Фи-мезон: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
оформление
дополнение
Строка 21: Строка 21:


В 1968 году на [[Синхрофазотрон ОИЯИ|синхрофазотроне]] в [[Объединённый институт ядерных исследований|Объединённом институте ядерных исследований]] впервые зафиксирован распад φ-мезона на электрон-позитронную пару<ref>{{Статья|заглавие=Observation of the φ → e+ e– Decay|издание=Phys. Lett. B|автор=Astvacaturov, R.G.; Azimov, M.A.; Chuvilo, I.V.; Hladky, J. et al.|язык=en|год=1968|том=27|страницы=45|doi=10.1016/0370-2693(68)90330-4}}</ref>.
В 1968 году на [[Синхрофазотрон ОИЯИ|синхрофазотроне]] в [[Объединённый институт ядерных исследований|Объединённом институте ядерных исследований]] впервые зафиксирован распад φ-мезона на электрон-позитронную пару<ref>{{Статья|заглавие=Observation of the φ → e+ e– Decay|издание=Phys. Lett. B|автор=Astvacaturov, R.G.; Azimov, M.A.; Chuvilo, I.V.; Hladky, J. et al.|язык=en|год=1968|том=27|страницы=45|doi=10.1016/0370-2693(68)90330-4}}</ref>.

В 1999 году в лаборатории LNF INFN (Италия) был построен электрон-позитронный коллайдер [[DAFNE|DAΦNE]], основным объектом исследования которого был фи-мезон.


== Основные свойства ==
== Основные свойства ==

Версия от 15:38, 6 мая 2023

Фи-мезон ()
Классификация резонанс
Семья бозон
Группа мезоны
Обнаружена 1961 год
Квантовые числа
Электрический заряд 0
Барионное число 0
Лептонное число 0
Спин 1 ħ
Чётность -1
Внутренняя чётность -1
Зарядовая чётность -1
Изотопический спин 0
Странность 0
Очарование 0
Прелесть 0
Истинность 0
Гиперзаряд 0
Другие свойства
Кварковый состав

Фи-мезон — элементарная частица со скрытой странностью и изотопическим спином 0, представляющая собой мезонные резонансы с чётным орбитальным квантовым числом[1]. Она образует синглет, дополняющий октет векторных мезонов, то есть является аналогом η′-мезона.

История открытия

Первые свидетельства существования φ-мезона были получены в 1961-1962 годах в в Брукхейвенской национальной лаборатории[2]. На основании этих данных Дзюном Сакураи[англ.] было сделано предположение о природе этого резонанса[3].

Надёжное подтверждение открытия φ-мезона было сделано в 1962 году на Беватроне в Национальной лаборатории имени Лоуренса в Беркли[4] и на синхротроне AGS в Брукхейвенской национальной лаборатории[5].

В 1968 году на синхрофазотроне в Объединённом институте ядерных исследований впервые зафиксирован распад φ-мезона на электрон-позитронную пару[6].

В 1999 году в лаборатории LNF INFN (Италия) был построен электрон-позитронный коллайдер DAΦNE, основным объектом исследования которого был фи-мезон.

Основные свойства

Сразу стоит отметить, что из-за малого времени жизни параметры фи-мезона не могут быть измерены непосредственно и определяются по свойствам частиц, образующихся при его распаде.

Инвариантная масса самого лёгкого фи-мезона составляет (1,8173444±)10 кг или 1,09443 ± 0,00002 а. е. м. Согласно принципу эквивалентности массы и энергии это соответствует энергии покоя 1019,455 ± 0,020 МэВ[7]. Соответственно, масса фи-мезона в 1995 раз больше массы электрона.

Фи-мезон не имеет электрического заряда. Все квантовые числа, характеризующие адроны: барионный заряд, изотопический спин, странность, очарование, прелесть, истинность и гиперзаряд — также равны нулю. Таким образом, у фи-мезона нет характеристик, которые отличали бы его от своей античастицы. Это позволяет классифицировать этот мезон как истинно нейтральную частицу, то есть частицу, не имеющую античастиц или, иначе говоря, являющуюся античастицей самой себе.

Собственный угловой момент или спин фи-мезона равен 1[7]. То есть он, как и все прочие мезоны, является бозоном и подчиняется статистике Бозе-Эйнштейна.

Пространственная чётность — отрицательная[7]. Чётность в сочетании со спином определяют математическую сущность волновой функции частицы. В данном случае (единичный спин и отрицательная чётность) волновая функция будет преобразовываться подобно вектору (тензору первого ранга). Поэтому фи-мезон принято называть векторным бозоном.

Однако, поскольку фи-мезонами принято называть целую группу частиц, состоящих из кварков с чётным орбитальным квантовым числом L, то, в принципе, они могут иметь любой целый нечётный спин, который в для составных частиц равен сумме , где S — суммарный спин частиц, равный 1 (). Но чётность для всех фи-мезонов, в силу формулы должна быть отрицательной. Например, известен фи-мезон φ3(1850), который имеет спин, равный 3 и отрицательную чётность и является, таким образом, уже не векторным, а тензорным бозоном, поскольку его волновая функция должна иметь трансфомационные свойства, соответствующие тензору третьего ранга.

Характеристики

Далее представлены характеристики самого лёгкого φ-мезона и трёх его наиболее хорошо изученных возбуждённых состояний.

Частица Кварковый состав[8] Энергия покоя, МэВ IG JPC Q S c b Среднее время жизни, с Основная мода распада
φ(1020) 1019,455 ± 0,020 0 1−− 0 0 0 0 1,54⋅10−22 K+ + K
φ(1680) 1680 ± 20 0 1−− 0 0 0 0 4,4⋅10−24 K+ + K*(892)
φ3(1850) 1854 ± 7 0 3−− 0 0 0 0 7,6⋅10−24 K+ + K
φ(2170) или 2162 ± 7 0 1−− 0 0 0 0 6,6⋅10−24 e+ + e

Структура

Нонет векторных мезонов

Фи-мезон представляет собой связанную систему из кварка и антикварка одного аромата (так называемый кварконий). Поскольку результирующие значения всех квантовых чисел у данной частицы равны нулю, то ничто не мешает кварку и антикварку менять свой аромат за счёт слабого взаимодействия. Поэтому фи-мезон можно представить как суперпозицию различных кварк-антикварковых пар:

.

Здесь и объединены в одно слагаемое, так как массы u- и d-кварков примерно равны и они дают одинаковые вклады в волновую функцию фи-мезона. Более тяжёлые кварки сюда не включены, так как их масса значительно больше массы фи-мезона и, соответственно, их вклад является незначительным.

Квадраты коэффициентов суперпозиции равны вероятности существования частицы в данном состоянии и, по правилу нормировки, их сумма равна 1:

.

Поэтому удобно выразить эти коэффициенты через синус и косинус одного угла :

.

Угол выражается через так называемый угол смешивания :

.

Угол смешивания является характеристикой всего нонета векторных мезонов, в который входит фи-мезон и определяется массами входящих в него частиц:

.

Откуда получаем для векторных мезонов значение и . Таким образом, состав фи-мезона можно записать следующим образом:

.

Возведя коэффициенты в квадрат, получим, что суммарная вероятность существования фи-мезона в форме u-кварк-антикварковой или d-кварк-антикварковой пары составляет 4,4⋅10-4, то есть они дают вклад лишь в 0,044 % в волновую функцию данного резонанса. Остальные 99,956 % дают s-кварки. И, таким образом, фи-мезон можно считать состоящим из s-кварка и s-антикварка.

Моды распада

Фи-мезон является резонансом, то есть частицей существующей столь короткий промежуток времени, что факт его существования можно установить лишь по скачку на диаграмме сечения рождения вторичных частиц. Время жизни резонанса определяется по ширине этого пика: чем уже резонанс, тем дольше он существует. Для самого лёгкого фи-мезона эта ширина составляет 4,249 ± 0,013 МэВ[7], откуда можно получить, что среднее время его жизни равно 1,54⋅10−22 с. Все остальные известные фи-мезоны имеют ещё меньшее время жизни — порядка ⋅10−23-⋅10−24 с.

Диаграмма Фейнмана для распада фи-мезона на два каона

Как и все резонансы, фи-мезон распадается в основном за счёт сильного взаимодействия. Основными для фи-мезона являются распады на два ка-мезона:

(вероятность 49,1 %)[9],
(вероятность 33,9 %)[9].
Диаграмма Фейнмана для распада фи-мезона на три пиона

Другой возможный канал распада — это распад на три пи-мезона:

,

который может происходить либо непосредственно, либо с образованием промежуточного резонанса — ро-мезона:

,
.

Общий коэффициент ветвления в этом случае составляет лишь 15,4 %[9], хотя этот вид распада является энергетически более выгодным, так как суммарная масса трёх пионов составляет 414,12 МэВ/c², в то время, как масса пары каонов составляет 985,33 МэВ/c² (заряженные) или 995,23 МэВ/c² (нейтральные). Подавление этого канала объясняется правилом Окубо — Цвейга — Иизуки[англ.].

Также фи-мезон может распадаться за счёт электромагнитного взаимодействия:

(вероятность 1,3 %)[9],
(вероятность 0,0032 %)[9].

Кроме того, возможен распад фи-мезона на лептонную пару (электрон-позитрон или мюон-антимюон), но такой вид распада чрезвычайно редок:

(вероятность 2,98⋅10-4 %)[9],
(вероятность 2,85⋅10-4 %)[9].

Возбуждённые состояния

Помимо φ(1020) — наиболее лёгкого и стабильного φ-мезона, известны и другие резонансы, относящиеся к этому типу. На сегодняшний день, только три из них могут считаться надёжно установленными: φ(1680), φ3(1850) и φ(2170). Теоретические расчёты предсказывают существование и других возбуждённых состояния: φ(1850), φ(2050), φ2(1850)[10].

φ(1680)

Первое возбуждённое состояние φ(1680) было подтверждено в 1971 году[11].

Эта частица имеет энергию покоя 1680±20 МэВ[7], что соответствует массе 3,0⋅10-27 кг. Ширина резонанса составляет 150±50 МэВ[7], что соответствует среднему времени жизни 4,4⋅10−24 с.

Согласно кварковой модели, этот резонанс представляет собой систему кварк-антикварк с термом 23S1[12]

φ3(1850)

Второе возбуждённое состояние φ3(1850) было открыто в ЦЕРНе 1981 году[13].

У этого мезона энергию покоя равна 1854±7 МэВ[7], что соответствует массе 3,3⋅10-27 кг. Ширина резонанса составляет 87+28
−23
МэВ[7], что соответствует среднему времени жизни 7,6⋅10−24 с.

Согласно кварковой модели, этот резонанс представляет собой систему кварк-антикварк с термом 13D3[12]

φ(2170)

В 2006 году коллаборацией BaBar было обнаружено третье возбуждённое состояние φ(2170)[14], ранее обозначавшееся Y(2175).

Согласно кварковой модели, этот резонанс представляет собой систему кварк-антикварк с термом 33S1[10], или 23D1[10], или 13D1[12]. Одноко, есть предположение о том, что он является тетракварком[15].

Примечания

  1. Naming scheme for hadrons. Дата обращения: 25 июля 2011. Архивировано 5 августа 2011 года.
  2. Bertanza, L.; Brisson, V.; Connolly, P.L.; Hart, E.L. et al. Possible Resonances in the Ξ π and K anti-K Systems (англ.) // Phys. Rev. Lett.. — 1962. — Vol. 9. — P. 180.
  3. Sakurai, J. J. Possible Existence of a T=0 Vector Meson at 1020 MeV (англ.) // Phys. Rev. Lett.. — 1962. — December (vol. 9, no. 11). — P. 472–475. — doi:10.1103/PhysRevLett.9.472.
  4. Schlein, P.; Slater, W.E.; Smith, L.T.; Stork, D.H.; Ticho, H.K. Quantum Numbers of a 1020 MeV K anti-K Resonance (англ.) // Phys. Rev. Lett.. — 1963. — Vol. 10. — P. 368.
  5. P. L. Connolly et al. Existence and Properties of the ϕ Meson (англ.) // Phys. Rev. Lett. : journal. — 1963. — 15 April (vol. 10, no. 8). — P. 371—376.
  6. Astvacaturov, R.G.; Azimov, M.A.; Chuvilo, I.V.; Hladky, J. et al. Observation of the φ → e+ e– Decay (англ.) // Phys. Lett. B. — 1968. — Vol. 27. — P. 45. — doi:10.1016/0370-2693(68)90330-4.
  7. 1 2 3 4 5 6 7 8 R.L. Workmanet al.(Particle Data Group). Light unflavored mesons (S = C = B = 0) (англ.) // Prog.Theor.Exp.Phys.. — 2022. — Vol. 2022, no. 083C01.
  8. C. Amsler et al. (2008): Quark Model Архивная копия от 30 июля 2011 на Wayback Machine
  9. 1 2 3 4 5 6 7 R.L. Workman et al. (Particle Data Group). Mesons. Summary tables (англ.) // Prog.Theor.Exp.Phys.. — 2022. — No. 083C01. Архивировано 28 августа 2022 года.
  10. 1 2 3 Liu Pei-Lian, Fang Shuang-Shi, Lou Xin-Chou. Strange quarkonium states at BESIII (англ.) // Chinese Physics C. — 2015. — Vol. 39, no. 8.
  11. J. A. J. Matthews, J. D. Prentice, T. S. Yoon, J. T. Carroll, M. W. Firebaugh, W. D. Walker. Production and Decay of the φ(1680) in π + d → pp π+ π− π0 at 6.95 GeV/c (англ.) // Phys. Rev. D. — 1971. — 1 June (vol. 3). — P. 2561. — doi:10.1103/PHYSREVD.3.2561.
  12. 1 2 3 15. Quark Model (11 августа 2022). Дата обращения: 14 апреля 2023.
  13. S. Al- Harran et al. Observation of a Enhancement at 1.85-GeV in the Reaction at 8.25-GeV/c (англ.) // Phys.Lett.B. — 1981. — Vol. 101. — P. 357-360. — doi:10.1016/0370-2693(81)90063-0.
  14. B. Aubert et al. A Structure at 2175-MeV in  (англ.) // Phys.Rev.D. — 2006. — Vol. 74. — doi:10.1103/PhysRevD.74.091103.
  15. H.-W. Ke and X.-Q. Li. Study of the strong decays of ϕ(2170) and the future charm-tau factory (англ.) // Phys. Rev. D. — 2019. — Vol. 99.