Plutoniu: Diferență între versiuni

Conținut șters Conținut adăugat
Fără descriere a modificării
Fără descriere a modificării
Linia 138:
 
=== Caracteristici fizice ===
 
[[Fișier:Plutonium pellet.jpg|thumb|Pastilă de <sup>238</sup>Pu folosită ca sursă de energie în generatoare termoelectrice utilizate pentru sondele spațiale - se poate observa efectul termic asociat dezintegrării alfa]]
 
[[Fișier:Pu-phases.png|thumb|Variația volumului atomic al diverselor forme alotropice ale plutoniului în funcție de temperatură]]
 
[[Fișier:Plutonium density-eng.svg|thumb|Densitatea diferitelor forme alotropice ale plutoniului]]
[[Fișier:Plutonium density-eng.svg|thumb|Densitatea diferitelor forme alotropice ale plutoniului]]Plutoniul este un [[Actinide|element actinid]] [[transuranian]], în stare metalică având culoarea alb-argintie (asemănătoare [[Nichel|nichelului]]). În prezența aerului umed se acoperă rapid cu un strat de oxohidroxid de culoare gri, uneori cu tentă verzuie.<ref name=":14" /><ref>''Actinide Research Quarterly''. Los Alamos (NM): [[Laboratorul Național Los Alamos|Los Alamos National Laboratory]] (semestrul al treilea, 2008), 09/02/2010: „În timp ce dioxidul de plutoniu este, în mod normal, de culoarea uleiului de măsline, probele pot avea diferite culori. Se consideră, în general, că aceasta (culoarea) este o caracteristică a purității chimice, a [[Stoechiometrie|stoichiometriei]], a dimensiunii particulelor și a metodei de preparare, deși culoarea care rezultă dintr-o metodă dată de preparare nu este întotdeauna reproductibilă.”</ref> La temperatura camerei plutoniul apare în forma sa α (alfa). Aceasta este forma structurală cea mai comună a elementului, este aproximativ la fel de dură și fragilă precum fonta atunci când nu este aliată cu alte metale. Spre deosebire de cele mai multe metale, plutoniul nu este un bun conducător de căldură sau electricitate. Are un punct de topire scăzut (640 °C) și un punct de fierbere neobișnuit de ridicat (3228 °C).
 
</gallery>În condiții normale, plutoniul metalic este prezent în șase forme [[Alotropie|alotropice]]; o a șaptea (zeta, ζ) poate fi obținută la temperaturi înalte și într-un interval îngust de presiune.<ref>{{Citat web|url=https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-83-5074|accessdate=13/11/2018|autor=R.D. Baker, S.S. Hecker, D.R. Harbur|titlu=Plutonium: a wartime nightmare but a metallurgist's dream, Los Alamos Science. Los Alamos National Laboratory, 148 (1983) 150-151}}</ref> Acesta face ca plutoniul să fie extrem de sensibil la schimbări de temperatură, presiune sau compoziție chimică, variații minore conducând la schimbări dramatice de volum (de până la 25%) sau [[structură cristalină]], fenomene care însoțesc [[Tranziție de fază|tranzițiile de fază]].<ref name=":662">{{Citat web|url=https://fas.org/sgp/othergov/doe/lanl/pubs/00818035.pdf|accessdate=13/11/2018|autor=S.S. Hecker|titlu=Plutonium and its alloys: from atoms to microstructure, Los Alamos Science, 26 (2000) 290-335}}</ref> Spre deosebire de majoritatea elementelor/materialelor, densitatea plutoniului crește prin topire cu 2,5%, iar metalul topit suferă o descreștere a densității odată cu creșterea temperaturii. În funcție de [[Alotropie|starea alotropică]] are densitatea cuprinsă între 16,00 și 19,86 g/cm<sup>3</sup>, fiind un [[Metale grele|metal greu]].<ref name=":62" />
 
Acest comportament complicat face ca prelucrarea plutoniului metalic să fie foarte dificilă, cu schimbări greu de controlat între fazele de temperatură joasă. Faza delta (''δ-phase'') există în metalul pur doar în intervalul 310–452 °C, dar poate fi stabilizată la temperatura camerei prin [[Fișier:PlutoniumAliaj|aliere]] density-engcu mici cantități de [[galiu]], [[aluminiu]] sau [[ceriu]].svg|thumb|Densitatea diferitelorAceasta formeconduce alotropicela aleîmbunătățirea plutoniuluiproprietăților prelucrative pentru aplicații militare. Faza delta are un caracter metalic mai pronunțat, fiind aproximativ la fel de [[Rezistența materialelor|rezistentă]] și maleabilă precum aluminiul.Plutoniul este un [[Actinide|element actinid]] [[transuranian]], în stare metalică având culoarea alb-argintie (asemănătoare [[Nichel|nichelului]]). În prezența aerului umed se acoperă rapid cu un strat de oxohidroxid de culoare gri, uneori cu tentă verzuie.<ref name=":14" /><ref>''Actinide Research Quarterly''. Los Alamos (NM): [[Laboratorul Național Los Alamos|Los Alamos National Laboratory]] (semestrul al treilea, 2008), 09/02/2010: „În timp ce dioxidul de plutoniu este, în mod normal, de culoarea uleiului de măsline, probele pot avea diferite culori. Se consideră, în general, că aceasta (culoarea) este o caracteristică a purității chimice, a [[Stoechiometrie|stoichiometriei]], a dimensiunii particulelor și a metodei de preparare, deși culoarea care rezultă dintr-o metodă dată de preparare nu este întotdeauna reproductibilă.”</ref> La temperatura camerei plutoniul apare în forma sa α (alfa). Aceasta este forma structurală cea mai comună a elementului, este aproximativ la fel de dură și fragilă precum fonta atunci când nu este aliată cu alte metale. Spre deosebire de cele mai multe metale, plutoniul nu este un bun conducător de căldură sau electricitate. Are un punct de topire scăzut (640 °C) și un punct de fierbere neobișnuit de ridicat (3228 °C).
 
Din cauza [[Dezintegrare alfa|dezintegrării alfa]], piesele metalice de plutoniu se încălzesc; evident, cu cât timpul de viață a izotopului este mai redus, cu atât efectul termic asociat este mai puternic. O masă de 5 kg de <sup>239</sup>Pu conține aproximativ 12,5 × 10<sup>24</sup> atomi. Pentru un timp de înjumătățire de 24100 de ani, aproximativ 11,5 × 10<sup>12</sup> din atomii săi se descompun în fiecare secundă prin emiterea unei particule alfa de 5,157 MeV. Aceasta corespunde unuei puteri de 9,68 [[watt]]. Căldura produsă de decelerarea acestor particule alfa se simte la atingerea probei.<ref>Heiserman, David L. (1992). "Element 94: Plutonium". ''Exploring Chemical Elements and their Compounds''. New York (NY): TAB Books. pp. 337–340.</ref><ref name=":9" />
Linia 146 ⟶ 153:
Tot din cauza autoiradieri, eșantioanele de plutoniu [[Solid amorf|amorfizează]] (parțial sau total) în timp,<ref name=":6">{{Citat web|url=https://fas.org/sgp/othergov/doe/lanl/pubs/00818035.pdf|accessdate=13/11/2018|autor=S.S. Hecker|titlu=Plutonium and its alloys: from atoms to microstructure, Los Alamos Science, 26 (2000) 290-335}}</ref> într-un proces asemănător celui de [[metamictizare]] a [[Mineral|mineralelor]]. [[Structură cristalină|Structura cristalină]] poate fi recuperată în urma tratamentelor termice.<ref name=":6" />
 
[[Rezistivitate electrică|Rezistivitatea]] plutoniului la temperatura camerei este foarte ridicată pentru un metal și devine și mai ridicată la temperaturi mai scăzute, ceea fapt neobișnuit pentru metal.<ref name=":12" /> Această tendință continuă până la 100 K, sub care rezistivitatea scade rapid pentru probele proaspăt preparate. Rezistivitatea crește în timp la aproximativ 20 K cu o viteză dictată de compoziția izotopică a eșantionului analizat.<ref name=":12" /><gallery mode="packed" caption="Sistemele de cristalizare pentru plutoniul pur">
 
În condiții normale, plutoniul metalic este prezent în șase forme [[Alotropie|alotropice]]; o a șaptea (zeta, ζ) poate fi obținută la temperaturi înalte și într-un interval îngust de presiune.<ref>{{Citat web|url=https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-83-5074|accessdate=13/11/2018|autor=R.D. Baker, S.S. Hecker, D.R. Harbur|titlu=Plutonium: a wartime nightmare but a metallurgist's dream, Los Alamos Science. Los Alamos National Laboratory, 148 (1983) 150-151}}</ref> Acesta face ca plutoniul să fie extrem de sensibil la schimbări de temperatură, presiune sau compoziție chimică, variații minore conducând la schimbări dramatice de volum (de până la 25%) sau [[structură cristalină]], fenomene care însoțesc [[Tranziție de fază|tranzițiile de fază]].<ref name=":6" /> Spre deosebire de majoritatea elementelor/materialelor, densitatea plutoniului crește prin topire cu 2,5%, iar metalul topit suferă o descreștere a densității odată cu creșterea temperaturii. În funcție de [[Alotropie|starea alotropică]] are densitatea cuprinsă între 16,00 și 19,86 g/cm<sup>3</sup>, fiind un [[Metale grele|metal greu]].<gallery mode="packed" caption="Sistemele de cristalizare pentru plutoniul pur">
Fișier:Monoclinic.svg|[[Sistem cristalin monoclinic|Monoclinic]] (α)
Fișier:Monoclinic-base-centered.svg|[[Sistem cristalin monoclinic|Monoclinic]] cu baze centrate (β)
Linia 153 ⟶ 162:
Fișier:Tetragonal-body-centered.svg|[[Sistem cristalin tetragonal|Tetragonal]] centrat (δ’)
Fișier:Cubic-body-centered.svg|[[Sistem cristalin cubic|Cubic]] centrat (ε)
</gallery>Acest comportament complicat face ca prelucrarea plutoniului metalic să fie foarte dificilă, cu schimbări greu de controlat între fazele de temperatură joasă. Faza delta (''δ-phase'') există în metalul pur doar în intervalul 310–452 °C, dar poate fi stabilizată la temperatura camerei prin [[Aliaj|aliere]] cu mici cantități de [[galiu]], [[aluminiu]] sau [[ceriu]]. Aceasta conduce la îmbunătățirea proprietăților prelucrative pentru aplicații militare. Faza delta are un caracter metalic mai pronunțat, fiind aproximativ la fel de [[Rezistența materialelor|rezistentă]] și maleabilă precum aluminiul.<ref name=":6" />
</gallery>În condiții normale, plutoniul metalic este prezent în șase forme [[Alotropie|alotropice]]; o a șaptea (zeta, ζ) poate fi obținută la temperaturi înalte și într-un interval îngust de presiune.<ref>{{Citat web|url=https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-83-5074|accessdate=13/11/2018|autor=R.D. Baker, S.S. Hecker, D.R. Harbur|titlu=Plutonium: a wartime nightmare but a metallurgist's dream, Los Alamos Science. Los Alamos National Laboratory, 148 (1983) 150-151}}</ref> Acesta face ca plutoniul să fie extrem de sensibil la schimbări de temperatură, presiune sau compoziție chimică, variații minore conducând la schimbări dramatice de volum (de până la 25%) sau [[structură cristalină]], fenomene care însoțesc [[Tranziție de fază|tranzițiile de fază]].<ref name=":6" /> Spre deosebire de majoritatea elementelor/materialelor, densitatea plutoniului crește prin topire cu 2,5%, iar metalul topit suferă o descreștere a densității odată cu creșterea temperaturii. În funcție de [[Alotropie|starea alotropică]] are densitatea cuprinsă între 16,00 și 19,86 g/cm<sup>3</sup>, fiind un [[Metale grele|metal greu]].
 
Acest comportament complicat face ca prelucrarea plutoniului metalic să fie foarte dificilă, cu schimbări greu de controlat între fazele de temperatură joasă. Faza delta (''δ-phase'') există în metalul pur doar în intervalul 310–452 °C, dar poate fi stabilizată la temperatura camerei prin [[Aliaj|aliere]] cu mici cantități de [[galiu]], [[aluminiu]] sau [[ceriu]]. Aceasta conduce la îmbunătățirea proprietăților prelucrative pentru aplicații militare. Faza delta are un caracter metalic mai pronunțat, fiind aproximativ la fel de [[Rezistența materialelor|rezistentă]] și maleabilă precum aluminiul.<ref name=":6" />
 
=== Caracteristici chimice ===
Linia 325 ⟶ 332:
Fișier:Multi-Mission Radioisotope Thermoelectric Generator for Curiosity.jpg|Generatoar termoelectric radioizotopic pentru misiuni multiple utilizat pentru roverul Curiosity
Fișier:Putting the Plutonium 238 fuel into the SNAP 27.jpg|Astronautul Alan L. Bean (Apollo 12) tranferând combustibilul de <sup>238</sup>Pu de pe modulul lunar
Fișier:Plutonium pellet.jpg|Pastilă de <sup>238</sup>Pu folosită ca sursă de energie în generatoare termoelectrice utilizate pentru sondele spațiale
</gallery>