustering.PowerIterationClustering(*args, **kwargs)

Note: Experimental

Power Iteration Clustering (PIC), a scalable graph clustering algorithm developed by Lin and Cohen.
From the abstract: PIC finds a very low-dimensional embedding of a dataset using truncated power
iteration on a normalized pair-wise similarity matrix of the data.

This class is not yet an Estimator/Transformer, use assignClusters()method to run the PowerIt-
erationClustering algorithm.

See also:

Wikipedia on Spectral clustering

>>> data = [(1, 0, 0.5),
... (2, 0, 0.5), (2, 1, 0.7),
... (3, 0, 0.5), (3, 1, 0.7), (3, 2, 0.9),
... (4, 0, 0.5), (4, 1, 0.7), (4, 2, 0.9), (4, 3, 1.1),
... (5, 0, 0.5), (5, 1, 0.7), (5, 2, 0.9), (5, 3, 1.1), (5, 4, 1.
→˓3)]
>>> df = spark.createDataFrame(data).toDF("src", "dst", "weight")
>>> pic = PowerIterationClustering(k=2, maxIter=40, weightCol="weight")
>>> assignments = pic.assignClusters(df)
>>> assignments.sort(assignments.id).show(truncate=False)
+---+-------+
|id |cluster|
+---+-------+
|0 |1 |
|1 |1 |
|2 |1 |
|3 |1 |
|4 |1 |
|5 |0 |
+---+-------+
...
>>> pic_path = temp_path + "/pic"
>>> pic.save(pic_path)
>>> pic2 = PowerIterationClustering.load(pic_path)
>>> pic2.getK()
2
>>> pic2.getMaxIter()
40

New in version 2.4.0.

27.4. Clustering API 463

http://www.icml2010.org/papers/387.pdf
http://en.wikipedia.org/wiki/Spectral_clustering

Learning Apache Spark with Python

assignClusters(dataset)
Run the PIC algorithm and returns a cluster assignment for each input vertex.

Parameters dataset – A dataset with columns src, dst, weight representing the
affinity matrix, which is the matrix A in the PIC paper. Suppose the src column
value is i, the dst column value is j, the weight column value is similarity s„ij„
which must be nonnegative. This is a symmetric matrix and hence s„ij„ = s„ji„.
For any (i, j) with nonzero similarity, there should be either (i, j, s„ij„) or (j, i, s„ji„)
in the input. Rows with i = j are ignored, because we assume s„ij„ = 0.0.

Returns A dataset that contains columns of vertex id and the corresponding cluster
for the id. The schema of it will be: - id: Long - cluster: Int

New in version 2.4.0.

New in version 2.4.0.

getDstCol()
Gets the value of dstCol or its default value.

New in version 2.4.0.

getInitMode()
Gets the value of initMode or its default value.

New in version 2.4.0.

getK()
Gets the value of k or its default value.

New in version 2.4.0.

getSrcCol()
Gets the value of srcCol or its default value.

New in version 2.4.0.

setDstCol(value)
Sets the value of dstCol.

New in version 2.4.0.

setInitMode(value)
Sets the value of initMode.

New in version 2.4.0.

setK(value)
Sets the value of k.

New in version 2.4.0.

setParams(self, k=2, maxIter=20, initMode='random', srcCol='src', dstCol='dst', weight-
Col=None)

Sets params for PowerIterationClustering.

New in version 2.4.0.

464 Chapter 27. PySpark API

Learning Apache Spark with Python

setSrcCol(value)
Sets the value of srcCol.

New in version 2.4.0.

27.5 Recommendation API

class pyspark.ml.recommendation.ALS(*args, **kwargs)
Alternating Least Squares (ALS) matrix factorization.

ALS attempts to estimate the ratings matrix 𝑅 as the product of two lower-rank matrices, 𝑋 and 𝑌 ,
i.e. 𝑋 * 𝑌 𝑡 = 𝑅. Typically these approximations are called ‘factor’ matrices. The general approach
is iterative. During each iteration, one of the factor matrices is held constant, while the other is solved
for using least squares. The newly-solved factor matrix is then held constant while solving for the
other factor matrix.

This is a blocked implementation of the ALS factorization algorithm that groups the two sets of factors
(referred to as “users” and “products”) into blocks and reduces communication by only sending one
copy of each user vector to each product block on each iteration, and only for the product blocks that
need that user’s feature vector. This is achieved by pre-computing some information about the ratings
matrix to determine the “out-links” of each user (which blocks of products it will contribute to) and
“in-link” information for each product (which of the feature vectors it receives from each user block
it will depend on). This allows us to send only an array of feature vectors between each user block
and product block, and have the product block find the users’ ratings and update the products based
on these messages.

For implicit preference data, the algorithm used is based on “Collaborative Filtering for Implicit Feed-
back Datasets”,, adapted for the blocked approach used here.

Essentially instead of finding the low-rank approximations to the rating matrix 𝑅, this finds the ap-
proximations for a preference matrix 𝑃 where the elements of 𝑃 are 1 if r > 0 and 0 if r <= 0. The
ratings then act as ‘confidence’ values related to strength of indicated user preferences rather than
explicit ratings given to items.

>>> df = spark.createDataFrame(
... [(0, 0, 4.0), (0, 1, 2.0), (1, 1, 3.0), (1, 2, 4.0), (2, 1, 1.0),
→˓ (2, 2, 5.0)],
... ["user", "item", "rating"])
>>> als = ALS(rank=10, maxIter=5, seed=0)
>>> model = als.fit(df)
>>> model.rank
10
>>> model.userFactors.orderBy("id").collect()
[Row(id=0, features=[...]), Row(id=1, ...), Row(id=2, ...)]
>>> test = spark.createDataFrame([(0, 2), (1, 0), (2, 0)], ["user", "item
→˓"])
>>> predictions = sorted(model.transform(test).collect(), key=lambda r:
→˓r[0])
>>> predictions[0]
Row(user=0, item=2, prediction=-0.13807615637779236)

(continues on next page)

27.5. Recommendation API 465

http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2008.22

Learning Apache Spark with Python

(continued from previous page)

>>> predictions[1]
Row(user=1, item=0, prediction=2.6258413791656494)
>>> predictions[2]
Row(user=2, item=0, prediction=-1.5018409490585327)
>>> user_recs = model.recommendForAllUsers(3)
>>> user_recs.where(user_recs.user == 0) .select("recommendations.
→˓item", "recommendations.rating").collect()
[Row(item=[0, 1, 2], rating=[3.910..., 1.992..., -0.138...])]
>>> item_recs = model.recommendForAllItems(3)
>>> item_recs.where(item_recs.item == 2) .select("recommendations.
→˓user", "recommendations.rating").collect()
[Row(user=[2, 1, 0], rating=[4.901..., 3.981..., -0.138...])]
>>> user_subset = df.where(df.user == 2)
>>> user_subset_recs = model.recommendForUserSubset(user_subset, 3)
>>> user_subset_recs.select("recommendations.item", "recommendations.
→˓rating").first()
Row(item=[2, 1, 0], rating=[4.901..., 1.056..., -1.501...])
>>> item_subset = df.where(df.item == 0)
>>> item_subset_recs = model.recommendForItemSubset(item_subset, 3)
>>> item_subset_recs.select("recommendations.user", "recommendations.
→˓rating").first()
Row(user=[0, 1, 2], rating=[3.910..., 2.625..., -1.501...])
>>> als_path = temp_path + "/als"
>>> als.save(als_path)
>>> als2 = ALS.load(als_path)
>>> als.getMaxIter()
5
>>> model_path = temp_path + "/als_model"
>>> model.save(model_path)
>>> model2 = ALSModel.load(model_path)
>>> model.rank == model2.rank
True
>>> sorted(model.userFactors.collect()) == sorted(model2.userFactors.
→˓collect())
True
>>> sorted(model.itemFactors.collect()) == sorted(model2.itemFactors.
→˓collect())
True

New in version 1.4.0.

getAlpha()
Gets the value of alpha or its default value.

New in version 1.4.0.

getColdStartStrategy()
Gets the value of coldStartStrategy or its default value.

New in version 2.2.0.

getFinalStorageLevel()
Gets the value of finalStorageLevel or its default value.

466 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 2.0.0.

getImplicitPrefs()
Gets the value of implicitPrefs or its default value.

New in version 1.4.0.

getIntermediateStorageLevel()
Gets the value of intermediateStorageLevel or its default value.

New in version 2.0.0.

getItemCol()
Gets the value of itemCol or its default value.

New in version 1.4.0.

getNonnegative()
Gets the value of nonnegative or its default value.

New in version 1.4.0.

getNumItemBlocks()
Gets the value of numItemBlocks or its default value.

New in version 1.4.0.

getNumUserBlocks()
Gets the value of numUserBlocks or its default value.

New in version 1.4.0.

getRank()
Gets the value of rank or its default value.

New in version 1.4.0.

getRatingCol()
Gets the value of ratingCol or its default value.

New in version 1.4.0.

getUserCol()
Gets the value of userCol or its default value.

New in version 1.4.0.

setAlpha(value)
Sets the value of alpha.

New in version 1.4.0.

setColdStartStrategy(value)
Sets the value of coldStartStrategy.

New in version 2.2.0.

setFinalStorageLevel(value)
Sets the value of finalStorageLevel.

27.5. Recommendation API 467

Learning Apache Spark with Python

New in version 2.0.0.

setImplicitPrefs(value)
Sets the value of implicitPrefs.

New in version 1.4.0.

setIntermediateStorageLevel(value)
Sets the value of intermediateStorageLevel.

New in version 2.0.0.

setItemCol(value)
Sets the value of itemCol.

New in version 1.4.0.

setNonnegative(value)
Sets the value of nonnegative.

New in version 1.4.0.

setNumBlocks(value)
Sets both numUserBlocks and numItemBlocks to the specific value.

New in version 1.4.0.

setNumItemBlocks(value)
Sets the value of numItemBlocks.

New in version 1.4.0.

setNumUserBlocks(value)
Sets the value of numUserBlocks.

New in version 1.4.0.

setParams(self, rank=10, maxIter=10, regParam=0.1, numUserBlocks=10, nu-
mItemBlocks=10, implicitPrefs=False, alpha=1.0, userCol='user', item-
Col='item', seed=None, ratingCol='rating', nonnegative=False, checkpointIn-
terval=10, intermediateStorageLevel='MEMORY_AND_DISK', finalStor-
ageLevel='MEMORY_AND_DISK', coldStartStrategy='nan')

Sets params for ALS.

New in version 1.4.0.

setRank(value)
Sets the value of rank.

New in version 1.4.0.

setRatingCol(value)
Sets the value of ratingCol.

New in version 1.4.0.

setUserCol(value)
Sets the value of userCol.

468 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 1.4.0.

class pyspark.ml.recommendation.ALSModel(java_model=None)
Model fitted by ALS.

New in version 1.4.0.

property itemFactors
𝑖𝑑 and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

New in version 1.4.0.

Type a DataFrame that stores item factors in two columns

property rank
rank of the matrix factorization model

New in version 1.4.0.

recommendForAllItems(numUsers)
Returns top 𝑛𝑢𝑚𝑈𝑠𝑒𝑟𝑠 users recommended for each item, for all items.

Parameters numUsers – max number of recommendations for each item

Returns a DataFrame of (itemCol, recommendations), where recommendations are
stored as an array of (userCol, rating) Rows.

New in version 2.2.0.

recommendForAllUsers(numItems)
Returns top 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 items recommended for each user, for all users.

Parameters numItems – max number of recommendations for each user

Returns a DataFrame of (userCol, recommendations), where recommendations are
stored as an array of (itemCol, rating) Rows.

New in version 2.2.0.

recommendForItemSubset(dataset, numUsers)
Returns top 𝑛𝑢𝑚𝑈𝑠𝑒𝑟𝑠 users recommended for each item id in the input data set. Note that if
there are duplicate ids in the input dataset, only one set of recommendations per unique id will
be returned.

Parameters

• dataset – a Dataset containing a column of item ids. The column name must
match 𝑖𝑡𝑒𝑚𝐶𝑜𝑙.

• numUsers – max number of recommendations for each item

Returns a DataFrame of (itemCol, recommendations), where recommendations are
stored as an array of (userCol, rating) Rows.

New in version 2.3.0.

recommendForUserSubset(dataset, numItems)
Returns top 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 items recommended for each user id in the input data set. Note that if

27.5. Recommendation API 469

Learning Apache Spark with Python

there are duplicate ids in the input dataset, only one set of recommendations per unique id will
be returned.

Parameters

• dataset – a Dataset containing a column of user ids. The column name must
match 𝑢𝑠𝑒𝑟𝐶𝑜𝑙.

• numItems – max number of recommendations for each user

Returns a DataFrame of (userCol, recommendations), where recommendations are
stored as an array of (itemCol, rating) Rows.

New in version 2.3.0.

property userFactors
𝑖𝑑 and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

New in version 1.4.0.

Type a DataFrame that stores user factors in two columns

27.6 Pipeline API

class pyspark.ml.pipeline.Pipeline(*args, **kwargs)
A simple pipeline, which acts as an estimator. A Pipeline consists of a sequence of stages, each of
which is either an Estimator or a Transformer. When Pipeline.fit() is called, the stages
are executed in order. If a stage is an Estimator, its Estimator.fit() method will be called
on the input dataset to fit a model. Then the model, which is a transformer, will be used to trans-
form the dataset as the input to the next stage. If a stage is a Transformer, its Transformer.
transform() method will be called to produce the dataset for the next stage. The fitted model
from a Pipeline is a PipelineModel, which consists of fitted models and transformers, corre-
sponding to the pipeline stages. If stages is an empty list, the pipeline acts as an identity transformer.

New in version 1.3.0.

copy(extra=None)
Creates a copy of this instance.

Parameters extra – extra parameters

Returns new instance

New in version 1.4.0.

getStages()
Get pipeline stages.

New in version 1.3.0.

classmethod read()
Returns an MLReader instance for this class.

New in version 2.0.0.

470 Chapter 27. PySpark API

Learning Apache Spark with Python

setParams(self, stages=None)
Sets params for Pipeline.

New in version 1.3.0.

setStages(value)
Set pipeline stages.

Parameters value – a list of transformers or estimators

Returns the pipeline instance

New in version 1.3.0.

write()
Returns an MLWriter instance for this ML instance.

New in version 2.0.0.

class pyspark.ml.pipeline.PipelineModel(stages)
Represents a compiled pipeline with transformers and fitted models.

New in version 1.3.0.

copy(extra=None)
Creates a copy of this instance.

Parameters extra – extra parameters

Returns new instance

New in version 1.4.0.

classmethod read()
Returns an MLReader instance for this class.

New in version 2.0.0.

write()
Returns an MLWriter instance for this ML instance.

New in version 2.0.0.

class pyspark.ml.pipeline.PipelineModelReader(cls)
(Private) Specialization of MLReader for PipelineModel types

load(path)
Load the ML instance from the input path.

class pyspark.ml.pipeline.PipelineModelWriter(instance)
(Private) Specialization of MLWriter for PipelineModel types

saveImpl(path)
save() handles overwriting and then calls this method. Subclasses should override this method
to implement the actual saving of the instance.

class pyspark.ml.pipeline.PipelineReader(cls)
(Private) Specialization of MLReader for Pipeline types

27.6. Pipeline API 471

Learning Apache Spark with Python

load(path)
Load the ML instance from the input path.

class pyspark.ml.pipeline.PipelineSharedReadWrite

Note: DeveloperApi

Functions for MLReader and MLWriter shared between Pipeline and PipelineModel

New in version 2.3.0.

static getStagePath(stageUid, stageIdx, numStages, stagesDir)
Get path for saving the given stage.

static load(metadata, sc, path)
Load metadata and stages for a Pipeline or PipelineModel

Returns (UID, list of stages)

static saveImpl(instance, stages, sc, path)
Save metadata and stages for a Pipeline or PipelineModel - save metadata to
path/metadata - save stages to stages/IDX_UID

static validateStages(stages)
Check that all stages are Writable

class pyspark.ml.pipeline.PipelineWriter(instance)
(Private) Specialization of MLWriter for Pipeline types

saveImpl(path)
save() handles overwriting and then calls this method. Subclasses should override this method
to implement the actual saving of the instance.

27.7 Tuning API

class pyspark.ml.tuning.CrossValidator(*args, **kwargs)
K-fold cross validation performs model selection by splitting the dataset into a set of non-overlapping
randomly partitioned folds which are used as separate training and test datasets e.g., with k=3 folds,
K-fold cross validation will generate 3 (training, test) dataset pairs, each of which uses 2/3 of the data
for training and 1/3 for testing. Each fold is used as the test set exactly once.

>>> from pyspark.ml.classification import LogisticRegression
>>> from pyspark.ml.evaluation import BinaryClassificationEvaluator
>>> from pyspark.ml.linalg import Vectors
>>> dataset = spark.createDataFrame(
... [(Vectors.dense([0.0]), 0.0),
... (Vectors.dense([0.4]), 1.0),
... (Vectors.dense([0.5]), 0.0),
... (Vectors.dense([0.6]), 1.0),

(continues on next page)

472 Chapter 27. PySpark API

Learning Apache Spark with Python

(continued from previous page)

... (Vectors.dense([1.0]), 1.0)] * 10,

... ["features", "label"])
>>> lr = LogisticRegression()
>>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build()
>>> evaluator = BinaryClassificationEvaluator()
>>> cv = CrossValidator(estimator=lr, estimatorParamMaps=grid,
→˓evaluator=evaluator,
... parallelism=2)
>>> cvModel = cv.fit(dataset)
>>> cvModel.avgMetrics[0]
0.5
>>> evaluator.evaluate(cvModel.transform(dataset))
0.8333...

New in version 1.4.0.

copy(extra=None)
Creates a copy of this instance with a randomly generated uid and some extra params. This
copies creates a deep copy of the embedded paramMap, and copies the embedded and extra
parameters over.

Parameters extra – Extra parameters to copy to the new instance

Returns Copy of this instance

New in version 1.4.0.

getNumFolds()
Gets the value of numFolds or its default value.

New in version 1.4.0.

classmethod read()
Returns an MLReader instance for this class.

New in version 2.3.0.

setNumFolds(value)
Sets the value of numFolds.

New in version 1.4.0.

setParams(estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3,
seed=None, parallelism=1, collectSubModels=False)

setParams(self, estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3,
seed=None, parallelism=1, collectSubModels=False): Sets params for cross validator.

New in version 1.4.0.

write()
Returns an MLWriter instance for this ML instance.

New in version 2.3.0.

27.7. Tuning API 473

Learning Apache Spark with Python

class pyspark.ml.tuning.CrossValidatorModel(bestModel, avgMetrics=[], sub-
Models=None)

CrossValidatorModel contains the model with the highest average cross-validation metric across folds
and uses this model to transform input data. CrossValidatorModel also tracks the metrics for each
param map evaluated.

New in version 1.4.0.

avgMetrics
Average cross-validation metrics for each paramMap in CrossValidator.estimatorParamMaps, in
the corresponding order.

bestModel
best model from cross validation

copy(extra=None)
Creates a copy of this instance with a randomly generated uid and some extra params. This
copies the underlying bestModel, creates a deep copy of the embedded paramMap, and copies
the embedded and extra parameters over. It does not copy the extra Params into the subModels.

Parameters extra – Extra parameters to copy to the new instance

Returns Copy of this instance

New in version 1.4.0.

classmethod read()
Returns an MLReader instance for this class.

New in version 2.3.0.

subModels
sub model list from cross validation

write()
Returns an MLWriter instance for this ML instance.

New in version 2.3.0.

class pyspark.ml.tuning.ParamGridBuilder
Builder for a param grid used in grid search-based model selection.

>>> from pyspark.ml.classification import LogisticRegression
>>> lr = LogisticRegression()
>>> output = ParamGridBuilder() \
... .baseOn({lr.labelCol: 'l'}) \
... .baseOn([lr.predictionCol, 'p']) \
... .addGrid(lr.regParam, [1.0, 2.0]) \
... .addGrid(lr.maxIter, [1, 5]) \
... .build()
>>> expected = [
... {lr.regParam: 1.0, lr.maxIter: 1, lr.labelCol: 'l', lr.
→˓predictionCol: 'p'},
... {lr.regParam: 2.0, lr.maxIter: 1, lr.labelCol: 'l', lr.
→˓predictionCol: 'p'},

(continues on next page)

474 Chapter 27. PySpark API

Learning Apache Spark with Python

(continued from previous page)

... {lr.regParam: 1.0, lr.maxIter: 5, lr.labelCol: 'l', lr.
→˓predictionCol: 'p'},
... {lr.regParam: 2.0, lr.maxIter: 5, lr.labelCol: 'l', lr.
→˓predictionCol: 'p'}]
>>> len(output) == len(expected)
True
>>> all([m in expected for m in output])
True

New in version 1.4.0.

addGrid(param, values)
Sets the given parameters in this grid to fixed values.

New in version 1.4.0.

baseOn(*args)
Sets the given parameters in this grid to fixed values. Accepts either a parameter dictionary or a
list of (parameter, value) pairs.

New in version 1.4.0.

build()
Builds and returns all combinations of parameters specified by the param grid.

New in version 1.4.0.

class pyspark.ml.tuning.TrainValidationSplit(*args, **kwargs)

Note: Experimental

Validation for hyper-parameter tuning. Randomly splits the input dataset into train and valida-
tion sets, and uses evaluation metric on the validation set to select the best model. Similar to
CrossValidator, but only splits the set once.

>>> from pyspark.ml.classification import LogisticRegression
>>> from pyspark.ml.evaluation import BinaryClassificationEvaluator
>>> from pyspark.ml.linalg import Vectors
>>> dataset = spark.createDataFrame(
... [(Vectors.dense([0.0]), 0.0),
... (Vectors.dense([0.4]), 1.0),
... (Vectors.dense([0.5]), 0.0),
... (Vectors.dense([0.6]), 1.0),
... (Vectors.dense([1.0]), 1.0)] * 10,
... ["features", "label"])
>>> lr = LogisticRegression()
>>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build()
>>> evaluator = BinaryClassificationEvaluator()
>>> tvs = TrainValidationSplit(estimator=lr, estimatorParamMaps=grid,
→˓evaluator=evaluator,

(continues on next page)

27.7. Tuning API 475

Learning Apache Spark with Python

(continued from previous page)

... parallelism=2)
>>> tvsModel = tvs.fit(dataset)
>>> evaluator.evaluate(tvsModel.transform(dataset))
0.8333...

New in version 2.0.0.

copy(extra=None)
Creates a copy of this instance with a randomly generated uid and some extra params. This
copies creates a deep copy of the embedded paramMap, and copies the embedded and extra
parameters over.

Parameters extra – Extra parameters to copy to the new instance

Returns Copy of this instance

New in version 2.0.0.

getTrainRatio()
Gets the value of trainRatio or its default value.

New in version 2.0.0.

classmethod read()
Returns an MLReader instance for this class.

New in version 2.3.0.

setParams(estimator=None, estimatorParamMaps=None, evaluator=None, trainRa-
tio=0.75, parallelism=1, collectSubModels=False, seed=None)

setParams(self, estimator=None, estimatorParamMaps=None, evaluator=None, trainRa-
tio=0.75, parallelism=1, collectSubModels=False, seed=None): Sets params for the train val-
idation split.

New in version 2.0.0.

setTrainRatio(value)
Sets the value of trainRatio.

New in version 2.0.0.

write()
Returns an MLWriter instance for this ML instance.

New in version 2.3.0.

class pyspark.ml.tuning.TrainValidationSplitModel(bestModel, validation-
Metrics=[], subMod-
els=None)

Note: Experimental

Model from train validation split.

476 Chapter 27. PySpark API

Learning Apache Spark with Python

New in version 2.0.0.

bestModel
best model from train validation split

copy(extra=None)
Creates a copy of this instance with a randomly generated uid and some extra params. This
copies the underlying bestModel, creates a deep copy of the embedded paramMap, and copies
the embedded and extra parameters over. And, this creates a shallow copy of the validation-
Metrics. It does not copy the extra Params into the subModels.

Parameters extra – Extra parameters to copy to the new instance

Returns Copy of this instance

New in version 2.0.0.

classmethod read()
Returns an MLReader instance for this class.

New in version 2.3.0.

subModels
sub models from train validation split

validationMetrics
evaluated validation metrics

write()
Returns an MLWriter instance for this ML instance.

New in version 2.3.0.

27.8 Evaluation API

class pyspark.ml.evaluation.BinaryClassificationEvaluator(*args,
**kwargs)

Note: Experimental

Evaluator for binary classification, which expects two input columns: rawPrediction and label. The
rawPrediction column can be of type double (binary 0/1 prediction, or probability of label 1) or of
type vector (length-2 vector of raw predictions, scores, or label probabilities).

>>> from pyspark.ml.linalg import Vectors
>>> scoreAndLabels = map(lambda x: (Vectors.dense([1.0 - x[0], x[0]]),
→˓x[1]),
... [(0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6,
→˓ 1.0), (0.8, 1.0)])
>>> dataset = spark.createDataFrame(scoreAndLabels, ["raw", "label"])
...

(continues on next page)

27.8. Evaluation API 477

Learning Apache Spark with Python

(continued from previous page)

>>> evaluator = BinaryClassificationEvaluator(rawPredictionCol="raw")
>>> evaluator.evaluate(dataset)
0.70...
>>> evaluator.evaluate(dataset, {evaluator.metricName: "areaUnderPR"})
0.83...
>>> bce_path = temp_path + "/bce"
>>> evaluator.save(bce_path)
>>> evaluator2 = BinaryClassificationEvaluator.load(bce_path)
>>> str(evaluator2.getRawPredictionCol())
'raw'

New in version 1.4.0.

getMetricName()
Gets the value of metricName or its default value.

New in version 1.4.0.

setMetricName(value)
Sets the value of metricName.

New in version 1.4.0.

setParams(self, rawPredictionCol='rawPrediction', labelCol='label', metric-
Name='areaUnderROC')

Sets params for binary classification evaluator.

New in version 1.4.0.

class pyspark.ml.evaluation.ClusteringEvaluator(*args, **kwargs)

Note: Experimental

Evaluator for Clustering results, which expects two input columns: prediction and features. The
metric computes the Silhouette measure using the squared Euclidean distance.

The Silhouette is a measure for the validation of the consistency within clusters. It ranges between 1
and -1, where a value close to 1 means that the points in a cluster are close to the other points in the
same cluster and far from the points of the other clusters.

>>> from pyspark.ml.linalg import Vectors
>>> featureAndPredictions = map(lambda x: (Vectors.dense(x[0]), x[1]),
... [([0.0, 0.5], 0.0), ([0.5, 0.0], 0.0), ([10.0, 11.0], 1.0),
... ([10.5, 11.5], 1.0), ([1.0, 1.0], 0.0), ([8.0, 6.0], 1.0)])
>>> dataset = spark.createDataFrame(featureAndPredictions, ["features",
→˓"prediction"])
...
>>> evaluator = ClusteringEvaluator(predictionCol="prediction")
>>> evaluator.evaluate(dataset)
0.9079...

(continues on next page)

478 Chapter 27. PySpark API

Learning Apache Spark with Python

(continued from previous page)

>>> ce_path = temp_path + "/ce"
>>> evaluator.save(ce_path)
>>> evaluator2 = ClusteringEvaluator.load(ce_path)
>>> str(evaluator2.getPredictionCol())
'prediction'

New in version 2.3.0.

getDistanceMeasure()
Gets the value of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒

New in version 2.4.0.

getMetricName()
Gets the value of metricName or its default value.

New in version 2.3.0.

setDistanceMeasure(value)
Sets the value of distanceMeasure.

New in version 2.4.0.

setMetricName(value)
Sets the value of metricName.

New in version 2.3.0.

setParams(self, predictionCol='prediction', featuresCol='features', metric-
Name='silhouette', distanceMeasure='squaredEuclidean')

Sets params for clustering evaluator.

New in version 2.3.0.

class pyspark.ml.evaluation.Evaluator
Base class for evaluators that compute metrics from predictions.

New in version 1.4.0.

evaluate(dataset, params=None)
Evaluates the output with optional parameters.

Parameters

• dataset – a dataset that contains labels/observations and predictions

• params – an optional param map that overrides embedded params

Returns metric

New in version 1.4.0.

isLargerBetter()
Indicates whether the metric returned by evaluate() should be maximized (True, default) or
minimized (False). A given evaluator may support multiple metrics which may be maximized
or minimized.

27.8. Evaluation API 479

Learning Apache Spark with Python

New in version 1.5.0.

class pyspark.ml.evaluation.MulticlassClassificationEvaluator(*args,
**kwargs)

Note: Experimental

Evaluator for Multiclass Classification, which expects two input columns: prediction and label.

>>> scoreAndLabels = [(0.0, 0.0), (0.0, 1.0), (0.0, 0.0),
... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0,
→˓ 0.0)]
>>> dataset = spark.createDataFrame(scoreAndLabels, ["prediction", "label
→˓"])
...
>>> evaluator = MulticlassClassificationEvaluator(predictionCol=
→˓"prediction")
>>> evaluator.evaluate(dataset)
0.66...
>>> evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"})
0.66...
>>> mce_path = temp_path + "/mce"
>>> evaluator.save(mce_path)
>>> evaluator2 = MulticlassClassificationEvaluator.load(mce_path)
>>> str(evaluator2.getPredictionCol())
'prediction'

New in version 1.5.0.

getMetricName()
Gets the value of metricName or its default value.

New in version 1.5.0.

setMetricName(value)
Sets the value of metricName.

New in version 1.5.0.

setParams(self, predictionCol='prediction', labelCol='label', metricName='f1')
Sets params for multiclass classification evaluator.

New in version 1.5.0.

class pyspark.ml.evaluation.RegressionEvaluator(*args, **kwargs)

Note: Experimental

Evaluator for Regression, which expects two input columns: prediction and label.

480 Chapter 27. PySpark API

Learning Apache Spark with Python

>>> scoreAndLabels = [(-28.98343821, -27.0), (20.21491975, 21.5),
... (-25.98418959, -22.0), (30.69731842, 33.0), (74.69283752, 71.0)]
>>> dataset = spark.createDataFrame(scoreAndLabels, ["raw", "label"])
...
>>> evaluator = RegressionEvaluator(predictionCol="raw")
>>> evaluator.evaluate(dataset)
2.842...
>>> evaluator.evaluate(dataset, {evaluator.metricName: "r2"})
0.993...
>>> evaluator.evaluate(dataset, {evaluator.metricName: "mae"})
2.649...
>>> re_path = temp_path + "/re"
>>> evaluator.save(re_path)
>>> evaluator2 = RegressionEvaluator.load(re_path)
>>> str(evaluator2.getPredictionCol())
'raw'

New in version 1.4.0.

getMetricName()
Gets the value of metricName or its default value.

New in version 1.4.0.

setMetricName(value)
Sets the value of metricName.

New in version 1.4.0.

setParams(self, predictionCol='prediction', labelCol='label', metricName='rmse')
Sets params for regression evaluator.

New in version 1.4.0.

27.8. Evaluation API 481

Learning Apache Spark with Python

482 Chapter 27. PySpark API

CHAPTER

TWENTYEIGHT

MAIN REFERENCE

483

Learning Apache Spark with Python

484 Chapter 28. Main Reference

BIBLIOGRAPHY

[Feng2017] W. Feng and M. Chen. Learning Apache Spark, Github 2017.

[Feng2016PSD] W. Feng, A. J. Salgado, C. Wang, S. M. Wise. Preconditioned Steepest Descent Meth-
ods for some Nonlinear Elliptic Equations Involving p-Laplacian Terms. J. Comput. Phys.,
334:45–67, 2016.

[Feng2014] W. Feng. Prelim Notes for Numerical Analysis, The University of Tennessee, Knoxville.

[Karau2015] H. Karau, A. Konwinski, P. Wendell and M. Zaharia. Learning Spark: Lightning-Fast Big
Data Analysis. O’Reilly Media, Inc., 2015

[Kirillov2016] Anton Kirillov. Apache Spark: core concepts, architecture and internals. http://datastrophic.
io/core-concepts-architecture-and-internals-of-apache-spark/

[zeppelin2nb] Wenqiang Feng and Ryan Blue. Zeppelin notebook to jupyter notebook Library API, 2019.

[jupyter-zeppelin] Ryan Blue. Jupyter/Zeppelin conversion, 2017.

485

https://mingchen0919.github.io/learning-apache-spark/index.html
http://web.utk.edu/~wfeng1/doc/PrelimNum.pdf
http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/
http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/
https://runawayhorse001.github.io/ze2nb/
https://github.com/rdblue/jupyter-zeppelin

Learning Apache Spark with Python

486 Bibliography

PYTHON MODULE INDEX

p
pyspark.ml.classification, 430
pyspark.ml.clustering, 450
pyspark.ml.evaluation, 477
pyspark.ml.pipeline, 470
pyspark.ml.recommendation, 465
pyspark.ml.regression, 411
pyspark.ml.stat, 405
pyspark.ml.tuning, 472

487

Learning Apache Spark with Python

488 Python Module Index

INDEX

A
accuracy() (pys-

park.ml.classification.LogisticRegressionSummary
property), 441

addGrid() (pyspark.ml.tuning.ParamGridBuilder
method), 475

AFTSurvivalRegression (class in pys-
park.ml.regression), 411

AFTSurvivalRegressionModel (class in pys-
park.ml.regression), 412

aic() (pyspark.ml.regression.GeneralizedLinearRegressionSummary
property), 420

ALS (class in pyspark.ml.recommendation), 465
ALSModel (class in pyspark.ml.recommendation),

469
areaUnderROC() (pys-

park.ml.classification.BinaryLogisticRegressionSummary
property), 430

assignClusters() (pys-
park.ml.clustering.PowerIterationClustering
method), 463

avgMetrics (pys-
park.ml.tuning.CrossValidatorModel
attribute), 474

B
baseOn() (pyspark.ml.tuning.ParamGridBuilder

method), 475
bestModel (pys-

park.ml.tuning.CrossValidatorModel
attribute), 474

bestModel (pys-
park.ml.tuning.TrainValidationSplitModel
attribute), 477

BinaryClassificationEvaluator (class in
pyspark.ml.evaluation), 477

BinaryLogisticRegressionSummary
(class in pyspark.ml.classification), 430

BinaryLogisticRegressionTrainingSummary
(class in pyspark.ml.classification), 431

BisectingKMeans (class in pys-
park.ml.clustering), 450

BisectingKMeansModel (class in pys-
park.ml.clustering), 451

BisectingKMeansSummary (class in pys-
park.ml.clustering), 452

boundaries() (pys-
park.ml.regression.IsotonicRegressionModel
property), 423

build() (pyspark.ml.tuning.ParamGridBuilder
method), 475

C
ChiSquareTest (class in pyspark.ml.stat), 405
clusterCenters() (pys-

park.ml.clustering.BisectingKMeansModel
method), 451

clusterCenters() (pys-
park.ml.clustering.KMeansModel method),
457

ClusteringEvaluator (class in pys-
park.ml.evaluation), 478

coefficientMatrix() (pys-
park.ml.classification.LogisticRegressionModel
property), 440

coefficients() (pys-
park.ml.classification.LinearSVCModel
property), 437

coefficients() (pys-
park.ml.classification.LogisticRegressionModel
property), 440

coefficients() (pys-
park.ml.regression.AFTSurvivalRegressionModel

489

Learning Apache Spark with Python

property), 413
coefficients() (pys-

park.ml.regression.GeneralizedLinearRegressionModel
property), 419

coefficients() (pys-
park.ml.regression.LinearRegressionModel
property), 424

coefficientStandardErrors() (pys-
park.ml.regression.GeneralizedLinearRegressionTrainingSummary
property), 421

coefficientStandardErrors() (pys-
park.ml.regression.LinearRegressionSummary
property), 425

computeCost() (pys-
park.ml.clustering.BisectingKMeansModel
method), 452

computeCost() (pys-
park.ml.clustering.KMeansModel method),
457

Configure Spark on Mac and Ubuntu,
17

copy() (pyspark.ml.classification.OneVsRest
method), 447

copy() (pyspark.ml.classification.OneVsRestModel
method), 448

copy() (pyspark.ml.pipeline.Pipeline method),
470

copy() (pyspark.ml.pipeline.PipelineModel
method), 471

copy() (pyspark.ml.tuning.CrossValidator
method), 473

copy() (pyspark.ml.tuning.CrossValidatorModel
method), 474

copy() (pyspark.ml.tuning.TrainValidationSplit
method), 476

copy() (pyspark.ml.tuning.TrainValidationSplitModel
method), 477

corr() (pyspark.ml.stat.Correlation static
method), 406

Correlation (class in pyspark.ml.stat), 406
count() (pyspark.ml.stat.Summarizer static

method), 409
CrossValidator (class in pyspark.ml.tuning),

472
CrossValidatorModel (class in pys-

park.ml.tuning), 473

D
DecisionTreeClassificationModel

(class in pyspark.ml.classification), 431
DecisionTreeClassifier (class in pys-

park.ml.classification), 432
DecisionTreeRegressionModel (class in

pyspark.ml.regression), 413
DecisionTreeRegressor (class in pys-

park.ml.regression), 413
degreesOfFreedom() (pys-

park.ml.regression.GeneralizedLinearRegressionSummary
property), 420

degreesOfFreedom() (pys-
park.ml.regression.LinearRegressionSummary
property), 425

describeTopics() (pys-
park.ml.clustering.LDAModel method),
462

deviance() (pys-
park.ml.regression.GeneralizedLinearRegressionSummary
property), 420

devianceResiduals() (pys-
park.ml.regression.LinearRegressionSummary
property), 425

dispersion() (pys-
park.ml.regression.GeneralizedLinearRegressionSummary
property), 420

DistributedLDAModel (class in pys-
park.ml.clustering), 452

E
estimatedDocConcentration() (pys-

park.ml.clustering.LDAModel method),
462

evaluate() (pys-
park.ml.classification.LogisticRegressionModel
method), 440

evaluate() (pyspark.ml.evaluation.Evaluator
method), 479

evaluate() (pys-
park.ml.regression.GeneralizedLinearRegressionModel
method), 419

evaluate() (pys-
park.ml.regression.LinearRegressionModel
method), 424

evaluateEachIteration() (pys-
park.ml.classification.GBTClassificationModel
method), 433

490 Index

Learning Apache Spark with Python

evaluateEachIteration() (pys-
park.ml.regression.GBTRegressionModel
method), 414

Evaluator (class in pyspark.ml.evaluation), 479
explainedVariance() (pys-

park.ml.regression.LinearRegressionSummary
property), 425

F
falsePositiveRateByLabel() (pys-

park.ml.classification.LogisticRegressionSummary
property), 441

featureImportances() (pys-
park.ml.classification.DecisionTreeClassificationModel
property), 432

featureImportances() (pys-
park.ml.classification.GBTClassificationModel
property), 433

featureImportances() (pys-
park.ml.classification.RandomForestClassificationModel
property), 448

featureImportances() (pys-
park.ml.regression.DecisionTreeRegressionModel
property), 413

featureImportances() (pys-
park.ml.regression.GBTRegressionModel
property), 415

featureImportances() (pys-
park.ml.regression.RandomForestRegressionModel
property), 428

featuresCol() (pys-
park.ml.classification.LogisticRegressionSummary
property), 441

featuresCol() (pys-
park.ml.regression.LinearRegressionSummary
property), 426

fMeasureByLabel() (pys-
park.ml.classification.LogisticRegressionSummary
method), 441

fMeasureByThreshold() (pys-
park.ml.classification.BinaryLogisticRegressionSummary
property), 430

G
GaussianMixture (class in pys-

park.ml.clustering), 453
GaussianMixtureModel (class in pys-

park.ml.clustering), 455

GaussianMixtureSummary (class in pys-
park.ml.clustering), 455

gaussiansDF() (pys-
park.ml.clustering.GaussianMixtureModel
property), 455

GBTClassificationModel (class in pys-
park.ml.classification), 433

GBTClassifier (class in pys-
park.ml.classification), 434

GBTRegressionModel (class in pys-
park.ml.regression), 414

GBTRegressor (class in pyspark.ml.regression),
415

GeneralizedLinearRegression (class in
pyspark.ml.regression), 416

GeneralizedLinearRegressionModel
(class in pyspark.ml.regression), 419

GeneralizedLinearRegressionSummary
(class in pyspark.ml.regression), 419

GeneralizedLinearRegressionTrainingSummary
(class in pyspark.ml.regression), 421

getAlpha() (pyspark.ml.recommendation.ALS
method), 466

getBlockSize() (pys-
park.ml.classification.MultilayerPerceptronClassifier
method), 444

getCensorCol() (pys-
park.ml.regression.AFTSurvivalRegression
method), 412

getCheckpointFiles() (pys-
park.ml.clustering.DistributedLDAModel
method), 452

getColdStartStrategy() (pys-
park.ml.recommendation.ALS method),
466

getDistanceMeasure() (pys-
park.ml.clustering.BisectingKMeans
method), 451

getDistanceMeasure() (pys-
park.ml.clustering.KMeans method),
456

getDistanceMeasure() (pys-
park.ml.evaluation.ClusteringEvaluator
method), 479

getDocConcentration() (pys-
park.ml.clustering.LDA method), 459

getDstCol() (pys-
park.ml.clustering.PowerIterationClustering

Index 491

Learning Apache Spark with Python

method), 464
getEpsilon() (pys-

park.ml.regression.LinearRegression
method), 424

getFamily() (pys-
park.ml.classification.LogisticRegression
method), 438

getFamily() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

getFeatureIndex() (pys-
park.ml.regression.IsotonicRegression
method), 422

getFinalStorageLevel() (pys-
park.ml.recommendation.ALS method),
466

getImplicitPrefs() (pys-
park.ml.recommendation.ALS method),
467

getInitialWeights() (pys-
park.ml.classification.MultilayerPerceptronClassifier
method), 444

getInitMode() (pyspark.ml.clustering.KMeans
method), 456

getInitMode() (pys-
park.ml.clustering.PowerIterationClustering
method), 464

getInitSteps() (pys-
park.ml.clustering.KMeans method),
457

getIntermediateStorageLevel() (pys-
park.ml.recommendation.ALS method),
467

getIsotonic() (pys-
park.ml.regression.IsotonicRegression
method), 422

getItemCol() (pyspark.ml.recommendation.ALS
method), 467

getK() (pyspark.ml.clustering.BisectingKMeans
method), 451

getK() (pyspark.ml.clustering.GaussianMixture
method), 454

getK() (pyspark.ml.clustering.KMeans method),
457

getK() (pyspark.ml.clustering.LDA method), 459
getK() (pyspark.ml.clustering.PowerIterationClustering

method), 464

getKeepLastCheckpoint() (pys-
park.ml.clustering.LDA method), 459

getLayers() (pys-
park.ml.classification.MultilayerPerceptronClassifier
method), 444

getLearningDecay() (pys-
park.ml.clustering.LDA method), 459

getLearningOffset() (pys-
park.ml.clustering.LDA method), 459

getLink() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

getLinkPower() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

getLinkPredictionCol() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

getLossType() (pys-
park.ml.classification.GBTClassifier
method), 435

getLossType() (pys-
park.ml.regression.GBTRegressor method),
416

getLowerBoundsOnCoefficients() (pys-
park.ml.classification.LogisticRegression
method), 438

getLowerBoundsOnIntercepts() (pys-
park.ml.classification.LogisticRegression
method), 438

getMetricName() (pys-
park.ml.evaluation.BinaryClassificationEvaluator
method), 478

getMetricName() (pys-
park.ml.evaluation.ClusteringEvaluator
method), 479

getMetricName() (pys-
park.ml.evaluation.MulticlassClassificationEvaluator
method), 480

getMetricName() (pys-
park.ml.evaluation.RegressionEvaluator
method), 481

getMinDivisibleClusterSize() (pys-
park.ml.clustering.BisectingKMeans
method), 451

getModelType() (pys-
park.ml.classification.NaiveBayes method),
446

492 Index

Learning Apache Spark with Python

getNonnegative() (pys-
park.ml.recommendation.ALS method),
467

getNumFolds() (pys-
park.ml.tuning.CrossValidator method),
473

getNumItemBlocks() (pys-
park.ml.recommendation.ALS method),
467

getNumUserBlocks() (pys-
park.ml.recommendation.ALS method),
467

getOffsetCol() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

getOptimizeDocConcentration() (pys-
park.ml.clustering.LDA method), 459

getOptimizer() (pyspark.ml.clustering.LDA
method), 459

getQuantileProbabilities() (pys-
park.ml.regression.AFTSurvivalRegression
method), 412

getQuantilesCol() (pys-
park.ml.regression.AFTSurvivalRegression
method), 412

getRank() (pyspark.ml.recommendation.ALS
method), 467

getRatingCol() (pys-
park.ml.recommendation.ALS method),
467

getSmoothing() (pys-
park.ml.classification.NaiveBayes method),
446

getSrcCol() (pys-
park.ml.clustering.PowerIterationClustering
method), 464

getStagePath() (pys-
park.ml.pipeline.PipelineSharedReadWrite
static method), 472

getStages() (pyspark.ml.pipeline.Pipeline
method), 470

getStepSize() (pys-
park.ml.classification.MultilayerPerceptronClassifier
method), 444

getSubsamplingRate() (pys-
park.ml.clustering.LDA method), 459

getThreshold() (pys-
park.ml.classification.LogisticRegression

method), 438
getThresholds() (pys-

park.ml.classification.LogisticRegression
method), 439

getTopicConcentration() (pys-
park.ml.clustering.LDA method), 459

getTopicDistributionCol() (pys-
park.ml.clustering.LDA method), 460

getTrainRatio() (pys-
park.ml.tuning.TrainValidationSplit
method), 476

getUpperBoundsOnCoefficients() (pys-
park.ml.classification.LogisticRegression
method), 439

getUpperBoundsOnIntercepts() (pys-
park.ml.classification.LogisticRegression
method), 439

getUserCol() (pyspark.ml.recommendation.ALS
method), 467

getVariancePower() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

H
hasSummary() (pys-

park.ml.classification.LogisticRegressionModel
property), 440

hasSummary() (pys-
park.ml.clustering.BisectingKMeansModel
property), 452

hasSummary() (pys-
park.ml.clustering.GaussianMixtureModel
property), 455

hasSummary() (pys-
park.ml.clustering.KMeansModel prop-
erty), 457

hasSummary() (pys-
park.ml.regression.GeneralizedLinearRegressionModel
property), 419

hasSummary() (pys-
park.ml.regression.LinearRegressionModel
property), 425

I
intercept() (pys-

park.ml.classification.LinearSVCModel
property), 437

Index 493

Learning Apache Spark with Python

intercept() (pys-
park.ml.classification.LogisticRegressionModel
property), 440

intercept() (pys-
park.ml.regression.AFTSurvivalRegressionModel
property), 413

intercept() (pys-
park.ml.regression.GeneralizedLinearRegressionModel
property), 419

intercept() (pys-
park.ml.regression.LinearRegressionModel
property), 425

interceptVector() (pys-
park.ml.classification.LogisticRegressionModel
property), 440

isDistributed() (pys-
park.ml.clustering.LDAModel method),
462

isLargerBetter() (pys-
park.ml.evaluation.Evaluator method),
479

IsotonicRegression (class in pys-
park.ml.regression), 422

IsotonicRegressionModel (class in pys-
park.ml.regression), 422

itemFactors() (pys-
park.ml.recommendation.ALSModel
property), 469

K
KMeans (class in pyspark.ml.clustering), 455
KMeansModel (class in pyspark.ml.clustering),

457
KolmogorovSmirnovTest (class in pys-

park.ml.stat), 407

L
labelCol() (pys-

park.ml.classification.LogisticRegressionSummary
property), 441

labelCol() (pys-
park.ml.regression.LinearRegressionSummary
property), 426

labels() (pyspark.ml.classification.LogisticRegressionSummary
property), 441

layers() (pyspark.ml.classification.MultilayerPerceptronClassificationModel
property), 443

LDA (class in pyspark.ml.clustering), 458

LDAModel (class in pyspark.ml.clustering), 461
LinearRegression (class in pys-

park.ml.regression), 423
LinearRegressionModel (class in pys-

park.ml.regression), 424
LinearRegressionSummary (class in pys-

park.ml.regression), 425
LinearRegressionTrainingSummary

(class in pyspark.ml.regression), 428
LinearSVC (class in pyspark.ml.classification),

435
LinearSVCModel (class in pys-

park.ml.classification), 437
load() (pyspark.ml.pipeline.PipelineModelReader

method), 471
load() (pyspark.ml.pipeline.PipelineReader

method), 471
load() (pyspark.ml.pipeline.PipelineSharedReadWrite

static method), 472
LocalLDAModel (class in pyspark.ml.clustering),

462
LogisticRegression (class in pys-

park.ml.classification), 437
LogisticRegressionModel (class in pys-

park.ml.classification), 440
LogisticRegressionSummary (class in pys-

park.ml.classification), 441
LogisticRegressionTrainingSummary

(class in pyspark.ml.classification), 442
logLikelihood() (pys-

park.ml.clustering.GaussianMixtureSummary
property), 455

logLikelihood() (pys-
park.ml.clustering.LDAModel method),
462

logPerplexity() (pys-
park.ml.clustering.LDAModel method),
462

logPrior() (pys-
park.ml.clustering.DistributedLDAModel
method), 452

M
max() (pyspark.ml.stat.Summarizer static method),

409
mean() (pyspark.ml.stat.Summarizer static

method), 409

494 Index

Learning Apache Spark with Python

meanAbsoluteError() (pys-
park.ml.regression.LinearRegressionSummary
property), 426

meanSquaredError() (pys-
park.ml.regression.LinearRegressionSummary
property), 426

metrics() (pyspark.ml.stat.Summarizer static
method), 409

min() (pyspark.ml.stat.Summarizer static method),
410

module
pyspark.ml.classification, 430
pyspark.ml.clustering, 450
pyspark.ml.evaluation, 477
pyspark.ml.pipeline, 470
pyspark.ml.recommendation, 465
pyspark.ml.regression, 411
pyspark.ml.stat, 405
pyspark.ml.tuning, 472

MulticlassClassificationEvaluator
(class in pyspark.ml.evaluation), 480

MultilayerPerceptronClassificationModel
(class in pyspark.ml.classification), 443

MultilayerPerceptronClassifier (class
in pyspark.ml.classification), 443

N
NaiveBayes (class in pyspark.ml.classification),

445
NaiveBayesModel (class in pys-

park.ml.classification), 446
normL1() (pyspark.ml.stat.Summarizer static

method), 410
normL2() (pyspark.ml.stat.Summarizer static

method), 410
nullDeviance() (pys-

park.ml.regression.GeneralizedLinearRegressionSummary
property), 420

numInstances() (pys-
park.ml.regression.GeneralizedLinearRegressionSummary
property), 420

numInstances() (pys-
park.ml.regression.LinearRegressionSummary
property), 426

numIterations() (pys-
park.ml.regression.GeneralizedLinearRegressionTrainingSummary
property), 421

numNonZeros() (pyspark.ml.stat.Summarizer
static method), 410

O
objectiveHistory() (pys-

park.ml.classification.LogisticRegressionTrainingSummary
property), 442

objectiveHistory() (pys-
park.ml.regression.LinearRegressionTrainingSummary
property), 428

OneVsRest (class in pyspark.ml.classification),
446

OneVsRestModel (class in pys-
park.ml.classification), 448

P
ParamGridBuilder (class in pys-

park.ml.tuning), 474
pi() (pyspark.ml.classification.NaiveBayesModel

property), 446
Pipeline (class in pyspark.ml.pipeline), 470
PipelineModel (class in pyspark.ml.pipeline),

471
PipelineModelReader (class in pys-

park.ml.pipeline), 471
PipelineModelWriter (class in pys-

park.ml.pipeline), 471
PipelineReader (class in pyspark.ml.pipeline),

471
PipelineSharedReadWrite (class in pys-

park.ml.pipeline), 472
PipelineWriter (class in pyspark.ml.pipeline),

472
PowerIterationClustering (class in pys-

park.ml.clustering), 463
pr() (pyspark.ml.classification.BinaryLogisticRegressionSummary

property), 430
precisionByLabel() (pys-

park.ml.classification.LogisticRegressionSummary
property), 441

precisionByThreshold() (pys-
park.ml.classification.BinaryLogisticRegressionSummary
property), 431

predict() (pys-
park.ml.regression.AFTSurvivalRegressionModel
method), 413

predictionCol() (pys-
park.ml.classification.LogisticRegressionSummary

Index 495

Learning Apache Spark with Python

property), 441
predictionCol() (pys-

park.ml.regression.GeneralizedLinearRegressionSummary
property), 420

predictionCol() (pys-
park.ml.regression.LinearRegressionSummary
property), 427

predictions() (pys-
park.ml.classification.LogisticRegressionSummary
property), 441

predictions() (pys-
park.ml.regression.GeneralizedLinearRegressionSummary
property), 420

predictions() (pys-
park.ml.regression.IsotonicRegressionModel
property), 423

predictions() (pys-
park.ml.regression.LinearRegressionSummary
property), 427

predictQuantiles() (pys-
park.ml.regression.AFTSurvivalRegressionModel
method), 413

probability() (pys-
park.ml.clustering.GaussianMixtureSummary
property), 455

probabilityCol() (pys-
park.ml.classification.LogisticRegressionSummary
property), 442

probabilityCol() (pys-
park.ml.clustering.GaussianMixtureSummary
property), 455

pValues() (pys-
park.ml.regression.GeneralizedLinearRegressionTrainingSummary
property), 421

pValues() (pys-
park.ml.regression.LinearRegressionSummary
property), 426

pyspark.ml.classification
module, 430

pyspark.ml.clustering
module, 450

pyspark.ml.evaluation
module, 477

pyspark.ml.pipeline
module, 470

pyspark.ml.recommendation
module, 465

pyspark.ml.regression

module, 411
pyspark.ml.stat

module, 405
pyspark.ml.tuning

module, 472

R
r2() (pyspark.ml.regression.LinearRegressionSummary

property), 427
r2adj() (pyspark.ml.regression.LinearRegressionSummary

property), 427
RandomForestClassificationModel

(class in pyspark.ml.classification), 448
RandomForestClassifier (class in pys-

park.ml.classification), 448
RandomForestRegressionModel (class in

pyspark.ml.regression), 428
RandomForestRegressor (class in pys-

park.ml.regression), 429
rank() (pyspark.ml.recommendation.ALSModel

property), 469
rank() (pyspark.ml.regression.GeneralizedLinearRegressionSummary

property), 420
read() (pyspark.ml.pipeline.Pipeline class

method), 470
read() (pyspark.ml.pipeline.PipelineModel class

method), 471
read() (pyspark.ml.tuning.CrossValidator class

method), 473
read() (pyspark.ml.tuning.CrossValidatorModel

class method), 474
read() (pyspark.ml.tuning.TrainValidationSplit

class method), 476
read() (pyspark.ml.tuning.TrainValidationSplitModel

class method), 477
recallByLabel() (pys-

park.ml.classification.LogisticRegressionSummary
property), 442

recallByThreshold() (pys-
park.ml.classification.BinaryLogisticRegressionSummary
property), 431

recommendForAllItems() (pys-
park.ml.recommendation.ALSModel
method), 469

recommendForAllUsers() (pys-
park.ml.recommendation.ALSModel
method), 469

496 Index

Learning Apache Spark with Python

recommendForItemSubset() (pys-
park.ml.recommendation.ALSModel
method), 469

recommendForUserSubset() (pys-
park.ml.recommendation.ALSModel
method), 469

RegressionEvaluator (class in pys-
park.ml.evaluation), 480

residualDegreeOfFreedom() (pys-
park.ml.regression.GeneralizedLinearRegressionSummary
property), 420

residualDegreeOfFreedomNull() (pys-
park.ml.regression.GeneralizedLinearRegressionSummary
property), 421

residuals() (pys-
park.ml.regression.GeneralizedLinearRegressionSummary
method), 421

residuals() (pys-
park.ml.regression.LinearRegressionSummary
property), 427

roc() (pyspark.ml.classification.BinaryLogisticRegressionSummary
property), 431

rootMeanSquaredError() (pys-
park.ml.regression.LinearRegressionSummary
property), 427

Run on Databricks Community Cloud,
11

S
saveImpl() (pys-

park.ml.pipeline.PipelineModelWriter
method), 471

saveImpl() (pys-
park.ml.pipeline.PipelineSharedReadWrite
static method), 472

saveImpl() (pyspark.ml.pipeline.PipelineWriter
method), 472

scale() (pyspark.ml.regression.AFTSurvivalRegressionModel
property), 413

scale() (pyspark.ml.regression.LinearRegressionModel
property), 425

Set up Spark on Cloud, 29
setAlpha() (pyspark.ml.recommendation.ALS

method), 467
setBlockSize() (pys-

park.ml.classification.MultilayerPerceptronClassifier
method), 444

setCensorCol() (pys-
park.ml.regression.AFTSurvivalRegression
method), 412

setColdStartStrategy() (pys-
park.ml.recommendation.ALS method),
467

setDistanceMeasure() (pys-
park.ml.clustering.BisectingKMeans
method), 451

setDistanceMeasure() (pys-
park.ml.clustering.KMeans method),
457

setDistanceMeasure() (pys-
park.ml.evaluation.ClusteringEvaluator
method), 479

setDocConcentration() (pys-
park.ml.clustering.LDA method), 460

setDstCol() (pys-
park.ml.clustering.PowerIterationClustering
method), 464

setEpsilon() (pys-
park.ml.regression.LinearRegression
method), 424

setFamily() (pys-
park.ml.classification.LogisticRegression
method), 439

setFamily() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

setFeatureIndex() (pys-
park.ml.regression.IsotonicRegression
method), 422

setFeatureSubsetStrategy() (pys-
park.ml.classification.GBTClassifier
method), 435

setFeatureSubsetStrategy() (pys-
park.ml.classification.RandomForestClassifier
method), 449

setFeatureSubsetStrategy() (pys-
park.ml.regression.GBTRegressor method),
416

setFeatureSubsetStrategy() (pys-
park.ml.regression.RandomForestRegressor
method), 430

setFinalStorageLevel() (pys-
park.ml.recommendation.ALS method),
467

Index 497

Learning Apache Spark with Python

setImplicitPrefs() (pys-
park.ml.recommendation.ALS method),
468

setInitialWeights() (pys-
park.ml.classification.MultilayerPerceptronClassifier
method), 444

setInitMode() (pyspark.ml.clustering.KMeans
method), 457

setInitMode() (pys-
park.ml.clustering.PowerIterationClustering
method), 464

setInitSteps() (pys-
park.ml.clustering.KMeans method),
457

setIntermediateStorageLevel() (pys-
park.ml.recommendation.ALS method),
468

setIsotonic() (pys-
park.ml.regression.IsotonicRegression
method), 422

setItemCol() (pyspark.ml.recommendation.ALS
method), 468

setK() (pyspark.ml.clustering.BisectingKMeans
method), 451

setK() (pyspark.ml.clustering.GaussianMixture
method), 454

setK() (pyspark.ml.clustering.KMeans method),
457

setK() (pyspark.ml.clustering.LDA method), 460
setK() (pyspark.ml.clustering.PowerIterationClustering

method), 464
setKeepLastCheckpoint() (pys-

park.ml.clustering.LDA method), 460
setLayers() (pys-

park.ml.classification.MultilayerPerceptronClassifier
method), 444

setLearningDecay() (pys-
park.ml.clustering.LDA method), 460

setLearningOffset() (pys-
park.ml.clustering.LDA method), 460

setLink() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

setLinkPower() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 418

setLinkPredictionCol() (pys-
park.ml.regression.GeneralizedLinearRegression

method), 418
setLossType() (pys-

park.ml.classification.GBTClassifier
method), 435

setLossType() (pys-
park.ml.regression.GBTRegressor method),
416

setLowerBoundsOnCoefficients() (pys-
park.ml.classification.LogisticRegression
method), 439

setLowerBoundsOnIntercepts() (pys-
park.ml.classification.LogisticRegression
method), 439

setMetricName() (pys-
park.ml.evaluation.BinaryClassificationEvaluator
method), 478

setMetricName() (pys-
park.ml.evaluation.ClusteringEvaluator
method), 479

setMetricName() (pys-
park.ml.evaluation.MulticlassClassificationEvaluator
method), 480

setMetricName() (pys-
park.ml.evaluation.RegressionEvaluator
method), 481

setMinDivisibleClusterSize() (pys-
park.ml.clustering.BisectingKMeans
method), 451

setModelType() (pys-
park.ml.classification.NaiveBayes method),
446

setNonnegative() (pys-
park.ml.recommendation.ALS method),
468

setNumBlocks() (pys-
park.ml.recommendation.ALS method),
468

setNumFolds() (pys-
park.ml.tuning.CrossValidator method),
473

setNumItemBlocks() (pys-
park.ml.recommendation.ALS method),
468

setNumUserBlocks() (pys-
park.ml.recommendation.ALS method),
468

setOffsetCol() (pys-
park.ml.regression.GeneralizedLinearRegression

498 Index

Learning Apache Spark with Python

method), 418
setOptimizeDocConcentration() (pys-

park.ml.clustering.LDA method), 460
setOptimizer() (pyspark.ml.clustering.LDA

method), 461
setParams() (pys-

park.ml.classification.DecisionTreeClassifier
method), 433

setParams() (pys-
park.ml.classification.GBTClassifier
method), 435

setParams() (pys-
park.ml.classification.LinearSVC method),
436

setParams() (pys-
park.ml.classification.LogisticRegression
method), 439

setParams() (pys-
park.ml.classification.MultilayerPerceptronClassifier
method), 444

setParams() (pys-
park.ml.classification.NaiveBayes method),
446

setParams() (pys-
park.ml.classification.OneVsRest method),
448

setParams() (pys-
park.ml.classification.RandomForestClassifier
method), 449

setParams() (pys-
park.ml.clustering.BisectingKMeans
method), 451

setParams() (pys-
park.ml.clustering.GaussianMixture
method), 454

setParams() (pyspark.ml.clustering.KMeans
method), 457

setParams() (pyspark.ml.clustering.LDA
method), 461

setParams() (pys-
park.ml.clustering.PowerIterationClustering
method), 464

setParams() (pys-
park.ml.evaluation.BinaryClassificationEvaluator
method), 478

setParams() (pys-
park.ml.evaluation.ClusteringEvaluator
method), 479

setParams() (pys-
park.ml.evaluation.MulticlassClassificationEvaluator
method), 480

setParams() (pys-
park.ml.evaluation.RegressionEvaluator
method), 481

setParams() (pyspark.ml.pipeline.Pipeline
method), 470

setParams() (pyspark.ml.recommendation.ALS
method), 468

setParams() (pys-
park.ml.regression.AFTSurvivalRegression
method), 412

setParams() (pys-
park.ml.regression.DecisionTreeRegressor
method), 414

setParams() (pys-
park.ml.regression.GBTRegressor method),
416

setParams() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 419

setParams() (pys-
park.ml.regression.IsotonicRegression
method), 422

setParams() (pys-
park.ml.regression.LinearRegression
method), 424

setParams() (pys-
park.ml.regression.RandomForestRegressor
method), 430

setParams() (pyspark.ml.tuning.CrossValidator
method), 473

setParams() (pys-
park.ml.tuning.TrainValidationSplit
method), 476

setQuantileProbabilities() (pys-
park.ml.regression.AFTSurvivalRegression
method), 412

setQuantilesCol() (pys-
park.ml.regression.AFTSurvivalRegression
method), 412

setRank() (pyspark.ml.recommendation.ALS
method), 468

setRatingCol() (pys-
park.ml.recommendation.ALS method),
468

Index 499

Learning Apache Spark with Python

setSmoothing() (pys-
park.ml.classification.NaiveBayes method),
446

setSrcCol() (pys-
park.ml.clustering.PowerIterationClustering
method), 464

setStages() (pyspark.ml.pipeline.Pipeline
method), 471

setStepSize() (pys-
park.ml.classification.MultilayerPerceptronClassifier
method), 445

setSubsamplingRate() (pys-
park.ml.clustering.LDA method), 461

setThreshold() (pys-
park.ml.classification.LogisticRegression
method), 439

setThresholds() (pys-
park.ml.classification.LogisticRegression
method), 439

setTopicConcentration() (pys-
park.ml.clustering.LDA method), 461

setTopicDistributionCol() (pys-
park.ml.clustering.LDA method), 461

setTrainRatio() (pys-
park.ml.tuning.TrainValidationSplit
method), 476

setUpperBoundsOnCoefficients() (pys-
park.ml.classification.LogisticRegression
method), 440

setUpperBoundsOnIntercepts() (pys-
park.ml.classification.LogisticRegression
method), 440

setUserCol() (pyspark.ml.recommendation.ALS
method), 468

setVariancePower() (pys-
park.ml.regression.GeneralizedLinearRegression
method), 419

solver() (pyspark.ml.regression.GeneralizedLinearRegressionTrainingSummary
property), 421

subModels (pys-
park.ml.tuning.CrossValidatorModel
attribute), 474

subModels (pys-
park.ml.tuning.TrainValidationSplitModel
attribute), 477

Summarizer (class in pyspark.ml.stat), 408
summary() (pys-

park.ml.classification.LogisticRegressionModel

property), 440
summary() (pys-

park.ml.clustering.BisectingKMeansModel
property), 452

summary() (pys-
park.ml.clustering.GaussianMixtureModel
property), 455

summary() (pyspark.ml.clustering.KMeansModel
property), 458

summary() (pys-
park.ml.regression.GeneralizedLinearRegressionModel
property), 419

summary() (pys-
park.ml.regression.LinearRegressionModel
property), 425

summary() (pyspark.ml.stat.SummaryBuilder
method), 410

SummaryBuilder (class in pyspark.ml.stat), 410

T
test() (pyspark.ml.stat.ChiSquareTest static

method), 405
test() (pyspark.ml.stat.KolmogorovSmirnovTest

static method), 407
theta() (pyspark.ml.classification.NaiveBayesModel

property), 446
toLocal() (pys-

park.ml.clustering.DistributedLDAModel
method), 453

topicsMatrix() (pys-
park.ml.clustering.LDAModel method),
462

totalIterations() (pys-
park.ml.classification.LogisticRegressionTrainingSummary
property), 443

totalIterations() (pys-
park.ml.regression.LinearRegressionTrainingSummary
property), 428

trainingLogLikelihood() (pys-
park.ml.clustering.DistributedLDAModel
method), 453

TrainValidationSplit (class in pys-
park.ml.tuning), 475

TrainValidationSplitModel (class in pys-
park.ml.tuning), 476

trees() (pyspark.ml.classification.GBTClassificationModel
property), 434

500 Index

Learning Apache Spark with Python

trees() (pyspark.ml.classification.RandomForestClassificationModel
property), 448

trees() (pyspark.ml.regression.GBTRegressionModel
property), 415

trees() (pyspark.ml.regression.RandomForestRegressionModel
property), 429

truePositiveRateByLabel() (pys-
park.ml.classification.LogisticRegressionSummary
property), 442

tValues() (pys-
park.ml.regression.GeneralizedLinearRegressionTrainingSummary
property), 421

tValues() (pys-
park.ml.regression.LinearRegressionSummary
property), 428

U
userFactors() (pys-

park.ml.recommendation.ALSModel
property), 470

V
validateStages() (pys-

park.ml.pipeline.PipelineSharedReadWrite
static method), 472

validationMetrics (pys-
park.ml.tuning.TrainValidationSplitModel
attribute), 477

variance() (pyspark.ml.stat.Summarizer static
method), 410

vocabSize() (pyspark.ml.clustering.LDAModel
method), 462

W
weightedFalsePositiveRate() (pys-

park.ml.classification.LogisticRegressionSummary
property), 442

weightedFMeasure() (pys-
park.ml.classification.LogisticRegressionSummary
method), 442

weightedPrecision() (pys-
park.ml.classification.LogisticRegressionSummary
property), 442

weightedRecall() (pys-
park.ml.classification.LogisticRegressionSummary
property), 442

weightedTruePositiveRate() (pys-
park.ml.classification.LogisticRegressionSummary

property), 442
weights() (pys-

park.ml.classification.MultilayerPerceptronClassificationModel
property), 443

weights() (pys-
park.ml.clustering.GaussianMixtureModel
property), 455

write() (pyspark.ml.pipeline.Pipeline method),
471

write() (pyspark.ml.pipeline.PipelineModel
method), 471

write() (pyspark.ml.tuning.CrossValidator
method), 473

write() (pyspark.ml.tuning.CrossValidatorModel
method), 474

write() (pyspark.ml.tuning.TrainValidationSplit
method), 476

write() (pyspark.ml.tuning.TrainValidationSplitModel
method), 477

Index 501

	Preface
	About
	Motivation for this tutorial
	Copyright notice and license info
	Acknowledgement
	Feedback and suggestions

	Why Spark with Python ?
	Why Spark?
	Why Spark with Python (PySpark)?

	Configure Running Platform
	Run on Databricks Community Cloud
	Configure Spark on Mac and Ubuntu
	Configure Spark on Windows
	PySpark With Text Editor or IDE
	PySparkling Water: Spark + H2O
	Set up Spark on Cloud
	PySpark on Colaboratory
	Demo Code in this Section

	An Introduction to Apache Spark
	Core Concepts
	Spark Components
	Architecture
	How Spark Works?

	Programming with RDDs
	Create RDD
	Spark Operations
	rdd.DataFrame vs pd.DataFrame

	Statistics and Linear Algebra Preliminaries
	Notations
	Linear Algebra Preliminaries
	Measurement Formula
	Confusion Matrix
	Statistical Tests

	Data Exploration
	Univariate Analysis
	Multivariate Analysis

	Data Manipulation: Features
	Feature Extraction
	Feature Transform
	Feature Selection
	Unbalanced data: Undersampling

	Regression
	Linear Regression
	Generalized linear regression
	Decision tree Regression
	Random Forest Regression
	Gradient-boosted tree regression

	Regularization
	Ordinary least squares regression
	Ridge regression
	Least Absolute Shrinkage and Selection Operator (LASSO)
	Elastic net

	Classification
	Binomial logistic regression
	Multinomial logistic regression
	Decision tree Classification
	Random forest Classification
	Gradient-boosted tree Classification
	XGBoost: Gradient-boosted tree Classification
	Naive Bayes Classification

	Clustering
	K-Means Model

	RFM Analysis
	RFM Analysis Methodology
	Demo
	Extension

	Text Mining
	Text Collection
	Text Preprocessing
	Text Classification
	Sentiment analysis
	N-grams and Correlations
	Topic Model: Latent Dirichlet Allocation

	Social Network Analysis
	Introduction
	Co-occurrence Network
	Appendix: matrix multiplication in PySpark
	Correlation Network

	ALS: Stock Portfolio Recommendations
	Recommender systems
	Alternating Least Squares
	Demo

	Monte Carlo Simulation
	Simulating Casino Win
	Simulating a Random Walk

	Markov Chain Monte Carlo
	Metropolis algorithm
	A Toy Example of Metropolis
	Demos

	Neural Network
	Feedforward Neural Network

	Automation for Cloudera Distribution Hadoop
	Automation Pipeline
	Data Clean and Manipulation Automation
	ML Pipeline Automation
	Save and Load PipelineModel
	Ingest Results Back into Hadoop

	Wrap PySpark Package
	Package Wrapper
	Pacakge Publishing on PyPI

	PySpark Data Audit Library
	Install with pip
	Install from Repo
	Uninstall
	Test
	Auditing on Big Dataset

	Zeppelin to jupyter notebook
	How to Install
	Converting Demos

	My Cheat Sheet
	JDBC Connection
	JDBC Driver
	JDBC read
	JDBC write
	JDBC temp_view

	Databricks Tips
	Display samples
	Auto files download
	Working with AWS S3
	delta format
	mlflow

	PySpark API
	Stat API
	Regression API
	Classification API
	Clustering API
	Recommendation API
	Pipeline API
	Tuning API
	Evaluation API

	Main Reference
	Bibliography
	Python Module Index
	Index

