Функционал: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
м Определения: стилевые правки
Строка 3: Строка 3:


== Определения ==
== Определения ==
Область определения может быть любым множеством. Если область определения является [[Топологическое пространство|топологическим пространством]], можно определить [[непрерывный функционал]]; если область определения является [[Линейное пространство|линейным пространством]] над <math>\R</math> или над <math>\mathbb{C}</math>, можно определить [[Линейный функционал|линейный функционал]]; если область определения является [[Частично упорядоченное множество|упорядоченным множеством]], можно определить монотонныйи функционал.
Область определения функционала может быть любым множеством. Если область определения является [[Топологическое пространство|топологическим пространством]], можно определить [[непрерывный функционал]]; если область определения является [[Линейное пространство|линейным пространством]] над <math>\R</math> или над <math>\mathbb{C}</math>, можно определить [[Линейный функционал|линейный функционал]]; если область определения является [[Частично упорядоченное множество|упорядоченным множеством]], можно определить монотонныйи функционал.


В более широком смысле '''функционалом''' называется любое отображение из произвольного [[Множество|множества]] в произвольное (не обязательно числовое) [[Кольцо (математика)|Кольцо]].
В более широком смысле '''функционалом''' называется любое отображение из произвольного [[Множество|множества]] в произвольное (не обязательно числовое) [[Кольцо (математика)|Кольцо]].

Версия от 21:10, 6 декабря 2012

Функциона́л — это отображение, заданное на произвольном множестве и имеющее числовую область значений: обычно множество вещественных чисел или комплексных чисел [1].

Определения

Область определения функционала может быть любым множеством. Если область определения является топологическим пространством, можно определить непрерывный функционал; если область определения является линейным пространством над или над , можно определить линейный функционал; если область определения является упорядоченным множеством, можно определить монотонныйи функционал.

В более широком смысле функционалом называется любое отображение из произвольного множества в произвольное (не обязательно числовое) Кольцо.

Функционал, заданный на линейном пространстве, и сохраняющий сложение и умножение на константу, называется линейным функционалом. (Отображение линейного пространства в линейное пространство называют оператором).

Довольно часто в роли линейного пространства выступает то или иное пространство функций (непрерывные функции на отрезке, интегрируемые функции на плоскости и т. д.). Поэтому, в прикладных областях, под функционалом понимают функцию от функций, отображение, переводящее функцию в число (действительное или комплексное).

Пожалуй, самый простой функционал — проекция (сопоставление вектору одной из его координат).

Отображение, переводящее вектор в его норму, является выпуклым положительно определённым функционалом, это один из самых распространённых функционалов. В физике часто используется действие — тоже функционал.

Задачи оптимизации формулируются на языке функционалов: найти решение (уравнения, системы уравнений, системы ограничений, системы неравенств, системы включений и т. п.), доставляющее экстремум (минимум или максимум) заданному функционалу. Функционалы также рассматриваются в вариационном анализе.

Функционал называется непрерывным на линии (в точке) x0, если для любого ε>0 существует δ(ε) такое, что для любых дельта-близких ||x-x0||<ε ||y(x)-y(x0)||<δ.

Функционал в линейном пространстве

Позднее от понятия традиционного функционала отделилось понятие функционала в линейном пространстве, как функции, отображающей элементы линейного пространства в его пространство скаляров. Зачастую (например, когда пространство функций является линейным пространством) эти две разновидности понятия «функционал» совпадают, в то же время они не тождественны и не поглощают друг друга.

Особенно важной разновидностью функционалов являются линейные функционалы.

Виды функционалов

Выделяют следующие специальные виды функционалов:

  • интегральный:
  • терминальный:
  • смешанный (функционал Больца):

Примеры

  • норма функции
  • значение функции в фиксированной точке
  • максимум или минимум функции на отрезке
  • величина интеграла от функции
  • длина графика вещественной функции вещественной переменной
  • длина кривой, параметрически заданной векторной функцией вещественного аргумента (длина пути)
  • площадь поверхности, параметрически заданной векторной функцией двух вещественных аргументов
  • скалярное произведение на фиксированный вектор
  • действие в механике
  • функционал энергии

См. также

Литература

  1. Математическая Энциклопедия.
  • Математическая Энциклопедия. — М.: Советская Энциклопедия, 1984. — Т. 5.
  • Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — изд. четвертое, переработанное. — М.: Наука, 1976. — 544 с. — 35 000 экз.
  • У.Рудин. Функциональный анализ. — М.: Мир, 1975.

Ссылки