
The supplemental material contains additional analysis,
visualization and ablation studies. All these are not included
in the main paper due to the space limit.

A. Experimental Details
A.1. Datasets

For the source dataset training, we use ImageNet1K
training set [12]. For downstream linear evaluation, we use
12 datasets from different domains to evaluate the transfer-
ability of different models. We divide the datasets into six
groups - natural, satellite, symbolic, illustrative, medical,
and texture. Unless otherwise mentioned, we use top-1 ac-
curacy as evaluation metrics.

The most similar to ImageNet categories (i.e., natu-
ral images) are CropDisease, DeepWeeds and Flowers102.
CropDisease [38] contains natural images of diseased
crop leaves categorized into 38 different classes. Deep-
Weeds [41] contains 17,509 images of 8 different weed
species native to Australia. Flowers [40] is a fine-grained
dataset of 102 different flower categories each of which con-
sists of 40 to 258 images.

In the satellite image category, we use EuroSAT adn Re-
sisc45. EuroSAT [22] is a satellite imagery dataset consist-
ing of 27,000 labeled images with 10 different land use and
land cover classes. Resisc [9] is a remote sensing image
classification dataset containing 31,500 images of 45 scene
classes.

SVHN [39] is obtained from house numbers of google
street view images. There are 10 classes, 1 for each digit
from 0 to 9, consisting of around 73k training images and
26k testing images. Omniglot [35] contains 1623 different
hand-writted characters from 50 different alphabets.

Both Kaokore and Sketch contain illustrative or hand-
drawn images. Kaokore [46] dataset contains 8848 face
images from japanese illustration. ImageNet Sketch [49]
consists of ‘black-and-white’ sketches from each of Ima-
geNet 1000 classes. Kaokore dataset contains two super
classes based on gender and status. The ‘gender’ class con-
tains male and female, and the ‘status’ class contains - no-
ble, warrior, incarnation, and commoner. Combining both
of them we get total 8 classes.

In the medical imagery domain, we have ChestX and
ISIC dataset. ChestX [50] is comprised of X-Ray images,
and ISIC [11] dataset contains dermoscopic images of skin
lesions.

In the category of texture dataset, we use DTD [10],
which consists of 5640 texture images from 47 categories.
We use the official training and test split for most datasets
if available. If the official split contains both training and
validation split, we combine them for training. When there
are multiple official splits available (e.g. DTD [10]), we
use the first split for evaluation. If there is no official split

available, we randomly select 30% of the total images from
each category as test set and the remaining images for train-
ing. For few-shot learning, we use all the available images
from both training and test splits, and randomly select im-
ages for support set and query set from 5 random classes
(5-way few-shot learning) at each few-shot episode.

A.2. ImageNet Pretraining

We trained all models on the source dataset for 400
epochs with learning rate 0.01 and cosine scheduling with
warm-up for 5 epochs. We set the temperature parameter of
MoCo to ⌧ = 0.07, and queue size to 65, 596 [21]. The
effect of queue size to the transfer learning performance
is discussed in the Appendix D.1. For CE model, we use
random crop(224x224), horizontal flip, and normalization
data-augmentations during training. For SelfSupCon,
SupCon+SelfSupCon, and CE+SelfSupCon, we use
random-crop (224x224), color-jitter, random gray-scale,
Gaussian blur, random horizontal flip, and normalization for
training data augmentations. CE models with stronger aug-
mentation is also discussed in Appendix. D.6. Unless oth-
erwise mentioned, we use top-1 accuracy as the evaluation
metric.

A.3. Linear Evaluation

For fixed-feature linear evaluation, we freeze the pre-
trained backbone, add a linear layer to train it on the down-
stream dataset. We add a BatchNorm layer without any
affine parameter between the backbone and linear layer to
make the extracted features comparable among different
models. Note that the BatchNorm layer makes the models
to have similar optimal hyperparameters during linear eval-
uation. We train all models for 50 epochs with step learning
rate scheduler which decreases the learning rate by 0.1 at
epoch 25 and 37. We also experimented with 100 epochs
for all models, but did not notice any noticeable improve-
ment over 50 epochs. As different datasets might require
different hyperparameters, we perform extensive hyperpa-
rameter tuning. We split the training set on 70% training
and 30% validation, and then train the models for

• learning rate: 0.001, 0.01, 0.1

• batch-size: 32, 128

• weight decay: 0, 1e-4, 1e-5

and chose the optimal hyperparamters among different runs
based on the performance on the validation set. Never-
theless, we found that batch-size 128, learning rate 0.01,
and weight-decay 0 can be chosen as a safe hyperparameter
choice for most cases.



A.4. Object Detection
For object detection, we follow the setting in [21] to fine-

tune the full network, and add batch normalization layer
into the meta architecture of the detector, e.g., region-of-
interested (ROI) header, feature pyramid network (FPN),
etc., to minimize the effort on hyperparameter tuning.

A.5. Full-network Finetuning
We train the whole network, i.e., the pretrained back-

bone and linear layer on the downstream dataset. We train
all models for 50 epochs with step learning rate scheduler
which decreases the learning rate by 0.1 at epoch 25 and 37.
Here, we also experimented with 100 epochs, but did not
notice any noticeable improvement over 50 epochs. We add
a BatchNorm layer between the backbone and linear layer
to make the extracted features comparable among different
models. We train the models for various learning rate - 0.01,
0.001, and 0.1, batch-sizes - 32 and 128, and weight decay
0, 1e-4, 1e-5 and select the optimal hyperparameter based
on the performance on the validation set. We found that
for most datasets learning rate 0.001 with batch-size 32 per-
forms the best, hence this setting can be used in a scenario
where hyperperameter tuning is not possible or expensive.

A.6. Few-shot Recogniton
For few-shot pretraining, we closely followed CDFSL

benchmark paper [20]. For all models, we train for 300
epochs with SGD optimizer with learning rate 0.01 and
batch-size 32, and cosine scheduling with warm-up for 5
epochs. For the contrastive models, we use number of neg-
ative samples to be 16384 and temperature parameter to be
0.07. Following [47], we train a logistic regression layer on
top of the extracted features during meta-testing phase. We
use the implementation from scikit-learn for logistic regres-
sion [1]. The accuracy is the mean of 600 randomly sam-
pled tasks, and 95% confidence interval is also reported.

B. More Results and Analysis
B.1. Linear Evaluation

Detailed numbers for linear evaluation are provided in 8.

B.2. Object Detection
Table 9 shows object detection results with standard de-

viation over 5 runs.
We also conducted the experiments of object detection

with longer training setting (2⇥ schedule in Detectron2.)
and tested another detector, RetinaNet-R50. The results are
shown in Table 10 and Table 11. When training with more
iterations (2⇥ schedule), the results of CE, SelfSupCon
and SupCon are more closer to CE+SelfSupCon and
SupCon+SelfSupCon as pretraining between less im-
portant if the downstream has been trained for a long

time. The results of the RetinaNet have the similar trend,
which shows that the visual representations trained by
CE+SelfSupCon and SupCon+SelfSupCon are trans-
ferable on different types of detectors.

B.3. Few-shot Recogniton
5-way 1-shot, 5-shot and 20-shot results are provided in

Table 12.

B.4. Full-network Finetune
Detailed results for image classification with full-

network finetuning are provided in Table 13.

C. More Analysis
C.1. Experimental Setup for Analysis on ImageNet

Derivatives
For the evaluation on ImageNet1K, ImageNet-A,

ImageNet-R, ImageNet-C, and Stylized ImageNet on Ta-
ble 5 and Table 6 in the main paper, we train a classifier
header on top of the ResNet-50 backbone for the contrastive
models. The classifier header is trained on the ImageNet1K
training set. We SGD optimizer, and tune the learning rate
for 0.01, 0.1, 1, 2, 10, and chose the best performing model
based on the validation set accuracy. We do not use any
weight decay [21]. Note that this is performed only for
SelfSupCon, SupCon, SupCon+SelfSupCon. For
CE and CE+SelfSupCon, we use the header associated
with the supervised branch.

C.2. Model Calibration on the Downstream
Datasets

Table 14 reports calibration performance for the Ima-
geNet pretrained models on the 12 downstream datasets in
terms of Expected Calibration Error (ECE). We use fixed-
feature linear evaluation to train the linear layer on the
downstream tasks. We also perform hyperparameter sweap-
ing on the validation set and report the best ECE score
(lower is better). We observe that contrastive models have
lower calibration error than cross-entropy model on aver-
age.

C.3. Robustness of Adversarial Attack
We used projected gradient descent (PGD) attack to test

the robustness of each model. It is clear that without any
adversarial training, all models are vulnerable. Nonethe-
less, we would like to analyze the region with smaller per-
turbation (i.e., small "). Figure 8 show the relative accuracy
degradation among those methods. Interestingly, CE is the
most robust one among while all other methods are rela-
tively vulnerable. We think it is because contrastive learn-
ing methods are more sensitive to the local changes as they



CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

CE 97.18±.04 85.17±.04 84.73±.52 94.62±.12 84.96±.25 79.58±.21 44.70±.20 63.88±.61 66.31±.16 73.96±.16 67.41±.13 65.48±.40 75.67±.24
SelfSupCon 99.06±.04 87.88±.16 89.62±.14 96.76±.05 90.88±.10 81.51±.35 48.08±.13 69.66±.23 69.95±.06 81.67±.80 69.12±.13 72.21±.57 79.70±.23
SupCon 98.85±.03 87.37±.13 92.79±.15 96.05±.12 90.26±.24 79.78±.22 46.76±.32 72.99±.31 74.09±.12 80.94±.23 77.19±.10 74.00±.37 80.92±.20
CE+SelfSupCon 98.79±.03 87.72±.09 91.78±.14 96.67±.16 90.33±.06 80.43±.15 47.44±.17 68.38±.19 73.34±.14 79.48±.16 74.39±.15 73.48±.21 80.19±.14
SupCon+SelfSupCon 99.03±.03 87.79±.21 93.18±.05 96.67±.03 91.98±.08 80.15±.30 47.70±.13 72.84±.34 75.80±.13 78.86±.29 76.78±.06 74.80±.58 81.30±.19

Table 8: Top-1 accuracy of different models on the downstream datasets for fixed-feature extractor transfer learning. The models are
pretrained on ImageNet1K dataset and we only train the final linear layer on top of the pretrained backbones. Mean and standard deviation
over 5-runs are provided.

Datasets VOC0712 MS COCO (Trained with 1⇥ schedule)
Detectors FasterRCNN-R50-C4 MaskRCNN-R50-C4 MaskRCNN-R50-FPN
Methods APbb

50 APbb APbb
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

CE 81.58±.17 54.63±.28 60.17±.40 38.91±.02 59.05±.20 42.14±.16 33.98±.04 55.39±.14 36.10±.12 39.84±.14 60.54±.13 43.60±.22 36.54±.08 57.65±.10 39.25±.18
SelfSupCon 82.48±.19 57.33±.44 64.03±.42 39.14±.18 58.74±.28 42.40±.17 34.29±.18 55.53±.26 36.62±.20 39.19±.22 59.54±.20 42.74±.40 36.03±.21 56.79±.27 38.75±.27
SupCon 82.64±.36 56.12±.15 62.45±.27 39.63±.11 59.76±.20 42.77±.23 34.52±.06 56.26±.15 36.54±.15 40.40±.19 61.20±.21 44.35±.34 36.97±.14 58.31±.14 39.80±.34
CE+SelfSupCon 83.06±.26 57.07±.12 63.97±.62 39.68±.15 59.84±.19 42.80±.22 34.62±.12 56.31±.13 36.74±.30 40.65±.13 61.38±.17 44.65±.15 37.21±.21 58.57±.20 40.06±.45
SupCon+SelfSupCon 82.95±.08 57.26±.25 64.12±.44 39.95±.05 60.02±.18 43.12±.17 34.93±.08 56.59±.20 37.27±.18 40.33±.17 60.96±.21 44.20±.31 36.95±.24 58.19±.33 39.73±.33

The results of VOC0712 is the average of 5 runs. APbb: AP of objection detection; APmk: AP of instance segmentation.

Table 9: Object detection results on MS COCO.

Detectors MaskRCNN-R50-C4 MaskRCNN-R50-FPN
Methods APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

CE 41.04 60.86 44.63 35.48 57.29 37.82 41.43 62.12 45.38 37.89 59.29 40.53
SelfSupCon 41.00 60.77 44.43 35.68 57.48 38.21 41.15 61.53 45.05 37.63 58.84 40.59
SupCon 41.58 61.72 44.99 36.04 58.16 38.42 41.70 62.39 45.47 38.03 59.72 40.66
CE+SelfSupCon 41.28 61.26 45.06 35.75 57.60 38.34 41.77 62.33 45.78 38.15 59.63 41.10
SupCon+SelfSupCon 41.28 61.18 44.97 35.91 57.72 38.38 41.96 62.58 45.92 38.37 59.81 41.36
APbb: AP of objection detection; APmk: AP of instance segmentation.

Table 10: Object detection and instance segmentation results on MS COCO (2⇥ schedule).

Detector RetinaNet-R50
1⇥ schedule 2⇥ schedule

Methods APbb APbb
50 APbb

75 APbb APbb
50 APbb

75

CE 38.46 58.32 41.19 40.13 60.02 43.10
SelfSupCon 37.65 56.62 40.29 39.61 59.14 42.28
SupCon 38.77 58.48 41.52 40.35 60.23 43.26
CE+SelfSupCon 39.33 58.94 42.24 40.52 60.11 43.32
SupCon+SelfSupCon 39.24 58.67 42.23 40.50 60.34 43.50
APbb: AP of objection detection.

Table 11: Object detection results on MS COCO.

learn local features while CE does not; hence, CE can toler-
ance more perturbations.

C.4. Comparison with Other Self-supervised Mod-
els

We further evaluated two contrastive learning methods,
SwAV [5] and BYOL [18]. These two contrastive learn-
ing approaches have different characteristics than MoCov2.
SwAV is a clustering-based approach while BYOL does not
need negative samples in contrastive loss. The detailed re-
sults with linear evaluation on all downstream tasks can be
found in Table 15. SwAV and BYOL significantly outper-
form CE by 5.28% and 5.35% on mean transfer accuracy,

Figure 8: Performance degradation under different attack
strengths ("). L1PGD attack is used [37].

respectively.Thus, those contrastive models could learn fea-
tures for better transferability than the models trained with
cross-entropy.

D. More Ablation Studies
D.1. Effect of Queue-size to Transferability

Table 16 shows the effect of queue size to transferabil-
ity for the contrastive models. All models are trained on
ImageNet1K training set with queue sizes 1024, 8192, and



miniImagenet CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

1-shot

CE 53.96±.82 68.72±.85 35.73±.62 62.03±.92 63.47±.91 53.38±.75 33.33±.60 22.78±.41 83.73±.71 23.37±.41 28.92±.54 45.25±.79 41.43±.75 46.84±.69
SelfSupCon 48.88±.77 65.35±.85 38.68±.61 66.04±.85 66.07±.83 53.09±.86 33.73±.60 22.93±.43 81.88±.74 23.28±.40 31.70±.61 47.83±.79 44.19±.79 47.90±.70
SupCon 55.50±.78 63.59±.83 35.71±.59 63.17±.86 63.41±.83 55.14±.81 32.15±.60 22.73±.41 87.52±.66 25.82±.46 32.87±.59 53.55±.85 48.22±.82 48.66±.69
CE+SelfSupCon 56.84±.79 66.06±.80 38.07±.62 68.65±.81 65.88±.84 55.76±.86 33.52±.61 23.50±.42 87.20±.63 24.99±.44 33.87±.61 52.42±.86 49.36±.84 49.94±.70
SupCon+SelfSupCon 52.51±.79 65.27±.80 38.11±.59 68.74±.86 66.24±.84 54.90±.88 34.09±.62 23.94±.43 88.24±.65 24.58±.43 33.06±.60 50.90±.86 47.16±.80 49.60±.70

1-shot

CE 72.47±.62 86.58±.56 48.33±.55 81.31±.68 78.51±.68 72.86±.67 44.28±.52 26.16±.43 94.26±.34 27.98±.48 37.63±.54 64.64±.74 57.64±.73 60.01±.58
SelfSupCon 67.71±.63 83.29±.62 49.90±.59 84.29±.57 81.65±.60 72.36±.74 45.20±.52 26.91±.44 93.61±.36 27.10±.46 42.75±.57 66.32±.72 61.35±.73 61.23±.58
SupCon 75.20±.62 83.44±.60 47.74±.58 82.93±.59 80.94±.63 74.48±.70 42.97±.52 26.23±.43 96.78±.23 33.22±.53 45.10±.57 74.24±.71 65.42±.76 62.79±.57
CE+SelfSupCon 76.13±.60 84.68±.59 50.02±.60 86.88±.54 82.63±.58 75.11±.71 44.66±.49 27.93±.45 96.19±.27 31.36±.52 45.32±.57 72.38±.68 67.21±.71 63.70±.56
SupCon+SelfSupCon 72.81±.59 84.26±.59 50.35±.59 86.72±.52 82.57±.61 74.94±.72 45.82±.51 28.19±.46 96.72±.24 30.67±.50 45.26±.57 71.09±.72 65.08±.72 63.47±.56

1-shot

CE 80.81±.50 92.51±.39 58.43±.56 89.00±.53 84.77±.53 82.08±.55 52.88±.54 29.86±.44 97.76±.20 35.69±.51 46.87±.53 76.43±.61 67.85±.67 67.84±.51
SelfSupCon 76.95±.52 90.42±.45 58.99±.56 90.77±.42 87.72±.47 82.20±.56 53.57±.52 32.01±.45 97.70±.20 34.70±.53 52.71±.56 77.94±.57 71.00±.64 69.14±.49
SupCon 83.32±.46 90.73±.45 55.90±.58 90.45±.42 87.71±.45 83.40±.54 51.11±.50 31.06±.47 98.87±.13 44.98±.57 54.94±.51 85.23±.48 74.11±.63 70.71±.48
CE+SelfSupCon 84.24±.45 91.27±.42 58.63±.54 92.70±.39 89.13±.44 84.54±.54 52.80±.50 33.42±.47 98.63±.15 41.60±.57 54.72±.54 83.32±.52 75.78±.62 71.38±.48
SupCon+SelfSupCon 82.07±.47 91.54±.42 59.24±.55 92.51±.38 89.04±.43 84.18±.53 54.08±.51 33.92±.48 98.71±.15 40.84±.58 55.25±.55 82.84±.53 74.58±.63 71.39±.48

Table 12: Few-shot classification accuracies (%) on the Mini-ImageNet and 12 downstream datasets. Mean and 95% confidence interval
over 600 tasks.

CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

Full Dataset

CE 99.92±.02 97.37±.13 93.47±.30 98.78±.09 96.03±.09 88.06±.36 55.67±.56 90.34±.29 97.03±.12 88.13±.40 79.49±.27 73.26±.56 88.13±.27
SelfSupCon 99.91±.02 97.39±.13 93.36±2.07 98.85±.04 96.28±.12 88.13±.13 56.41±.26 91.10±.20 97.25±.10 88.92±.36 77.16±.13 75.49±.17 88.35±.31
SupCon 99.91±.01 96.89±.11 95.37±.16 98.67±.12 96.01±.06 87.92±.33 55.08±.57 90.56±.19 97.11±.11 87.88±.66 80.14±.19 74.19±.20 88.31±.23
CE+SelfSupCon 99.88±.04 97.28±.22 95.30±.40 98.91±.06 96.18±.12 88.29±.45 54.77±.17 90.20±.22 97.14±.08 88.25±.66 80.85±.12 74.12±.47 88.43±.25
SupCon+SelfSupCon 99.91±.02 97.38±.07 96.17±.34 98.75±.05 96.21±.07 88.55±.47 55.12±.16 90.86±.14 97.04±.09 87.73±.25 80.17±.26 74.86±.47 88.56±.20

1000 training samples

CE 93.89±.40 87.46±.57 88.31±.43 94.68±.30 79.33±.26 78.26±.96 40.42±.48 44.95±1.05 77.65±.52 77.28±1.13 14.87±1.10 60.43±.68 69.79±.66
SelfSupCon 93.95±.51 88.10±.78 88.92±.22 95.47±.41 81.14±.48 78.27±.36 43.09±.80 45.33±1.10 82.37±1.14 79.41±.85 10.57±.27 62.95±1.08 70.80±.67
SupCon 93.93±.08 86.89±.57 91.53±.23 94.73±.52 81.95±.21 78.51±.62 41.97±.24 44.48±1.53 79.25±.83 77.41±.38 16.31±.43 64.71±.31 70.97±.50
CE+SelfSupCon 93.60±.48 86.83±.67 91.01±.32 94.51±.46 80.43±.54 78.68±.32 41.65±.88 44.08±.43 79.85±.84 79.14±1.09 15.72±.24 65.07±1.08 70.88±.61
SupCon+SelfSupCon 93.82±.27 87.42±.64 91.93±.69 95.12±.47 81.28±.67 78.93±.42 41.77±.43 44.06±1.25 80.51±.61 78.84±.57 15.57±.26 66.02±.40 71.27±.56

Table 13: Performance of different models on the downstream datasets in terms of top-1 accuracy (%) (averaged over 5 runs) for full-
network fine-tuning. Contrastive pretrained methods are slightly more effective in a limited data regime than cross-entropy based models.

CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

CE 0.83±.06 1.41±.37 2.98±.33 0.64±.11 6.89±.32 1.74±.26 2.79±.26 9.30±.43 2.10±.28 4.84±.20 9.60±1.45 6.64±.55 4.15±.38
SelfSupCon 0.24±.03 3.58±.15 2.52±.12 0.78±.08 1.02±.21 2.92±.45 2.01±.47 19.02±.66 3.99±.23 3.93±.64 6.46±.18 7.08±.56 4.46±.31
SupCon 0.55±.03 1.80±.15 4.21±.12 0.99±.15 4.83±.21 2.05±.20 1.80±.25 3.82±.33 2.52±.25 3.37±.54 7.27±.23 3.53±.24 3.06±.23
CE+SelfSupCon 0.57±.06 7.16±.20 1.02±.32 0.68±.09 4.52±.15 4.11±.22 3.04±.29 4.78±.22 2.36±.28 4.79±.30 7.62±.14 4.96±.18 3.80±.20
SupCon+SelfSupCon 0.55±.04 2.40±.08 3.10±.27 0.78±.06 0.98±.05 4.69±.31 1.64±.23 4.87±.53 3.23±.43 6.96±.73 5.15±.30 6.38±.31 3.39±.28

Table 14: Expected calibration Error (%) of the models on the downstream datasets. The models are pre-trained on ImageNet1K dataset
and we only train the final linear layer on top of the pretrained backbones.

CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

SwAV 98.83 90.24 93.06 97.22 92.62 80.15 48.48 68.92 70.31 82.46 71.18 76.81 80.86
BYOL 98.76 87.52 92.86 96.80 91.69 80.49 47.92 70.69 73.03 81.36 75.65 74.36 80.93

Table 15: Linear evaluation with other contrastive learning methods.

65596. We perform fixed-feature linear evaluation on the
downstream datasets and report the average accuracy. The
table shows that higher queue size is better for transferabil-
ity.

D.2. Results with torchvision-pretrained Model

Table 17 shows linear evaluation and full-network fine-
tuning scores from torchvision pretrained model and our re-
constructed ResNet-50 model. We note that the torchvi-
sion pretrained one achieves better accuracy in linear eval-
uation, but the accuracy is similar in full-network finetun-

ing. Our CE model was trained for 400 epochs with co-
sine learning rate scheduler, whereas the torchvision one
has been trained for 100 epochs with step learning sched-
uler. We hypothesize that the training schedule might have
made difference in the transfer performance. However, al-
though the torchvision pretrained model has better linear
evaluation accuracy, it is not better in full-network fine-
tuning, robustness or even ImageNet performance. The
CE (torchvision) achieves 75.7% ImageNet accuracy, where
our CE achieves 76.60% ImageNet accuracy. From Table
18, our CE achieves 60.80% mCE in ImageNet-C, whereas



Method Queue size
1024 8192 65596

SelfSupCon 79.23 79.68 79.70
SupCon 78.11 79.88 80.92
CE+SelfSupCon 77.24 78.66 80.19
SupCon+SelfSupCon 79.42 80.50 81.30

Table 16: Ablation studies on the effect of queue size to the
linear evaluation performance on the downstream datasets.
Models trained with higher queue size generally performs
better in transfer.

CE (torchvision) achieves much worse score 78.50%. We
infer that our training strategy might be better for cross-
entropy model in terms of calibration, robustness, or even
in-domain accuracy. Overall, even with the torchvision pre-
trained ResNet-50 model, our main thesis does not change,
as the performance is still significantly lower than the con-
trastive models.

D.3. ResNet50x2 as Backbone

We also use WideResNet-50-x2 as the backbone of the
networks, and report fixed feature linear evaluation transfer
and full-network transfer in Table 19 and. We found simi-
lar pattern with larger backbone that contrastive approaches
provide more transferable representations.

D.4. Pretraining on Stylized ImageNet

We also train all models on the Stylized ImageNet train-
ing set so that the models learn more shape-based represen-
tations [16]. We then perform a fixed feature linear evalu-
ation on the 12 downstream datasets. Table 20 shows the
top-1 accuracy on the downstream datasets for the Stylized
ImageNet trained model. The results reveal that contrastive
approaches also provide better transferable representation
than the cross-entropy model when trained on Stylized Im-
ageNet.

D.5. Measuring Intra-class Similarity

Supervised learning models learn feature representations
by objectives that also increase the inter-class separation.
However, we argue that increasing the intra-class variation,
though might be harmful for in-domain performance, is
beneficial for learning rich feature representations in trans-
fer learning. We compute the inter-class and intra-class sep-
aration, as follows [32]:

Rintra =
KX

k=1

NkX

i=1

NkX

j=1

1� cosine(xk,i, xk,j)

KN2
k

(4)

Rinter =
KX

k=1

X

1mK
m 6=k

NkX

i=1

NmX

j=1

1� cosine(xk,i, xm,j)

K(K � 1)N2
k

(5)

where cosine(·, ·) is the cosine similarity. Table 21 reports
the intra-class and inter-class distance of the representa-
tions of penultimate layers. Surprisingly, SupCon has very
high intra-class variation, although it was not trained using
any such constraint. However, CE+SelfSupCon does not
have higher intra-class distance as we expected from MoCo
loss. Our intuition is that the way we have calculated in-
tra and inter-class distance in Eq. 4 and Eq. 5 might not
properly capture the embedding landscape. We, nonethe-
less, report the scores to inform the community about our
observation.

D.6. Results for CE with Stronger Augmentation
Table 22 show comparison with CE and CE(strong),

where CE(strong) is trained with similar data augmen-
tation as MoCo. We note that, in linear evaluation setting,
for SVHN, Sketch and Omniglot, CE(strong) performs
better than CE; however, it performs worse in CropDisease
and ISIC dataset. In general, CE(strong) might be help-
ful for transfer learning to a domain which is very different
from the source domain. We also see that contrastive ap-
proaches generally perform better in most cases, which sug-
gests that both contrastive loss itself is helpful for learning
transferable representation. We also perform experiments
where CE model is trained with similar augmentation and
batch formation as in MoCo, i.e., strong augmentation and
mini-batch formation with two different views of the same
image, denoted as CE(MoCo-aug). Table 23 shows re-
sults of CE(MoCo-aug). Here, we also find that it per-
forms similar as CE model.



CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

Linear Evaluation 98.19±.05 87.58±.18 88.40±.18 95.21±.03 85.62±.06 76.87±.13 45.05±.23 64.39±.34 70.41±.11 75.79±.11 66.18±.43 71.72±.24 77.12±.17
Finetune 99.87±.01 97.53±.09 95.47±.20 98.91±.05 95.92±.19 88.74±.27 54.47±.35 89.99±.14 96.96±.04 87.73±.30 78.36±.14 73.84±.27 88.15±.17

Table 17: Top-1 accuracy of different models on the downstream datasets for ImageNet-pretrained ResNet-50 model from torchvision
[42]. Mean and std over 5 runs.

Method ImageNet-R ImageNet-A ImageNet-C
Top-1(%) ECE(%) Top-1(%) ECE(%) mCE(%)

CE 35.83 19.45 3.35 55.03 60.80
CE (torchvision) 36.11 19.75 3.98 62.44 78.50
CE(strong) 41.24 17.90 8.01 50.81 68.90

Table 18: Robustness tests on ImageNet-R, ImageNet-A, and
ImageNet-C datasets for CE(strong) and CE (torchvision).
ECE is the expected calibration error (lower is better) and mCE
(lower is better) is the mean of the (unnormalized) corruption er-
rors of the Noise, Blur, Weather, and Digital corruptions. Models
are trained only on clean ImageNet images.



CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

Linear Evaluation

CE 97.27 87.33 91.08 95.04 85.41 80.39 45.50 64.90 67.85 77.59 69.14 68.40 77.49
SelfSupCon 99.07 88.23 92.45 97.10 90.63 81.62 49.96 71.72 71.57 82.10 69.28 71.33 80.42
SupCon 98.52 86.70 94.90 95.99 90.55 79.32 47.62 70.26 74.76 81.24 76.62 74.36 80.90
CE+SelfSupCon 98.82 89.48 94.51 96.51 89.94 80.22 49.56 69.40 73.34 79.42 75.08 74.41 80.89
SupCon+SelfSupCon 98.95 89.21 96.27 96.95 91.50 80.35 49.46 73.52 73.11 81.61 76.24 74.89 81.84

Full-network finetuning

CE 99.92 97.66 97.75 98.75 96.05 89.30 55.54 91.02 96.90 90.01 80.42 73.35 88.89
SelfSupCon 99.88 96.94 97.84 98.81 96.17 89.56 56.70 91.15 97.13 89.52 77.08 74.52 88.78
SupCon 99.86 96.99 98.63 98.62 95.89 88.76 55.68 90.77 97.00 89.52 80.98 75.32 89.00
CE+SelfSupCon 99.86 97.24 98.24 98.78 96.12 90.09 55.12 90.97 97.07 90.01 81.94 77.23 89.39
SupCon+SelfSupCon 99.89 97.60 97.94 98.74 96.29 89.96 55.83 91.05 97.05 90.74 81.69 76.60 89.45

Table 19: Performance of different models with WideResNet-50-x2 backbone on the downstream datasets in terms of top-1
accuracy with fixed-feature linear evaluation. We present the best performing scores for different hyperparameters for each
model.

CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

CE 96.27 79.93 87.16 92.58 82.74 78.16 45.09 73.39 59.10 76.13 66.94 54.41 74.33
SelfSupCon 98.51 84.71 90.00 95.95 88.51 81.65 49.23 77.06 67.23 79.54 65.42 64.04 78.49
SupCon 97.69 79.72 90.49 94.23 87.19 78.26 47.92 74.84 66.57 79.90 73.94 61.91 77.72
CE+SelfSupCon 98.31 83.75 91.08 95.31 88.69 79.89 48.89 73.52 61.41 80.88 72.30 63.30 78.11
SupCon+SelfSupCon 98.37 83.60 93.14 95.16 89.66 80.25 49.14 75.06 63.29 81.85 73.85 64.41 78.98

Table 20: Performance of different Stylized-ImageNet pretrained models on the downstream datasets in terms of of top-1
accuracy for fixed feature linear transfer.

Method Rintra Rinter

CE 0.32 ± 0.0057 0.60 ± 0.0044
SelfSupCon 0.54 ± 0.0071 0.77 ± 0.0036
SupCon 0.45 ± 0.0085 0.71 ± 0.0055
CE+SelfSupCon 0.28 ± 0.0053 0.55 ± 0.0041
SupCon+SelfSupCon 0.48 ± 0.0073 0.73 ± 0.0040

Table 21: Intra-class and inter-class separation in the penultimate
layer for different models on the ImageNet1K validation set. Re-
sults averaged over 10 runs.



CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

Linear Evaluation

95.61±.08 83.19±.26 85.61±.09 94.18±.23 84.82±.05 76.77±.45 43.98±.33 66.38±.42 70.10±.06 72.39±1.49 69.97±.14 66.74±.86 75.81±.37

Few-shot Recognition (5-shot)

82.13±.61 46.09±.58 80.83±.61 78.79±.63 71.76±.71 41.48±.53 26.47±.42 94.68±.32 34.99±.57 41.96±.55 72.13±.69 64.42±.71 61.31±.58

Full-network finetuning

99.90±.03 97.17±.10 94.30±.14 98.65±.10 96.00±.09 87.34±.33 56.01±.33 90.64±.17 97.14±.11 88.12±.86 80.56±.21 73.42±.09 88.27±.21

Table 22: Results with CE(strong) (CE model with strong augmentation). As mentioned in the main paper, the perfor-
mance difference between CE and CE(strong) is minor.

CropDisease DeepWeeds Flowers102 EuroSAT Resisc45 ISIC ChestX Omniglot SVHN Kaokore Sketch DTD Mean

Linear Evaluation

95.49±.09 82.21±.43 86.94±.17 93.79±.03 84.29±.02 76.86±.46 43.82±.21 65.95±.24 68.61±.15 74.75±.81 69.39±.10 68.00±.46 75.84±.27

Few-shot Recognition (5-shot)

79.47±.65 45.03±.55 77.92±.65 76.54±.64 69.62±.75 40.61±.52 25.44±.41 95.56±.29 37.68±.57 38.39±.53 71.26±.68 63.04±.74 60.05±.58

Full-network finetuning

99.89±.02 97.31±.16 95.03±.11 98.87±.02 96.09±.02 88.38±.96 55.93±.39 90.39±.13 97.21±.03 88.15±.39 80.33±.23 75.59±.28 88.60±.23

Table 23: Results with CE(MoCo-aug) (CE model with similar augmentation and mini-batch formation as MoCo). We
note minor performance variation between CE and CE(MoCo-aug).


