Skip to content

Projects

Project

A Roboflow Project.

Source code in roboflow/core/project.py
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
class Project:
    """
    A Roboflow Project.
    """

    def __init__(self, api_key: str, a_project: dict, model_format: Optional[str] = None):
        """
        Create a Project object that represents a Project associated with a Workspace.

        Args:
            api_key (str): private roboflow api key
            a_project (dict): the project information dictionary
            model_format (str): the model format of the project

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")
        """

        if api_key:
            self.__api_key = api_key
            self.annotation = a_project["annotation"]
            self.classes = a_project["classes"]
            self.colors = a_project["colors"]
            self.created = datetime.datetime.fromtimestamp(a_project["created"])
            self.id = a_project["id"]
            self.images = a_project["images"]
            self.name = a_project["name"]
            self.public = a_project["public"]
            self.splits = a_project["splits"]
            self.type = a_project["type"]
            self.multilabel = a_project.get("multilabel", False)
            self.unannotated = a_project["unannotated"]
            self.updated = datetime.datetime.fromtimestamp(a_project["updated"])
            self.model_format = model_format

            temp = self.id.rsplit("/")
            self.__workspace = temp[0]
            self.__project_name = temp[1]

        elif DEMO_KEYS:
            self.__api_key = DEMO_KEYS[0]
            self.model_format = model_format

        else:
            raise ValueError("A valid API key must be provided.")

    def get_version_information(self):
        """
        Retrieve all versions of a project.

        Returns:
            A list of all versions of the project.

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> version_info = project.get_version_information()
        """
        dataset_info = requests.get(
            API_URL + "/" + self.__workspace + "/" + self.__project_name + "?api_key=" + self.__api_key
        )

        # Throw error if dataset isn't valid/user doesn't have permissions to access the dataset # noqa: E501 // docs
        if dataset_info.status_code != 200:
            raise RuntimeError(dataset_info.text)

        dataset_info = dataset_info.json()
        return dataset_info["versions"]

    def list_versions(self):
        """
        Print out versions for that specific project.

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> project.list_versions()
        """
        version_info = self.get_version_information()
        print(version_info)

    def versions(self):
        """
        Return all versions in the project as Version objects.

        Returns:
            A list of Version objects.

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> versions = project.versions()
        """
        version_info = self.get_version_information()
        version_array = []
        for a_version in version_info:
            version_object = Version(
                a_version,
                (self.type if "model" in a_version else None),
                self.__api_key,
                self.name,
                a_version["id"],
                self.model_format,
                local=None,
                workspace=self.__workspace,
                project=self.__project_name,
                public=self.public,
                colors=self.colors,
            )
            version_array.append(version_object)
        return version_array

    def generate_version(self, settings):
        """
        Generate a version of a dataset hosted on Roboflow.

        Args:
            settings: A Python dict with augmentation and preprocessing keys and specifications for generation. These settings mirror capabilities available via the Roboflow UI.
                    For example:
                        {
                            "augmentation": {
                                "bbblur": { "pixels": 1.5 },
                                "bbbrightness": { "brighten": true, "darken": false, "percent": 91 },
                                "bbcrop": { "min": 12, "max": 71 },
                                "bbexposure": { "percent": 30 },
                                "bbflip": { "horizontal": true, "vertical": false },
                                "bbnoise": { "percent": 50 },
                                "bbninety": { "clockwise": true, "counter-clockwise": false, "upside-down": false },
                                "bbrotate": { "degrees": 45 },
                                "bbshear": { "horizontal": 45, "vertical": 45 },
                                "blur": { "pixels": 1.5 },
                                "brightness": { "brighten": true, "darken": false, "percent": 91 },
                                "crop": { "min": 12, "max": 71 },
                                "cutout": { "count": 26, "percent": 71 },
                                "exposure": { "percent": 30 },
                                "flip": { "horizontal": true, "vertical": false },
                                "hue": { "degrees": 180 },
                                "image": { "versions": 32 },
                                "mosaic": true,
                                "ninety": { "clockwise": true, "counter-clockwise": false, "upside-down": false },
                                "noise": { "percent": 50 },
                                "rgrayscale": { "percent": 50 },
                                "rotate": { "degrees": 45 },
                                "saturation": { "percent": 50 },
                                "shear": { "horizontal": 45, "vertical": 45 }
                            },
                            "preprocessing": {
                                "auto-orient": true,
                                "contrast": { "type": "Contrast Stretching" },
                                "filter-null": { "percent": 50 },
                                "grayscale": true,
                                "isolate": true,
                                "remap": { "original_class_name": "new_class_name" },
                                "resize": { "width": 200, "height": 200, "format": "Stretch to" },
                                "static-crop": { "x_min": 10, "x_max": 90, "y_min": 10, "y_max": 90 },
                                "tile": { "rows": 2, "columns": 2 }
                            }
                        }

        Returns:
            int: The version number that is being generated.

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> versions = project.generate_version(settings={...})
        """  # noqa: E501 // docs

        if not {"augmentation", "preprocessing"} <= settings.keys():
            raise (
                RuntimeError(
                    "augmentation and preprocessing keys are required to generate. If"
                    " none are desired specify empty dict associated with that key."
                )
            )

        r = requests.post(
            f"{API_URL}/{self.__workspace}/{self.__project_name}/generate?api_key={self.__api_key}",
            json=settings,
        )

        try:
            r_json = r.json()
        except Exception:
            raise RuntimeError("Error when requesting to generate a new version for project.")

        # if the generation succeeds, return the version that is being generated
        if r.status_code == 200:
            sys.stdout.write("\r" + r_json["message"] + " for new version " + str(r_json["version"]) + ".")
            sys.stdout.write("\n")
            sys.stdout.flush()
            return int(r_json["version"])
        else:
            if "error" in r_json.keys():
                raise RuntimeError(r_json["error"])
            else:
                raise RuntimeError(json.dumps(r_json))

    def train(
        self,
        new_version_settings: Optional[Dict] = None,
        speed=None,
        checkpoint=None,
        plot_in_notebook=False,
    ):
        """
        Ask the Roboflow API to train a previously exported version's dataset.

        Args:
            speed: Whether to train quickly or accurately. Note: accurate training is a paid feature. Default speed is `fast`.
            checkpoint: A string representing the checkpoint to use while training
            plot: Whether to plot the training loss curve. Default is False.

        Returns:
            True

        Raises:
            RuntimeError: If the Roboflow API returns an error with a helpful JSON body
            HTTPError: If the Network/Roboflow API fails and does not return JSON

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> version = project.version(1)

            >>> version.train()
        """  # noqa: E501 // docs

        if new_version_settings is None:
            new_version_settings = {
                "preprocessing": {
                    "auto-orient": True,
                    "resize": {"width": 640, "height": 640, "format": "Stretch to"},
                },
                "augmentation": {},
            }

        new_version = self.generate_version(settings=new_version_settings)
        new_version = self.version(new_version)
        new_model = new_version.train(speed=speed, checkpoint=checkpoint, plot_in_notebook=plot_in_notebook)

        return new_model

    def version(self, version_number: int, local: Optional[str] = None):
        """
        Retrieves information about a specific version and returns a Version() object.

        Args:
            version_number (int): the version number that you want to retrieve
            local (str): specifies the localhost address and port if pointing towards local inference engine

        Returns:
            Version() object
        """  # noqa: E501 // docs

        if self.__api_key in DEMO_KEYS:
            name = ""
            if self.__api_key == "coco-128-sample":
                name = "coco-128"
            else:
                name = "chess-pieces-new"
            return Version(
                {},
                "type",
                self.__api_key,
                name,
                version_number,
                self.model_format,
                local=None,
                workspace="",
                project="",
                public=True,
            )

        version_info = self.get_version_information()

        for version_object in version_info:
            current_version_num = os.path.basename(version_object["id"])
            if current_version_num == str(version_number):
                vers = Version(
                    version_object,
                    self.type,
                    self.__api_key,
                    self.name,
                    current_version_num,
                    self.model_format,
                    local=local,
                    workspace=self.__workspace,
                    project=self.__project_name,
                    public=self.public,
                    colors=self.colors,
                )
                return vers

        raise RuntimeError(f"Version number {version_number} is not found.")

    def check_valid_image(self, image_path: str) -> bool:
        """
        Check if an image is valid. Useful before attempting to upload an image to Roboflow.

        Args:
            image_path (str): path to image you'd like to check

        Returns:
            bool: whether the image is valid or not
        """
        kind = filetype.guess(image_path)

        if kind is None:
            return False

        extension_mimetype, _ = mimetypes.guess_type(image_path)

        if extension_mimetype and extension_mimetype != kind.mime:
            print(f"[{image_path}] file type ({kind.mime}) does not match filename extension.")

        return kind.mime in ACCEPTED_IMAGE_FORMATS

    def upload(
        self,
        image_path: str,
        annotation_path: Optional[str] = None,
        hosted_image: bool = False,
        image_id: Optional[str] = None,
        split: str = "train",
        num_retry_uploads: int = 0,
        batch_name: Optional[str] = None,
        tag_names: Optional[List[str]] = None,
        is_prediction: bool = False,
        **kwargs,
    ):
        """
        Upload an image or annotation to the Roboflow API.

        Args:
            image_path (str): path to image you'd like to upload
            annotation_path (str): path to the annotation file. If not provided, the image will be uploaded without annotation.
                Special case: in classification projects, this can instead be a class name. e.g. "dog".
            hosted_image (bool): whether the image is hosted
            image_id (str): id of the image
            split (str): which split to upload to - "train", "valid" or "test"
            num_retry_uploads (int): how many times to retry upload on failure
            batch_name (str): name of batch to upload to within project
            tag_names (list[str]): tags to be applied to an image
            is_prediction (bool): whether the annotation data is a prediction rather than ground truth

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> project.upload(image_path="YOUR_IMAGE.jpg")
        """  # noqa: E501 // docs

        if tag_names is None:
            tag_names = []

        is_hosted = image_path.startswith("http://") or image_path.startswith("https://")

        is_file = os.path.isfile(image_path) or is_hosted
        is_dir = os.path.isdir(image_path)

        if not is_file and not is_dir:
            raise RuntimeError(
                f"The provided image path [ {image_path} ] is not a valid path. Please provide a"
                " path to an image or a directory."
            )

        if is_file:
            is_image = is_hosted or self.check_valid_image(image_path)

            if not is_image:
                raise RuntimeError(
                    "The image you provided {} is not a supported file format. We currently support: {}.".format(
                        image_path, ", ".join(ACCEPTED_IMAGE_FORMATS)
                    )
                )

            self.single_upload(
                image_path=image_path,
                annotation_path=annotation_path,
                hosted_image=hosted_image,
                image_id=image_id,
                split=split,
                num_retry_uploads=num_retry_uploads,
                batch_name=batch_name,
                tag_names=tag_names,
                is_prediction=is_prediction,
                **kwargs,
            )

        else:
            images = os.listdir(image_path)
            for image in images:
                path = image_path + "/" + image
                if self.check_valid_image(path):
                    self.single_upload(
                        image_path=path,
                        annotation_path=annotation_path,
                        hosted_image=hosted_image,
                        image_id=image_id,
                        split=split,
                        num_retry_uploads=num_retry_uploads,
                        batch_name=batch_name,
                        tag_names=tag_names,
                        is_prediction=is_prediction,
                        **kwargs,
                    )
                    print("[ " + path + " ] was uploaded succesfully.")
                else:
                    print("[ " + path + " ] was skipped.")
                    continue

    def upload_image(
        self,
        image_path=None,
        hosted_image=False,
        split="train",
        num_retry_uploads=0,
        batch_name=None,
        tag_names: Optional[List[str]] = None,
        sequence_number=None,
        sequence_size=None,
        **kwargs,
    ):
        project_url = self.id.rsplit("/")[1]

        if tag_names is None:
            tag_names = []

        t0 = time.time()
        upload_retry_attempts = 0
        retry = Retry(num_retry_uploads, ImageUploadError)

        try:
            image = retry(
                rfapi.upload_image,
                self.__api_key,
                project_url,
                image_path,
                hosted_image=hosted_image,
                split=split,
                batch_name=batch_name,
                tag_names=tag_names,
                sequence_number=sequence_number,
                sequence_size=sequence_size,
                **kwargs,
            )
            upload_retry_attempts = retry.retries
        except ImageUploadError as e:
            e.retries = upload_retry_attempts
            raise e

        upload_time = time.time() - t0

        return image, upload_time, upload_retry_attempts

    def save_annotation(
        self,
        annotation_path=None,
        annotation_labelmap=None,
        image_id=None,
        job_name=None,
        is_prediction: bool = False,
        annotation_overwrite=False,
        num_retry_uploads=0,
    ):
        project_url = self.id.rsplit("/")[1]
        annotation_name, annotation_str = self._annotation_params(annotation_path)
        t0 = time.time()
        upload_retry_attempts = 0
        retry = Retry(num_retry_uploads, AnnotationSaveError)

        try:
            annotation = rfapi.save_annotation(
                self.__api_key,
                project_url,
                annotation_name,  # type: ignore[type-var]
                annotation_str,  # type: ignore[type-var]
                image_id,
                job_name=job_name,  # type: ignore[type-var]
                is_prediction=is_prediction,
                annotation_labelmap=annotation_labelmap,
                overwrite=annotation_overwrite,
            )
            upload_retry_attempts = retry.retries
        except AnnotationSaveError as e:
            e.retries = upload_retry_attempts
            raise

        upload_time = time.time() - t0

        return annotation, upload_time, upload_retry_attempts

    def single_upload(
        self,
        image_path=None,
        annotation_path=None,
        annotation_labelmap=None,
        hosted_image=False,
        image_id=None,
        split="train",
        num_retry_uploads=0,
        batch_name=None,
        tag_names: Optional[List[str]] = None,
        is_prediction: bool = False,
        annotation_overwrite=False,
        sequence_number=None,
        sequence_size=None,
        **kwargs,
    ):
        if tag_names is None:
            tag_names = []
        if image_path and image_id:
            raise Exception("You can't pass both image_id and image_path")
        if not (image_path or image_id):
            raise Exception("You need to pass image_path or image_id")
        if isinstance(annotation_labelmap, str):
            annotation_labelmap = load_labelmap(annotation_labelmap)

        uploaded_image, uploaded_annotation = None, None
        upload_time, annotation_time = None, None
        upload_retry_attempts = 0
        annotation_upload_retry_attempts = 0

        if image_path:
            uploaded_image, upload_time, upload_retry_attempts = self.upload_image(
                image_path,
                hosted_image,
                split,
                num_retry_uploads,
                batch_name,
                tag_names,
                sequence_number,
                sequence_size,
                **kwargs,
            )
            image_id = uploaded_image["id"]  # type: ignore[index]

        if annotation_path and image_id:
            uploaded_annotation, annotation_time, annotation_upload_retry_attempts = self.save_annotation(
                annotation_path,
                annotation_labelmap,
                image_id,
                batch_name,
                is_prediction,
                annotation_overwrite,
                num_retry_uploads=num_retry_uploads,
            )

        return {
            "image": uploaded_image,
            "annotation": uploaded_annotation,
            "upload_time": upload_time,
            "annotation_time": annotation_time,
            "upload_retry_attempts": upload_retry_attempts,
            "annotation_upload_retry_attempts": annotation_upload_retry_attempts,
        }

    def _annotation_params(self, annotation_path):
        annotation_name, annotation_string = None, None
        if isinstance(annotation_path, dict) and annotation_path.get("rawText"):
            annotation_name = annotation_path["name"]
            annotation_string = annotation_path["rawText"]
        elif os.path.exists(annotation_path):  # type: ignore[arg-type]
            with open(annotation_path):  # type: ignore[arg-type]
                annotation_string = open(annotation_path).read()  # type: ignore[arg-type]
            annotation_name = os.path.basename(annotation_path)  # type: ignore[arg-type]
        elif self.type == "classification":
            print(f"-> using {annotation_path} as classname for classification project")
            annotation_string = annotation_path
            annotation_name = annotation_path
        else:
            raise Exception(
                f"File not found or uploading to non-classification "
                f"type project with invalid string. - {annotation_path}"
            )
        return annotation_name, annotation_string

    def search(
        self,
        like_image: Optional[str] = None,
        prompt: Optional[str] = None,
        offset: int = 0,
        limit: int = 100,
        tag: Optional[str] = None,
        class_name: Optional[str] = None,
        in_dataset: Optional[str] = None,
        batch: bool = False,
        batch_id: Optional[str] = None,
        fields: Optional[List[str]] = None,
        *,
        annotation_job: Optional[bool] = None,
        annotation_job_id: Optional[str] = None,
    ):
        """
        Search for images in a project.

        Args:
            like_image (str): name of an image in your dataset to use if you want to find images similar to that one
            prompt (str): search prompt
            offset (int): offset of results
            limit (int): limit of results
            tag (str): tag that an image must have
            class_name (str): class name that an image must have
            in_dataset (str): dataset that an image must be in
            batch (bool): whether the image must be in a batch
            batch_id (str): batch id that an image must be in
            annotation_job (bool): whether the image must be in an annotation job
            annotation_job_id (str): annotation job id that an image must be in
            fields (list): fields to return in results (default: ["id", "created", "name", "labels"]).
                Available fields: id, name, created, annotations, labels, split, tags, owner,
                embedding, user_metadata.

        Returns:
            A list of images that match the search criteria.

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> # Basic search
            >>> results = project.search(prompt="cat", limit=10)

            >>> # Search with tags and user_metadata
            >>> results = project.search(
            ...     limit=10,
            ...     fields=["id", "name", "tags", "user_metadata"]
            ... )
        """  # noqa: E501 // docs
        if fields is None:
            fields = ["id", "created", "name", "labels"]

        payload: Dict[str, Union[str, int, bool, List[str]]] = {}

        if like_image is not None:
            payload["like_image"] = like_image

        if prompt is not None:
            payload["prompt"] = prompt

        if offset is not None:
            payload["offset"] = offset

        if limit is not None:
            payload["limit"] = limit

        if tag is not None:
            payload["tag"] = tag

        if class_name is not None:
            payload["class_name"] = class_name

        if in_dataset is not None:
            payload["in_dataset"] = in_dataset

        if batch is not None:
            payload["batch"] = batch

        if batch_id is not None:
            payload["batch_id"] = batch_id

        if annotation_job is not None:
            payload["annotation_job"] = annotation_job

        if annotation_job_id is not None:
            payload["annotation_job_id"] = annotation_job_id

        payload["fields"] = fields

        data = requests.post(
            API_URL + "/" + self.__workspace + "/" + self.__project_name + "/search?api_key=" + self.__api_key,
            json=payload,
        )

        return data.json()["results"]

    def search_all(
        self,
        like_image: Optional[str] = None,
        prompt: Optional[str] = None,
        offset: int = 0,
        limit: int = 100,
        tag: Optional[str] = None,
        class_name: Optional[str] = None,
        in_dataset: Optional[str] = None,
        batch: bool = False,
        batch_id: Optional[str] = None,
        fields: Optional[List[str]] = None,
        *,
        annotation_job: Optional[bool] = None,
        annotation_job_id: Optional[str] = None,
    ):
        """
        Create a paginated list of search results for use in searching the images in a project.

        Args:
            like_image (str): name of an image in your dataset to use if you want to find images similar to that one
            prompt (str): search prompt
            offset (int): offset of results
            limit (int): limit of results
            tag (str): tag that an image must have
            class_name (str): class name that an image must have
            in_dataset (str): dataset that an image must be in
            batch (bool): whether the image must be in a batch
            batch_id (str): batch id that an image must be in
            annotation_job (bool): whether the image must be in an annotation job
            annotation_job_id (str): annotation job id that an image must be in
            fields (list): fields to return in results (default: ["id", "created"]).
                Available fields: id, name, created, annotations, labels, split, tags, owner,
                embedding, user_metadata.

        Returns:
            A generator yielding images that match the search criteria.

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> results = project.search_all(prompt="cat", limit=10)

            >>> for result in results:
            >>>     print(result)
        """  # noqa: E501 // docs
        if fields is None:
            fields = ["id", "created"]

        while True:
            data = self.search(
                like_image=like_image,
                prompt=prompt,
                offset=offset,
                limit=limit,
                tag=tag,
                class_name=class_name,
                in_dataset=in_dataset,
                batch=batch,
                batch_id=batch_id,
                fields=fields,
                annotation_job=annotation_job,
                annotation_job_id=annotation_job_id,
            )

            yield data

            if len(data) < limit:
                break

            offset += limit

    def __str__(self):
        """
        Show a string representation of a Project object.
        """
        # String representation of project
        json_str = {"name": self.name, "type": self.type, "workspace": self.__workspace}

        return json.dumps(json_str, indent=2)

    def image(self, image_id: str) -> Dict:
        """
        Fetch the details of a specific image from the Roboflow API.

        Args:
            image_id (str): The ID of the image to fetch.

        Returns:
            Dict: A dictionary containing the image details.

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> image_details = project.image("image-id")
        """
        url = f"{API_URL}/{self.__workspace}/{self.__project_name}/images/{image_id}?api_key={self.__api_key}"

        data = requests.get(url).json()

        if "error" in data:
            raise RuntimeError(data["error"])

        if "image" not in data:
            print(data, image_id)
            raise RuntimeError("Image not found")

        image_details = data["image"]

        return image_details

    def create_annotation_job(
        self, name: str, batch_id: str, num_images: int, labeler_email: str, reviewer_email: str
    ) -> Dict:
        """
        Create a new annotation job in the project.

        Args:
            name (str): The name of the annotation job
            batch_id (str): The ID of the batch that contains the images to annotate
            num_images (int): The number of images to include in the job
            labeler_email (str): The email of the user who will label the images
            reviewer_email (str): The email of the user who will review the annotations

        Returns:
            Dict: A dictionary containing the created job details

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> job = project.create_annotation_job(
            ...     name="Job created by API",
            ...     batch_id="batch123",
            ...     num_images=10,
            ...     labeler_email="user@example.com",
            ...     reviewer_email="reviewer@example.com"
            ... )
        """
        url = f"{API_URL}/{self.__workspace}/{self.__project_name}/jobs?api_key={self.__api_key}"

        payload = {
            "name": name,
            "batch": batch_id,
            "num_images": num_images,
            "labelerEmail": labeler_email,
            "reviewerEmail": reviewer_email,
        }

        response = requests.post(url, headers={"Content-Type": "application/json"}, json=payload)

        if response.status_code != 200:
            try:
                error_data = response.json()
                if "error" in error_data:
                    raise RuntimeError(error_data["error"])
                raise RuntimeError(response.text)
            except ValueError:
                raise RuntimeError(f"Failed to create annotation job: {response.text}")

        return response.json()

    def get_batches(self) -> Dict:
        """
        Get a list of all batches in the project.

        Returns:
            Dict: A dictionary containing the list of batches

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> batches = project.get_batches()
        """
        url = f"{API_URL}/{self.__workspace}/{self.__project_name}/batches?api_key={self.__api_key}"

        response = requests.get(url)

        if response.status_code != 200:
            try:
                error_data = response.json()
                if "error" in error_data:
                    raise RuntimeError(error_data["error"])
                raise RuntimeError(response.text)
            except ValueError:
                raise RuntimeError(f"Failed to get batches: {response.text}")

        return response.json()

    def get_batch(self, batch_id: str) -> Dict:
        """
        Get information for a specific batch in the project.

        Args:
            batch_id (str): The ID of the batch to retrieve

        Returns:
            Dict: A dictionary containing the batch details

        Example:
            >>> import roboflow

            >>> rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

            >>> project = rf.workspace().project("PROJECT_ID")

            >>> batch = project.get_batch("batch123")
        """
        url = f"{API_URL}/{self.__workspace}/{self.__project_name}/batches/{batch_id}?api_key={self.__api_key}"

        response = requests.get(url)

        if response.status_code != 200:
            try:
                error_data = response.json()
                if "error" in error_data:
                    raise RuntimeError(error_data["error"])
                raise RuntimeError(response.text)
            except ValueError:
                raise RuntimeError(f"Failed to get batch {batch_id}: {response.text}")

        return response.json()

    def delete_images(self, image_ids: List[str]):
        """
        Delete images from a project.

        Args:
            image_ids (List[str]): A list of image IDs to delete.

        Example:
            >>> import roboflow
            >>> rf = roboflow.Roboflow(api_key="")
            >>> project = rf.workspace().project("PROJECT_ID")
            >>> project.delete_images(image_ids=["image_id_1", "image_id_2"])
        """
        url = f"{API_URL}/{self.__workspace}/{self.__project_name}/images?api_key={self.__api_key}"

        payload = {"images": image_ids}

        response = requests.delete(url, headers={"Content-Type": "application/json"}, json=payload)

        if response.status_code != 204:
            try:
                error_data = response.json()
                if "error" in error_data:
                    raise RuntimeError(error_data["error"])
                raise RuntimeError(response.text)
            except ValueError:
                raise RuntimeError(f"Failed to delete images: {response.text}")

__init__(api_key, a_project, model_format=None)

Create a Project object that represents a Project associated with a Workspace.

Parameters:

Name Type Description Default
api_key str

private roboflow api key

required
a_project dict

the project information dictionary

required
model_format str

the model format of the project

None
Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

Source code in roboflow/core/project.py
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
def __init__(self, api_key: str, a_project: dict, model_format: Optional[str] = None):
    """
    Create a Project object that represents a Project associated with a Workspace.

    Args:
        api_key (str): private roboflow api key
        a_project (dict): the project information dictionary
        model_format (str): the model format of the project

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")
    """

    if api_key:
        self.__api_key = api_key
        self.annotation = a_project["annotation"]
        self.classes = a_project["classes"]
        self.colors = a_project["colors"]
        self.created = datetime.datetime.fromtimestamp(a_project["created"])
        self.id = a_project["id"]
        self.images = a_project["images"]
        self.name = a_project["name"]
        self.public = a_project["public"]
        self.splits = a_project["splits"]
        self.type = a_project["type"]
        self.multilabel = a_project.get("multilabel", False)
        self.unannotated = a_project["unannotated"]
        self.updated = datetime.datetime.fromtimestamp(a_project["updated"])
        self.model_format = model_format

        temp = self.id.rsplit("/")
        self.__workspace = temp[0]
        self.__project_name = temp[1]

    elif DEMO_KEYS:
        self.__api_key = DEMO_KEYS[0]
        self.model_format = model_format

    else:
        raise ValueError("A valid API key must be provided.")

__str__()

Show a string representation of a Project object.

Source code in roboflow/core/project.py
821
822
823
824
825
826
827
828
def __str__(self):
    """
    Show a string representation of a Project object.
    """
    # String representation of project
    json_str = {"name": self.name, "type": self.type, "workspace": self.__workspace}

    return json.dumps(json_str, indent=2)

check_valid_image(image_path)

Check if an image is valid. Useful before attempting to upload an image to Roboflow.

Parameters:

Name Type Description Default
image_path str

path to image you'd like to check

required

Returns:

Name Type Description
bool bool

whether the image is valid or not

Source code in roboflow/core/project.py
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def check_valid_image(self, image_path: str) -> bool:
    """
    Check if an image is valid. Useful before attempting to upload an image to Roboflow.

    Args:
        image_path (str): path to image you'd like to check

    Returns:
        bool: whether the image is valid or not
    """
    kind = filetype.guess(image_path)

    if kind is None:
        return False

    extension_mimetype, _ = mimetypes.guess_type(image_path)

    if extension_mimetype and extension_mimetype != kind.mime:
        print(f"[{image_path}] file type ({kind.mime}) does not match filename extension.")

    return kind.mime in ACCEPTED_IMAGE_FORMATS

create_annotation_job(name, batch_id, num_images, labeler_email, reviewer_email)

Create a new annotation job in the project.

Parameters:

Name Type Description Default
name str

The name of the annotation job

required
batch_id str

The ID of the batch that contains the images to annotate

required
num_images int

The number of images to include in the job

required
labeler_email str

The email of the user who will label the images

required
reviewer_email str

The email of the user who will review the annotations

required

Returns:

Name Type Description
Dict Dict

A dictionary containing the created job details

Example

import roboflow

rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

project = rf.workspace().project("PROJECT_ID")

job = project.create_annotation_job( ... name="Job created by API", ... batch_id="batch123", ... num_images=10, ... labeler_email="user@example.com", ... reviewer_email="reviewer@example.com" ... )

Source code in roboflow/core/project.py
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
def create_annotation_job(
    self, name: str, batch_id: str, num_images: int, labeler_email: str, reviewer_email: str
) -> Dict:
    """
    Create a new annotation job in the project.

    Args:
        name (str): The name of the annotation job
        batch_id (str): The ID of the batch that contains the images to annotate
        num_images (int): The number of images to include in the job
        labeler_email (str): The email of the user who will label the images
        reviewer_email (str): The email of the user who will review the annotations

    Returns:
        Dict: A dictionary containing the created job details

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> job = project.create_annotation_job(
        ...     name="Job created by API",
        ...     batch_id="batch123",
        ...     num_images=10,
        ...     labeler_email="user@example.com",
        ...     reviewer_email="reviewer@example.com"
        ... )
    """
    url = f"{API_URL}/{self.__workspace}/{self.__project_name}/jobs?api_key={self.__api_key}"

    payload = {
        "name": name,
        "batch": batch_id,
        "num_images": num_images,
        "labelerEmail": labeler_email,
        "reviewerEmail": reviewer_email,
    }

    response = requests.post(url, headers={"Content-Type": "application/json"}, json=payload)

    if response.status_code != 200:
        try:
            error_data = response.json()
            if "error" in error_data:
                raise RuntimeError(error_data["error"])
            raise RuntimeError(response.text)
        except ValueError:
            raise RuntimeError(f"Failed to create annotation job: {response.text}")

    return response.json()

delete_images(image_ids)

Delete images from a project.

Parameters:

Name Type Description Default
image_ids List[str]

A list of image IDs to delete.

required
Example

import roboflow rf = roboflow.Roboflow(api_key="") project = rf.workspace().project("PROJECT_ID") project.delete_images(image_ids=["image_id_1", "image_id_2"])

Source code in roboflow/core/project.py
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
def delete_images(self, image_ids: List[str]):
    """
    Delete images from a project.

    Args:
        image_ids (List[str]): A list of image IDs to delete.

    Example:
        >>> import roboflow
        >>> rf = roboflow.Roboflow(api_key="")
        >>> project = rf.workspace().project("PROJECT_ID")
        >>> project.delete_images(image_ids=["image_id_1", "image_id_2"])
    """
    url = f"{API_URL}/{self.__workspace}/{self.__project_name}/images?api_key={self.__api_key}"

    payload = {"images": image_ids}

    response = requests.delete(url, headers={"Content-Type": "application/json"}, json=payload)

    if response.status_code != 204:
        try:
            error_data = response.json()
            if "error" in error_data:
                raise RuntimeError(error_data["error"])
            raise RuntimeError(response.text)
        except ValueError:
            raise RuntimeError(f"Failed to delete images: {response.text}")

generate_version(settings)

Generate a version of a dataset hosted on Roboflow.

Parameters:

Name Type Description Default
settings

A Python dict with augmentation and preprocessing keys and specifications for generation. These settings mirror capabilities available via the Roboflow UI. For example: { "augmentation": { "bbblur": { "pixels": 1.5 }, "bbbrightness": { "brighten": true, "darken": false, "percent": 91 }, "bbcrop": { "min": 12, "max": 71 }, "bbexposure": { "percent": 30 }, "bbflip": { "horizontal": true, "vertical": false }, "bbnoise": { "percent": 50 }, "bbninety": { "clockwise": true, "counter-clockwise": false, "upside-down": false }, "bbrotate": { "degrees": 45 }, "bbshear": { "horizontal": 45, "vertical": 45 }, "blur": { "pixels": 1.5 }, "brightness": { "brighten": true, "darken": false, "percent": 91 }, "crop": { "min": 12, "max": 71 }, "cutout": { "count": 26, "percent": 71 }, "exposure": { "percent": 30 }, "flip": { "horizontal": true, "vertical": false }, "hue": { "degrees": 180 }, "image": { "versions": 32 }, "mosaic": true, "ninety": { "clockwise": true, "counter-clockwise": false, "upside-down": false }, "noise": { "percent": 50 }, "rgrayscale": { "percent": 50 }, "rotate": { "degrees": 45 }, "saturation": { "percent": 50 }, "shear": { "horizontal": 45, "vertical": 45 } }, "preprocessing": { "auto-orient": true, "contrast": { "type": "Contrast Stretching" }, "filter-null": { "percent": 50 }, "grayscale": true, "isolate": true, "remap": { "original_class_name": "new_class_name" }, "resize": { "width": 200, "height": 200, "format": "Stretch to" }, "static-crop": { "x_min": 10, "x_max": 90, "y_min": 10, "y_max": 90 }, "tile": { "rows": 2, "columns": 2 } } }

required

Returns:

Name Type Description
int

The version number that is being generated.

Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

versions = project.generate_version(settings={...})

Source code in roboflow/core/project.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def generate_version(self, settings):
    """
    Generate a version of a dataset hosted on Roboflow.

    Args:
        settings: A Python dict with augmentation and preprocessing keys and specifications for generation. These settings mirror capabilities available via the Roboflow UI.
                For example:
                    {
                        "augmentation": {
                            "bbblur": { "pixels": 1.5 },
                            "bbbrightness": { "brighten": true, "darken": false, "percent": 91 },
                            "bbcrop": { "min": 12, "max": 71 },
                            "bbexposure": { "percent": 30 },
                            "bbflip": { "horizontal": true, "vertical": false },
                            "bbnoise": { "percent": 50 },
                            "bbninety": { "clockwise": true, "counter-clockwise": false, "upside-down": false },
                            "bbrotate": { "degrees": 45 },
                            "bbshear": { "horizontal": 45, "vertical": 45 },
                            "blur": { "pixels": 1.5 },
                            "brightness": { "brighten": true, "darken": false, "percent": 91 },
                            "crop": { "min": 12, "max": 71 },
                            "cutout": { "count": 26, "percent": 71 },
                            "exposure": { "percent": 30 },
                            "flip": { "horizontal": true, "vertical": false },
                            "hue": { "degrees": 180 },
                            "image": { "versions": 32 },
                            "mosaic": true,
                            "ninety": { "clockwise": true, "counter-clockwise": false, "upside-down": false },
                            "noise": { "percent": 50 },
                            "rgrayscale": { "percent": 50 },
                            "rotate": { "degrees": 45 },
                            "saturation": { "percent": 50 },
                            "shear": { "horizontal": 45, "vertical": 45 }
                        },
                        "preprocessing": {
                            "auto-orient": true,
                            "contrast": { "type": "Contrast Stretching" },
                            "filter-null": { "percent": 50 },
                            "grayscale": true,
                            "isolate": true,
                            "remap": { "original_class_name": "new_class_name" },
                            "resize": { "width": 200, "height": 200, "format": "Stretch to" },
                            "static-crop": { "x_min": 10, "x_max": 90, "y_min": 10, "y_max": 90 },
                            "tile": { "rows": 2, "columns": 2 }
                        }
                    }

    Returns:
        int: The version number that is being generated.

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> versions = project.generate_version(settings={...})
    """  # noqa: E501 // docs

    if not {"augmentation", "preprocessing"} <= settings.keys():
        raise (
            RuntimeError(
                "augmentation and preprocessing keys are required to generate. If"
                " none are desired specify empty dict associated with that key."
            )
        )

    r = requests.post(
        f"{API_URL}/{self.__workspace}/{self.__project_name}/generate?api_key={self.__api_key}",
        json=settings,
    )

    try:
        r_json = r.json()
    except Exception:
        raise RuntimeError("Error when requesting to generate a new version for project.")

    # if the generation succeeds, return the version that is being generated
    if r.status_code == 200:
        sys.stdout.write("\r" + r_json["message"] + " for new version " + str(r_json["version"]) + ".")
        sys.stdout.write("\n")
        sys.stdout.flush()
        return int(r_json["version"])
    else:
        if "error" in r_json.keys():
            raise RuntimeError(r_json["error"])
        else:
            raise RuntimeError(json.dumps(r_json))

get_batch(batch_id)

Get information for a specific batch in the project.

Parameters:

Name Type Description Default
batch_id str

The ID of the batch to retrieve

required

Returns:

Name Type Description
Dict Dict

A dictionary containing the batch details

Example

import roboflow

rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

project = rf.workspace().project("PROJECT_ID")

batch = project.get_batch("batch123")

Source code in roboflow/core/project.py
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
def get_batch(self, batch_id: str) -> Dict:
    """
    Get information for a specific batch in the project.

    Args:
        batch_id (str): The ID of the batch to retrieve

    Returns:
        Dict: A dictionary containing the batch details

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> batch = project.get_batch("batch123")
    """
    url = f"{API_URL}/{self.__workspace}/{self.__project_name}/batches/{batch_id}?api_key={self.__api_key}"

    response = requests.get(url)

    if response.status_code != 200:
        try:
            error_data = response.json()
            if "error" in error_data:
                raise RuntimeError(error_data["error"])
            raise RuntimeError(response.text)
        except ValueError:
            raise RuntimeError(f"Failed to get batch {batch_id}: {response.text}")

    return response.json()

get_batches()

Get a list of all batches in the project.

Returns:

Name Type Description
Dict Dict

A dictionary containing the list of batches

Example

import roboflow

rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

project = rf.workspace().project("PROJECT_ID")

batches = project.get_batches()

Source code in roboflow/core/project.py
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
def get_batches(self) -> Dict:
    """
    Get a list of all batches in the project.

    Returns:
        Dict: A dictionary containing the list of batches

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> batches = project.get_batches()
    """
    url = f"{API_URL}/{self.__workspace}/{self.__project_name}/batches?api_key={self.__api_key}"

    response = requests.get(url)

    if response.status_code != 200:
        try:
            error_data = response.json()
            if "error" in error_data:
                raise RuntimeError(error_data["error"])
            raise RuntimeError(response.text)
        except ValueError:
            raise RuntimeError(f"Failed to get batches: {response.text}")

    return response.json()

get_version_information()

Retrieve all versions of a project.

Returns:

Type Description

A list of all versions of the project.

Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

version_info = project.get_version_information()

Source code in roboflow/core/project.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def get_version_information(self):
    """
    Retrieve all versions of a project.

    Returns:
        A list of all versions of the project.

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> version_info = project.get_version_information()
    """
    dataset_info = requests.get(
        API_URL + "/" + self.__workspace + "/" + self.__project_name + "?api_key=" + self.__api_key
    )

    # Throw error if dataset isn't valid/user doesn't have permissions to access the dataset # noqa: E501 // docs
    if dataset_info.status_code != 200:
        raise RuntimeError(dataset_info.text)

    dataset_info = dataset_info.json()
    return dataset_info["versions"]

image(image_id)

Fetch the details of a specific image from the Roboflow API.

Parameters:

Name Type Description Default
image_id str

The ID of the image to fetch.

required

Returns:

Name Type Description
Dict Dict

A dictionary containing the image details.

Example

import roboflow

rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

project = rf.workspace().project("PROJECT_ID")

image_details = project.image("image-id")

Source code in roboflow/core/project.py
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
def image(self, image_id: str) -> Dict:
    """
    Fetch the details of a specific image from the Roboflow API.

    Args:
        image_id (str): The ID of the image to fetch.

    Returns:
        Dict: A dictionary containing the image details.

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="YOUR_API_KEY")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> image_details = project.image("image-id")
    """
    url = f"{API_URL}/{self.__workspace}/{self.__project_name}/images/{image_id}?api_key={self.__api_key}"

    data = requests.get(url).json()

    if "error" in data:
        raise RuntimeError(data["error"])

    if "image" not in data:
        print(data, image_id)
        raise RuntimeError("Image not found")

    image_details = data["image"]

    return image_details

list_versions()

Print out versions for that specific project.

Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

project.list_versions()

Source code in roboflow/core/project.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def list_versions(self):
    """
    Print out versions for that specific project.

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> project.list_versions()
    """
    version_info = self.get_version_information()
    print(version_info)

search(like_image=None, prompt=None, offset=0, limit=100, tag=None, class_name=None, in_dataset=None, batch=False, batch_id=None, fields=None, *, annotation_job=None, annotation_job_id=None)

Search for images in a project.

Parameters:

Name Type Description Default
like_image str

name of an image in your dataset to use if you want to find images similar to that one

None
prompt str

search prompt

None
offset int

offset of results

0
limit int

limit of results

100
tag str

tag that an image must have

None
class_name str

class name that an image must have

None
in_dataset str

dataset that an image must be in

None
batch bool

whether the image must be in a batch

False
batch_id str

batch id that an image must be in

None
annotation_job bool

whether the image must be in an annotation job

None
annotation_job_id str

annotation job id that an image must be in

None
fields list

fields to return in results (default: ["id", "created", "name", "labels"]). Available fields: id, name, created, annotations, labels, split, tags, owner, embedding, user_metadata.

None

Returns:

Type Description

A list of images that match the search criteria.

Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

results = project.search(prompt="cat", limit=10)

Search with tags and user_metadata

results = project.search( ... limit=10, ... fields=["id", "name", "tags", "user_metadata"] ... )

Source code in roboflow/core/project.py
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
def search(
    self,
    like_image: Optional[str] = None,
    prompt: Optional[str] = None,
    offset: int = 0,
    limit: int = 100,
    tag: Optional[str] = None,
    class_name: Optional[str] = None,
    in_dataset: Optional[str] = None,
    batch: bool = False,
    batch_id: Optional[str] = None,
    fields: Optional[List[str]] = None,
    *,
    annotation_job: Optional[bool] = None,
    annotation_job_id: Optional[str] = None,
):
    """
    Search for images in a project.

    Args:
        like_image (str): name of an image in your dataset to use if you want to find images similar to that one
        prompt (str): search prompt
        offset (int): offset of results
        limit (int): limit of results
        tag (str): tag that an image must have
        class_name (str): class name that an image must have
        in_dataset (str): dataset that an image must be in
        batch (bool): whether the image must be in a batch
        batch_id (str): batch id that an image must be in
        annotation_job (bool): whether the image must be in an annotation job
        annotation_job_id (str): annotation job id that an image must be in
        fields (list): fields to return in results (default: ["id", "created", "name", "labels"]).
            Available fields: id, name, created, annotations, labels, split, tags, owner,
            embedding, user_metadata.

    Returns:
        A list of images that match the search criteria.

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> # Basic search
        >>> results = project.search(prompt="cat", limit=10)

        >>> # Search with tags and user_metadata
        >>> results = project.search(
        ...     limit=10,
        ...     fields=["id", "name", "tags", "user_metadata"]
        ... )
    """  # noqa: E501 // docs
    if fields is None:
        fields = ["id", "created", "name", "labels"]

    payload: Dict[str, Union[str, int, bool, List[str]]] = {}

    if like_image is not None:
        payload["like_image"] = like_image

    if prompt is not None:
        payload["prompt"] = prompt

    if offset is not None:
        payload["offset"] = offset

    if limit is not None:
        payload["limit"] = limit

    if tag is not None:
        payload["tag"] = tag

    if class_name is not None:
        payload["class_name"] = class_name

    if in_dataset is not None:
        payload["in_dataset"] = in_dataset

    if batch is not None:
        payload["batch"] = batch

    if batch_id is not None:
        payload["batch_id"] = batch_id

    if annotation_job is not None:
        payload["annotation_job"] = annotation_job

    if annotation_job_id is not None:
        payload["annotation_job_id"] = annotation_job_id

    payload["fields"] = fields

    data = requests.post(
        API_URL + "/" + self.__workspace + "/" + self.__project_name + "/search?api_key=" + self.__api_key,
        json=payload,
    )

    return data.json()["results"]

search_all(like_image=None, prompt=None, offset=0, limit=100, tag=None, class_name=None, in_dataset=None, batch=False, batch_id=None, fields=None, *, annotation_job=None, annotation_job_id=None)

Create a paginated list of search results for use in searching the images in a project.

Parameters:

Name Type Description Default
like_image str

name of an image in your dataset to use if you want to find images similar to that one

None
prompt str

search prompt

None
offset int

offset of results

0
limit int

limit of results

100
tag str

tag that an image must have

None
class_name str

class name that an image must have

None
in_dataset str

dataset that an image must be in

None
batch bool

whether the image must be in a batch

False
batch_id str

batch id that an image must be in

None
annotation_job bool

whether the image must be in an annotation job

None
annotation_job_id str

annotation job id that an image must be in

None
fields list

fields to return in results (default: ["id", "created"]). Available fields: id, name, created, annotations, labels, split, tags, owner, embedding, user_metadata.

None

Returns:

Type Description

A generator yielding images that match the search criteria.

Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

results = project.search_all(prompt="cat", limit=10)

for result in results: print(result)

Source code in roboflow/core/project.py
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
def search_all(
    self,
    like_image: Optional[str] = None,
    prompt: Optional[str] = None,
    offset: int = 0,
    limit: int = 100,
    tag: Optional[str] = None,
    class_name: Optional[str] = None,
    in_dataset: Optional[str] = None,
    batch: bool = False,
    batch_id: Optional[str] = None,
    fields: Optional[List[str]] = None,
    *,
    annotation_job: Optional[bool] = None,
    annotation_job_id: Optional[str] = None,
):
    """
    Create a paginated list of search results for use in searching the images in a project.

    Args:
        like_image (str): name of an image in your dataset to use if you want to find images similar to that one
        prompt (str): search prompt
        offset (int): offset of results
        limit (int): limit of results
        tag (str): tag that an image must have
        class_name (str): class name that an image must have
        in_dataset (str): dataset that an image must be in
        batch (bool): whether the image must be in a batch
        batch_id (str): batch id that an image must be in
        annotation_job (bool): whether the image must be in an annotation job
        annotation_job_id (str): annotation job id that an image must be in
        fields (list): fields to return in results (default: ["id", "created"]).
            Available fields: id, name, created, annotations, labels, split, tags, owner,
            embedding, user_metadata.

    Returns:
        A generator yielding images that match the search criteria.

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> results = project.search_all(prompt="cat", limit=10)

        >>> for result in results:
        >>>     print(result)
    """  # noqa: E501 // docs
    if fields is None:
        fields = ["id", "created"]

    while True:
        data = self.search(
            like_image=like_image,
            prompt=prompt,
            offset=offset,
            limit=limit,
            tag=tag,
            class_name=class_name,
            in_dataset=in_dataset,
            batch=batch,
            batch_id=batch_id,
            fields=fields,
            annotation_job=annotation_job,
            annotation_job_id=annotation_job_id,
        )

        yield data

        if len(data) < limit:
            break

        offset += limit

train(new_version_settings=None, speed=None, checkpoint=None, plot_in_notebook=False)

Ask the Roboflow API to train a previously exported version's dataset.

Parameters:

Name Type Description Default
speed

Whether to train quickly or accurately. Note: accurate training is a paid feature. Default speed is fast.

None
checkpoint

A string representing the checkpoint to use while training

None
plot

Whether to plot the training loss curve. Default is False.

required

Returns:

Type Description

True

Raises:

Type Description
RuntimeError

If the Roboflow API returns an error with a helpful JSON body

HTTPError

If the Network/Roboflow API fails and does not return JSON

Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

version = project.version(1)

version.train()

Source code in roboflow/core/project.py
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def train(
    self,
    new_version_settings: Optional[Dict] = None,
    speed=None,
    checkpoint=None,
    plot_in_notebook=False,
):
    """
    Ask the Roboflow API to train a previously exported version's dataset.

    Args:
        speed: Whether to train quickly or accurately. Note: accurate training is a paid feature. Default speed is `fast`.
        checkpoint: A string representing the checkpoint to use while training
        plot: Whether to plot the training loss curve. Default is False.

    Returns:
        True

    Raises:
        RuntimeError: If the Roboflow API returns an error with a helpful JSON body
        HTTPError: If the Network/Roboflow API fails and does not return JSON

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> version = project.version(1)

        >>> version.train()
    """  # noqa: E501 // docs

    if new_version_settings is None:
        new_version_settings = {
            "preprocessing": {
                "auto-orient": True,
                "resize": {"width": 640, "height": 640, "format": "Stretch to"},
            },
            "augmentation": {},
        }

    new_version = self.generate_version(settings=new_version_settings)
    new_version = self.version(new_version)
    new_model = new_version.train(speed=speed, checkpoint=checkpoint, plot_in_notebook=plot_in_notebook)

    return new_model

upload(image_path, annotation_path=None, hosted_image=False, image_id=None, split='train', num_retry_uploads=0, batch_name=None, tag_names=None, is_prediction=False, **kwargs)

Upload an image or annotation to the Roboflow API.

Parameters:

Name Type Description Default
image_path str

path to image you'd like to upload

required
annotation_path str

path to the annotation file. If not provided, the image will be uploaded without annotation. Special case: in classification projects, this can instead be a class name. e.g. "dog".

None
hosted_image bool

whether the image is hosted

False
image_id str

id of the image

None
split str

which split to upload to - "train", "valid" or "test"

'train'
num_retry_uploads int

how many times to retry upload on failure

0
batch_name str

name of batch to upload to within project

None
tag_names list[str]

tags to be applied to an image

None
is_prediction bool

whether the annotation data is a prediction rather than ground truth

False
Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

project.upload(image_path="YOUR_IMAGE.jpg")

Source code in roboflow/core/project.py
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
def upload(
    self,
    image_path: str,
    annotation_path: Optional[str] = None,
    hosted_image: bool = False,
    image_id: Optional[str] = None,
    split: str = "train",
    num_retry_uploads: int = 0,
    batch_name: Optional[str] = None,
    tag_names: Optional[List[str]] = None,
    is_prediction: bool = False,
    **kwargs,
):
    """
    Upload an image or annotation to the Roboflow API.

    Args:
        image_path (str): path to image you'd like to upload
        annotation_path (str): path to the annotation file. If not provided, the image will be uploaded without annotation.
            Special case: in classification projects, this can instead be a class name. e.g. "dog".
        hosted_image (bool): whether the image is hosted
        image_id (str): id of the image
        split (str): which split to upload to - "train", "valid" or "test"
        num_retry_uploads (int): how many times to retry upload on failure
        batch_name (str): name of batch to upload to within project
        tag_names (list[str]): tags to be applied to an image
        is_prediction (bool): whether the annotation data is a prediction rather than ground truth

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> project.upload(image_path="YOUR_IMAGE.jpg")
    """  # noqa: E501 // docs

    if tag_names is None:
        tag_names = []

    is_hosted = image_path.startswith("http://") or image_path.startswith("https://")

    is_file = os.path.isfile(image_path) or is_hosted
    is_dir = os.path.isdir(image_path)

    if not is_file and not is_dir:
        raise RuntimeError(
            f"The provided image path [ {image_path} ] is not a valid path. Please provide a"
            " path to an image or a directory."
        )

    if is_file:
        is_image = is_hosted or self.check_valid_image(image_path)

        if not is_image:
            raise RuntimeError(
                "The image you provided {} is not a supported file format. We currently support: {}.".format(
                    image_path, ", ".join(ACCEPTED_IMAGE_FORMATS)
                )
            )

        self.single_upload(
            image_path=image_path,
            annotation_path=annotation_path,
            hosted_image=hosted_image,
            image_id=image_id,
            split=split,
            num_retry_uploads=num_retry_uploads,
            batch_name=batch_name,
            tag_names=tag_names,
            is_prediction=is_prediction,
            **kwargs,
        )

    else:
        images = os.listdir(image_path)
        for image in images:
            path = image_path + "/" + image
            if self.check_valid_image(path):
                self.single_upload(
                    image_path=path,
                    annotation_path=annotation_path,
                    hosted_image=hosted_image,
                    image_id=image_id,
                    split=split,
                    num_retry_uploads=num_retry_uploads,
                    batch_name=batch_name,
                    tag_names=tag_names,
                    is_prediction=is_prediction,
                    **kwargs,
                )
                print("[ " + path + " ] was uploaded succesfully.")
            else:
                print("[ " + path + " ] was skipped.")
                continue

version(version_number, local=None)

Retrieves information about a specific version and returns a Version() object.

Parameters:

Name Type Description Default
version_number int

the version number that you want to retrieve

required
local str

specifies the localhost address and port if pointing towards local inference engine

None

Returns:

Type Description

Version() object

Source code in roboflow/core/project.py
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
def version(self, version_number: int, local: Optional[str] = None):
    """
    Retrieves information about a specific version and returns a Version() object.

    Args:
        version_number (int): the version number that you want to retrieve
        local (str): specifies the localhost address and port if pointing towards local inference engine

    Returns:
        Version() object
    """  # noqa: E501 // docs

    if self.__api_key in DEMO_KEYS:
        name = ""
        if self.__api_key == "coco-128-sample":
            name = "coco-128"
        else:
            name = "chess-pieces-new"
        return Version(
            {},
            "type",
            self.__api_key,
            name,
            version_number,
            self.model_format,
            local=None,
            workspace="",
            project="",
            public=True,
        )

    version_info = self.get_version_information()

    for version_object in version_info:
        current_version_num = os.path.basename(version_object["id"])
        if current_version_num == str(version_number):
            vers = Version(
                version_object,
                self.type,
                self.__api_key,
                self.name,
                current_version_num,
                self.model_format,
                local=local,
                workspace=self.__workspace,
                project=self.__project_name,
                public=self.public,
                colors=self.colors,
            )
            return vers

    raise RuntimeError(f"Version number {version_number} is not found.")

versions()

Return all versions in the project as Version objects.

Returns:

Type Description

A list of Version objects.

Example

import roboflow

rf = roboflow.Roboflow(api_key="")

project = rf.workspace().project("PROJECT_ID")

versions = project.versions()

Source code in roboflow/core/project.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def versions(self):
    """
    Return all versions in the project as Version objects.

    Returns:
        A list of Version objects.

    Example:
        >>> import roboflow

        >>> rf = roboflow.Roboflow(api_key="")

        >>> project = rf.workspace().project("PROJECT_ID")

        >>> versions = project.versions()
    """
    version_info = self.get_version_information()
    version_array = []
    for a_version in version_info:
        version_object = Version(
            a_version,
            (self.type if "model" in a_version else None),
            self.__api_key,
            self.name,
            a_version["id"],
            self.model_format,
            local=None,
            workspace=self.__workspace,
            project=self.__project_name,
            public=self.public,
            colors=self.colors,
        )
        version_array.append(version_object)
    return version_array