Каон
Каон | |
---|---|
Семья | Бозон |
Группа | адрон, мезон, псевдо-голдстоуновский бозон, псевдоскалярный бозон |
Участвует во взаимодействиях | Сильное, электромагнитное, слабое и гравитационное |
Античастица | , |
Кол-во типов | 4 |
Масса |
|
Время жизни |
|
Обнаружена | в 1947 году |
Квантовые числа | |
Барионное число | 0 |
Спин | ħ |
Внутренняя чётность | -1 |
Изотопический спин | ±1 (0) |
Третья компонента слабого изоспина | +1 |
Странность | +1 |
Очарование | 0 |
Гиперзаряд | 1 |
Другие свойства | |
Кварковый состав |
Заряженный: Нейтральный: Короткоживущий: Долгоживущий: |
Схема распада | π+ vv (пион, нейтрино, антинейтрино) |
Медиафайлы на Викискладе |
Као́н (или K-мезо́н[1], обозначается K) — мезон, содержащий один странный антикварк и один u- или d-кварк (антикаоны, напротив, содержат один странный кварк и один u- или d-антикварк). Каоны — самые лёгкие из всех странных (то есть имеющих ненулевое квантовое число, называемое странностью) адронов.
Основные свойства
[править | править код]Существуют четыре каона с определённой массой:
- Отрицательно заряженный K− (содержащий s-кварк и u-антикварк) имеет массу 493,667(16) МэВ и время жизни 1,2380(21)⋅10−8 секунд.
- Его античастица, положительно заряженный K+ (содержащий u-кварк и s-антикварк) согласно CPT-симметрии должен иметь массу и время жизни, равные соответственно массе и времени жизни K−. Экспериментально измеренная разность масс составляет 0,032(90) МэВ, то есть совместима с нулём. Разность во времени жизни также нулевая (экспериментальный результат: Δτ = 0,11(9)⋅10−8 секунды).
- K0 (содержащий d-кварк и s-антикварк) имеет массу 497,614(24) МэВ.
- Его античастица (содержащая s-кварк и d-антикварк) имеет такую же массу.
Из кварковой модели ясно, что каоны формируют два изоспиновых дублета; то есть они принадлежат к фундаментальному представлению группы SU(2), называемому 2. Один дублет со странностью +1 и изоспином +1/2 содержит K+ и K0. Античастицы формируют второй дублет со странностью −1 и изоспином −1/2.
Частица | Символ | Анти- частица |
Кварковый состав частицы |
Спин и чётность, | Масса МэВ/c² |
S | C | B | Время жизни с |
Распадается на | Примечания |
---|---|---|---|---|---|---|---|---|---|---|---|
Заряженный каон |
Псевдоскаляр (0−) | 493,667(16) | +1 | 0 | 0 | 1,24⋅10−8 | μ+νμ или π++π0 или π++π++π− или π0+e++νe | ||||
Нейтральный каон |
Псевдоскаляр (0−) | 497,614(24) | +1 | 0 | 0 | слабый распад см. ниже | Сильное собственное состояние — нет определённого времени жизни | ||||
Короткоживущий каон |
Псевдоскаляр (0−) | 497,614(24) | (*) | 0 | 0 | 0,89⋅10−10 | π+ + π− или 2π0 |
Слабое собственное состояние — состав указывает на нарушение CP-инвариантности | |||
Долгоживущий каон |
Псевдоскаляр (0−) | 497,614(24) | (*) | 0 | 0 | 5,2⋅10−8 | π±+e∓+νe или π±+μ∓+νμ или 3π0 или π++π0+π− |
Слабое собственное состояние — состав указывает на нарушение CP-инвариантности |
Хотя K0 и его античастица обычно появляются в результате сильного взаимодействия, они распадаются посредством слабого взаимодействия. Следовательно, их можно рассматривать как композицию двух слабых собственных состояний, которые имеют очень различные времена жизни:
- Долгоживущий нейтральный каон, обозначаемый KL («K-long»), обычно распадается на три пиона и имеет время жизни 5,18⋅10−8 секунд.
- Короткоживущий нейтральный каон, обозначаемый KS («K-short»), обычно распадается на два пиона и имеет время жизни 8,958⋅10−11 секунд.
(См. #Смешивание нейтральных каонов ниже)
Эксперименты 1964 г., показавшие, что KL редко распадается на два пиона, привели к открытию нарушения CP-инвариантности (см. ниже).
Основные варианты распада для K+:
- (лептонный, коэффициент ветвления BR = 63,55(11)%);
- (адронный, BR = 20,66(8)%);
- (адронный, BR = 5,59(4)%);
- (полулептонный, BR = 5,07(4)%);
- (полулептонный, BR = 3,353(34)%);
- (адронный, BR = 1,761(22)%);
- K+ → π+ ν̅ν (1 из 10^10) [2].
Странность
[править | править код]
Открытие адронов со внутренним квантовым числом — «странностью» — положило начало самой поразительной эпохе в физике элементарных частиц, которая даже сейчас, пятьдесят лет спустя, не дошла до своего завершения… Именно большие эксперименты определили это развитие, и основные открытия появлялись неожиданно или даже вопреки ожиданиям теоретиков.
— Bigi I. I., Sanda A.I. CP Violation (англ.). — New York: Cambridge Univ. Press, 2000. — 382 p. — ISBN 0-521-44349-0.
В 1947 году Д. Рочестер и К. К. Батлер опубликовали две фотографии событий в камере Вильсона, вызванных космическими лучами; на одной была показана нейтральная частица, распадающаяся на два заряженных пиона, а на другой — заряженная частица, распадающаяся на заряженный пион и что-то нейтральное. Оценка масс новых частиц была грубой — приблизительно половина массы протона. Дальнейшие примеры этих «V-частиц» появились не скоро.
Первый прорыв был совершён в Калтехе (США), где камера Вильсона была доставлена на гору Вильсона для более эффективного наблюдения за космическими лучами. В 1950 году было замечено 30 заряженных и 4 нейтральных V-частицы. Вдохновлённые этим, учёные проводили множество наблюдений на вершине горы несколько последующих лет, и к 1953 г. была принята следующая классификация: «L-мезон» означало мюон или пион. «K-мезон» означало частицу, имевшую массу между массами пиона и нуклона. «Гиперон» означало любую частицу тяжелее нуклона.
Распады были очень медленными; типичные времена жизни были порядка 10−10 секунды. Однако рождение частиц в пион-протонных реакциях происходило намного быстрее, с характерным временем порядка 10−23 секунды. Проблема этого несоответствия была решена Абрахамом Пайсом, постулировавшим существование нового квантового числа, названного «странностью», которое сохраняется при сильном взаимодействии, но не сохраняется при слабом. Странные частицы появлялись в больших количествах из-за «связанного рождения» одновременно странной и антистранной частицы. Вскоре было показано, что оно не является мультипликативным квантовым числом, поскольку иначе были бы разрешены реакции, которые не наблюдались на новых циклотронах, построенных в Брукхейвенской национальной лаборатории (США) в 1953 году и в Национальной лаборатории Лоуренса в Беркли (США) в 1955 году.
Нарушение чётности: загадка θ-τ
[править | править код]Для заряженных странных мезонов было найдено два типа распада:
- θ+ → π+ + π0
- τ+ → π+ + π+ + π−.
Поскольку два конечных состояния имеют разную чётность, предполагалось, что начальные состояния также должны иметь разную чётность, и следовательно быть двумя разными частицами. Однако более точные измерения не показали никакой разницы в их массах и временах жизни, доказав, что они являются одной и той же частицей. Это явление известно как загадка θ-τ. Она была решена только с открытием нарушения чётности в слабых взаимодействиях. Поскольку мезоны распадаются посредством слабого взаимодействия, чётность не должна сохраняться, и два распада могут быть вызваны одной частицей, сейчас называемой K+.
Нарушение CP-симметрии в осцилляциях нейтральных мезонов
[править | править код]Сначала считалось, что, хотя чётность нарушается, CP (заряд+чётность) симметрия сохраняется. Чтобы понять открытие нарушения CP-симметрии, необходимо понять смешивание нейтральных каонов; это явление не требует нарушения CP-симметрии, но именно в этом контексте впервые наблюдалось нарушение CP-симметрии.
Смешивание нейтральных каонов
[править | править код]Поскольку нейтральные каоны имеют странность, они не могут быть своими собственными античастицами. Тогда должно быть два разных нейтральных каона, различающихся на две единицы странности. Вопрос в том, как установить существование этих двух мезонов. Решение использует явление, названное осцилляции нейтральных частиц, при котором эти два вида мезонов могут превращаться друг в друга посредством слабого взаимодействия, которое заставляет их распадаться на пионы (см. прилагаемый рисунок).
Эти осцилляции впервые были исследованы Мюрреем Гелл-Манном и Абрахамом Пайсом в их совместной работе. Они рассмотрели CP-инвариантную временную эволюцию состояний с противоположной странностью. В матричных обозначениях можно написать
где ψ — это квантовое состояние системы, характеризуемое амплитудами существования в каждом из двух основных состояний (которые обозначены a и b во время t = 0). Диагональные элементы (M) гамильтониана соответствуют сильному взаимодействию, при котором сохраняется странность. Два диагональных элемента должны быть равными, поскольку частица и античастица имеют равные массы в отсутствие слабого взаимодействия. Не лежащие на диагонали элементы, которые смешивают частицы с противоположной странностью, вызваны слабым взаимодействием; CP-симметрия требует, чтобы они были действительными.
Если матрица H действительна, вероятности двух состояний будут вечно колебаться взад и вперёд. Однако, если какая-то часть матрицы будет мнимой, хотя это запрещено CP-инвариантностью, тогда часть комбинации со временем будет уменьшаться. Уменьшающейся частью может быть либо одна компонента (a), либо другая (b), либо смесь обеих.
Смешивание
[править | править код]Собственные состояния получаются при диагонализации этой матрицы. Это даёт новые собственные векторы, которые мы можем назвать K1, который является суммой двух состояний с противоположной странностью, и K2, который является разностью. Оба они являются собственными состояниями CP с противоположными собственными значениями; K1 имеет CP = +1, а K2 имеет CP = −1. Поскольку двухпионное конечное состояние также имеет CP = +1, только K1 может распадаться этим путём. K2 должен распадаться на три пиона. Поскольку масса K2 немного больше суммы масс трёх пионов, этот распад происходит очень медленно, примерно в 600 раз медленнее, чем распад K1 на два пиона. Эти два пути распада наблюдались Леоном Ледерманом и его коллегами в 1956 г., которые установили существование двух слабых собственных состояний (состояний с определённым временем жизни при распаде нейтральных каонов посредством слабого взаимодействия) нейтральных каонов.
Эти два собственных состояния были названы KL (K-long) и KS (K-short). CP-симметрия, которая в то время считалась незыблемой, предполагает, что KS = K1 и KL = K2.
Осцилляция
[править | править код]Изначально чистый пучок K0 будет при распространении превращаться в свои античастицы, которые затем будут превращаться обратно в начальные частицы, и так далее. Это явление было названо осцилляцией частиц. При наблюдениях распадов на лептоны выяснилось, что K0 всегда распадался с эмиссией электрона, в то время как античастица — с эмиссией позитрона. При первом анализе было выявлено соотношение между уровнем рождения электронов и позитронов из источников чистых K0 и их античастиц . Анализ зависимости по времени полулептонного распада доказал существование явления осцилляций и позволил выяснить расщепление масс между KS и KL. Поскольку оно существует благодаря слабому взаимодействию, оно очень мало, 3,483(6)⋅10−12 МэВ (10−15 массы каждого состояния).
Восстановление
[править | править код]Пучок нейтральных каонов в полёте распадается так, что короткоживущий KS исчезает, оставляя поток чистых долгоживущих KL. Если этот поток проходит через вещество, K0 и его античастица по-разному взаимодействуют с ядрами. С K0 происходит квазиупругое рассеяние на нуклонах, в то время как его античастица может создавать гипероны. Из-за различного взаимодействия двух компонент теряется квантовая когерентность между двумя частицами. Возникающий поток содержит различные линейные суперпозиции K0 и . Такая суперпозиция является смесью KL и KS; таким образом, KS восстанавливается при прохождении пучка нейтральных каонов через вещество. Восстановление наблюдалось Оресте Пиччони и его коллегами в Национальной лаборатории Лоуренса в Беркли. Вскоре после этого, Роберт Адэр[англ.] со своими помощниками сообщил об избыточном восстановлении KS, тем самым открыв новую главу в этой истории.
Нарушение CP-симметрии
[править | править код]Пытаясь проверить результаты Адэра, в 1964 году Джеймс Кронин и Вал Фитч из BNL обнаружили распад KL на два пиона (CP = +1). Как указано выше, этот распад требует, чтобы предполагаемые начальные и конечные состояния имели различные значения CP, и, следовательно, немедленно предполагает нарушение CP-симметрии. Другие объяснения, такие как нелинейность квантовой механики или новая элементарная частица (гиперфотон), вскоре были отброшены, оставив нарушение CP-симметрии единственной возможностью. За это открытие Кронин и Фитч получили Нобелевскую премию по физике 1980 года.
Выяснилось, что хотя KL и KS являются слабыми собственными состояниями (потому что они имеют определённое время жизни при распаде посредством слабого взаимодействия), они не совсем CP-состояния. Вместо этого, с точностью до нормировочного множителя
- KL = K2 + εK1
(и аналогично для KS), где ε — малый параметр. Таким образом, изредка KL распадается как K1 с CP = +1, и аналогично KS может распадаться как K2 с CP = −1. Это явление известно как непрямое нарушение CP-симметрии, нарушение CP-симметрии из-за смешивания K0 и его античастицы. Существует также и прямое нарушение CP-симметрии, при котором нарушение происходит при самом распаде. Оба эффекта наблюдаются, поскольку и смешивание, и распад происходят от одного и того же взаимодействия с W-бозоном и, таким образом, нарушение CP-симметрии предсказывается ККМ-матрицей.
См. также
[править | править код]- Адроны, мезоны, гипероны и аромат
- S-кварк и кварковая модель
- Чётность (физика), зарядовое сопряжение, T-симметрия, CPT-инвариантность и Нарушение CP-инвариантности
- Нейтринные осцилляции
Примечания
[править | править код]- ↑ КАО́НЫ : [арх. 23 апреля 2016] // Канцелярия конфискации — Киргизы. — М. : Большая российская энциклопедия, 2009. — С. 10. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 13). — ISBN 978-5-85270-344-6.
- ↑ В ЦЕРНе зафиксировали ультраредкий распад
Ссылки
[править | править код]- Particle data group (2010) on mesons
- The quark model, by J.J.J. Kokkedee
- CP violation, by I.I. Bigi and A.I. Sanda (Cambridge University Press, 2000) ISBN 0-521-44349-0
- Griffiths, David (1987). Introduction to Elementary Particles. New York: John Wiley & Sons. ISBN 0-471-60386-4.
- В. М. Терентьев. Распад и возможное несохранение CP-чётности. — УФН, т.86, 1965, вып. 2, с. 231—262.
- Cirigliano V. et al. Kaon decays in the standard model (англ.) // Rev. Mod. Phys.. — 2012. — Vol. 84. — P. 399—447. — doi:10.1103/RevModPhys.84.399.