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Kurzfassung

In der vorliegenden Arbeit definieren wir auf dem Referenztetraeder K Interpolationsop-
cratoren fiir die p-Methode der FEM. Diese werden auf den Réumen H2(K), HY (K, curl)
und HY/ 2(IA( ,div) definiert, und wir zeigen, dass diese Operatoren Projektionen auf Poly-
nomraume sind, mit Ableitungsoperatoren vertauschen und bei Erhéhung des Polynom-
grades gewissen Approximationseigenschaften geniigen. Zusétzlich ist die Spur des Inter-
polanten am Rand vollstdndig durch die Spur der Funktion bestimmt, weshalb man Inter-
polationsoperatoren auf einem Gitter elementweise durch Transformation der Operatoren
am Referenzelement konstruieren kann.

Projektionsbasierte Interpolationsoperatoren wurden von L. Demkowicz und Koautoren
in [15, 28, 29, 33] eingefithrt. Eine Zusammenfassung der Resultate findet sich in [26].
Diese Operatoren haben optimale Konvergenzeigenschaften (fiir p — o0), abgesehen von
logarithmischen Faktoren. In der vorliegenden Arbeit werden die logarithmischen Faktoren
entfernt. Allerdings bendtigen wir héhere Regularititsvoraussetzungen als in [26].

Wir untersuchen auch den Interpolationsfehler in negativen Sobolevnormen. In 2D wird
die schwachstmogliche negative Norm durch die maximale Regularitiat von Losungen des
Poissonproblems bestimmt, was von der Verwendung von Dualitdtsargumenten stammt.
In 3D bekommen wir ebenfalls Abschéitzungen in negativen Normen, wobei wir hier die
Tatsache verwenden, dass Tetraeder konvex sind, um mehr Regularitat von Losungen zu
erhalten.

In dieser Arbeit untersuchen wir auch die Regularitdt von Losungen der Poisson-Gleichung
—Au = f auf Polygonen €2 in zwei Raumdimensionen, sowohl fiir Dirichlet-, als auch
Neumann-Randbedingungen (”Shift theorem”). Bezeichnen wir mit w den Innenwinkel von
Q bei einer Ecke, so konnen wir das Shift Theorem fiir Funktionen in Sobolevraumen zeigen
(fiir eine gegebene rechte Seite f, die nahe einer Ecke im Raum H~1*% 0 < s < =, liegt,
gilt fiir die Losung lokal u € H'T#). Allerdings liegt der Fokus unserer Untersuchungen auf

dem Grenzfall s = T, den wir in Besovrdumen betrachten kénnen: Angenommen = ¢ N,
dann folgt aus f € B2_7 % / “, dass die Losung v in B;::;/ “ liegt. Dieses Resultat ist dhnlich

zu denen aus [8, 9], wo Multilevel-Theorie zur Beweisfithrung des Grenzfalls verwendet
wurde. Allerdings wurden diese Ergebnisse nur fiir Funktionen in Besovrdumen, die keine
gewoOhnlichen Besovrdume darstellen, gezeigt, wahrend wir den Mellinkalkiil nutzen, um
einen Beweis in Standard-Besovraumen zu erhalten.
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Abstract

In this thesis, we define p-version projection-based interpolation operators on the reference
tetrahedron K. These are defined on the spaces H2(K), H (K, curl) and H/2(K , div), and
we show that they are projections onto polynomial spaces, that they satisfy a commuting
diagram property and that they have suitable approximation properties, when increasing
the polynomial degree. Additionally, the trace of the interpolant on the boundary is fully
determined by the trace of the function, which allows the construction of interpolation
operators on a grid in an element-wise fashion by transformation of the operators on the
reference element.

Projection-based interpolation operators were introduced by L. Demkowicz and several
coworkers in [15, 28, 29, 33]. The results were then summarized in [26]. These operators
have optimal approximation properties (as p — 00) up to logarithmic factors. In this thesis,
the logarithmic factor is removed. The regularity requirement is, however, stronger than
in the work [26].

We also get interpolation error estimates in negative Sobolev norms. In 2D, the weakest
possible negative norm is here determined by the maximal regularity for solutions of the
Poisson problem, since we use duality arguments. In 3D, we also obtain estimates in
negative norms. Here we use the fact that the convexity of tetrahedra allows more regularity
for the Poisson problem.

In this work, we also analyze regularity of solutions for the Poisson equation —Au = f on
polygons € in 2D, both for Dirichlet and Neumann boundary conditions (”Shift theorem”).
Denoting w the interior angle of 2 at a corner, we show the shift theorem for functions in
Sobolev spaces (for a right-hand side f that is in H—1** with 0 < s < = near a corner,

the solution satisfies u € H' locally), however, the focus lies on the limit case s = 5

1+7r/

which holds in terms of Besov spaces: Assume T ¢ N, then f € B, admits regularity

B;;;T/ “. This result is similar to those shown in [8, 9] where multﬂevel theory was used to

prove the limit case. However, these results are formulated for functions in non-standard
Besov spaces, whereas we use the Mellin calculus which leads to a proof in standard Besov
spaces.
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1 Introduction

One possible way to approximate the solutions of partial differential equations (PDEs) is the
finite element method (FEM), where one subdivides the domain into finitely many elements
with simple geometrical structure and solves the problem in spaces of piecewise polynomials.
Besides the common h-method, where one refines the mesh to obtain convergence, also the
p-method, where the polynomial degrees p are increased, and the hp-method, which is a
combination of both concepts, are used. The p-method and hp-method usually lead to
better convergence rates than the h-method, however, the computational cost to create the
elements is much higher.

Interpolation operators which approximate a given function by a polynomial function that
is easier to handle, play an important role in the theory of solving numerical problems. In
the case of scalar functions, many different interpolation operators have been developed
for the FEM-h-version (e.g. nodal interpolation, Clément interpolation [17], Scott-Zhang
interpolation [58]), but also for the p-version, cf. [4, 6, 57]. However, for vector-valued
functions, particularly in the spaces H(curl) and H(div), the existing theory is not as well
developed. What complicates the situation there is the fact that interpolation operators
should not only have suitable approximation properties, but also be projections and satisfy
a commuting diagram property. It is convenient to construct these operators elementwise
by determining them on the reference element and defining them in physical space by a
push-forward from the reference element.

The operators introduced here are projection-based operators. The expression projection-
based interpolation operator was first used by Hiptmair [38, Sec. 3.5], where such a type of
interpolation operators is introduced and a first p-version error estimate is given, cf. [38,
Thm. 3.18]. Projection-based interpolation operators for the p-method with the properties
mentioned above then have been developed in the first few years of the 21st century by
Demkowicz and several co-authors in [15, 28, 29, 33]. The results were then summarized in
[26]. These interpolation operators are projections, have the commuting diagram property
and admit element-by-element construction, under the regularity assumptions H'T* with
s > 1/2 for scalar functions and H*(curl) with s > 1/2 and H*(div) with s > 0 for vectorial
functions (in 3D). However, the operators do not have the optimal convergence properties
as p — 00, but only up to logarithmic factors logp, cf. [26, Thm. 5.3]. The logarithmic
factor is due to the approach taken in [26]: In [26] non-local norms on the boundary, which
arise from integration by parts, are localized by writing them as a sum of contributions
over the different boundary parts, which is possible at the price of logarithmic factors.

In this work, we define projection-based interpolation operators of the type described in
[26], but use a different approach for dealing with the non-local norms on the boundary to
get rid of the logarithmic factors. We do not try to localize the norms on the boundary,
but instead use interpolation arguments: We interpolate between integer order Sobolev
norms because these norms can be localized. In turn, we have to analyze the interpolation
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1 Introduction

error in two different norms. The estimates in the stronger norm follow with arguments
similar to [26], and similar tools are used, particularly the polynomial lifting operators for
tetrahedra [30, 31, 32] and for triangles [2], and the Poincaré maps as right inverses for the
differential operators. However, we use stronger versions of the right inverses, developed
by Costabel and McIntosh [19] in 2010. The estimates in the weaker norm are obtained
by duality arguments. Here, the shift theorems for elliptic partial differential equations,
both for Dirichlet and Neumann boundary conditions, play a central role, since the duality
arguments rely on regularity. The shift theorems limit how far we can go in terms of
negative norm estimates for the interpolation error. Particularly in 2D, maximal regularity
for the Poisson problem in triangles can be exactly specified and determines the weakest
possible norm estimate in negative norms. For the tetrahedron in 3D, we restrict the
negative norm estimates to a range that, essentially, merely exploits the convexity of the
tetrahedron. Extending the range would require more precise information about the shift
theorem in 3D which is much more complicated than in 2D.

However, there is also a price to be paid for our approach: We need the more stringent
regularity assumptions H1™* and H*(curl) both with s > 1 and H*(div) with s > 1/2.
To our best knowledge, interpolation operators without logarithmic factors, but with less
needed regularity haven’t been developed yet in every case, however, in the recent paper
[34] the authors present a projection operator on a polyhedral domain  with minimal
regularity requirement H(€2, div), which is locally defined on patches of tetrahedra, satisfies
a commuting property with the divergence derivative and features hp-convergence rates.
Another part of this theses is devoted to the solutions of the Dirichlet problem

—Au=f in ),

(1.1)
ulp =0 onT :=09Q

and the Neumann problem

—Au=f in ,
Opulr =0 onT

(1.2)

for given right-hand side f € H*(2) in a polygonal domain 2 C R2.

The shift theorem for right hand sides f € L?*(Q2) for domains € with smooth boundary
can be found in every book about PDEs, e.g. [35], [37, Chapter 2]. If the boundary of Q
is only Lipschitz, but the domain is convex, the situation is equally well understood, [37,
Chapter 3]. For polygonal domains Q and right hand sides f € H¥(Q) with k& € N, it is
easily seen that the shift theorem holds far from the corners, cf. [37, Lemma 5.1.1.1]. Near
the corners, however, we need to consider an additional singularity function that inhibits
full regularity for the solution.

For right-hand sides f € H*(Q)) with s < o— — 1, where wpq, denotes the largest interior
angle of 2, we obtain as maximal regularity for solutions u of the problems (1.1) and (1.2)
u € H72(Q). However, in the limit case s = —"— — 1 (if —*— ¢ N) the situation is

Wmazx Wmazx

different. Here we cannot expect u € H*T2(2), but show that u is still an element of the
Besov space BTF/UJrrLaw+1(Q) lff c B;/lwnba:l;—l(Q).

2,00
The shift theorem results in terms of Sobolev spaces are well-known, see e.g. [8, 9, 13] or

[23, 37] for more general elliptic problems (and also the references therein). The papers
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1.1 Structure of the work

[8, 9] also deal with regularity in Besov spaces in the limit case s = w;:az — 1 by the use
of multilevel theory (see also [7] on this subject), however, the employed spaces are not
always standard Besov spaces. For regularity in Besov spaces avoiding the limit case, see
[22].

In this thesis, we consider the limiting case s = 77— — 1 for the shift theorem in terms
of Besov spaces, but use techniques different from those in [8, 9]. In fact, we reduce the
original problem to a similar problem on a simpler sector domain by localization and use
Mellin techniques which enable us to find the explicit form of the singularity function. The
use of the Mellin transform goes back at least to the seminal papers by Kondrat’iev [41]. He
showed in 1967 that the Mellin calculus is useful when dealing with domains with corners,
and it has then become an established method to consider regularity in Sobolev spaces, cf.

20, 21, 23, 37, 42, 44, 53].

™

1.1 Structure of the work

In Chapter 2 we introduce fundamental notation, definitions and results. We start with
a short presentation of Sobolev spaces and present some results. We then introduce the
theory of interpolation spaces and show how Sobolev and Besov spaces are covered by this
framework. This is followed by a short compilation about the vector-valued functions spaces
H(curl) and H(div) and the connections between them. This introductory chapter is then
completed with a section about discrete spaces for the finite element method, a section
about regular Helmholtz decompositions and a part about discrete Friedrichs inequalities.

Chapter 3 is then devoted to the shift theorem in polygons €2 in 2D. Here we use the Mellin
calculus as a tool to obtain the explicit form of the singularity function near the corners.
Mellin techniques used for this purpose are already well-established [20, 21, 23, 37, 41], and
in Sections 3.1-3.3 (which are based on [24] in addition to the references above), we review
the theory since for f € L?(2), it allows us to obtain the solution u; of the problem (1.1)
in the form

u = uo + sTS(f), (1.3)

where ug € H?(f) is the regular part, st = r®sin(a¢) € Bg‘;}(Q) (in polar coordinates)
with @ > 0 (dependent on the angles) and S(f) denotes the ”stress intensity function”

S(f) = /Q % sin(ay) f(z) d € (B;;l(m)*.

From this explicit decomposition, we obtain the desired regularity results near the corners
by a localization procedure and interpolation arguments. Note that the maximal regularity
depends on the largest interior angle of 2. We also mention that the localization leads to
regularity considerations in weighted Sobolev spaces on sectors since the sector with origin
0 and opening angle w is a convenient model for the polygon near a corner. The arguments
for Neumann boundary conditions (1.2) are similar.

In Section 3.4, the applied techniques for right-hand sides f € L?(Q) are then reviewed
and generalized in order to provide regularity results for more regular right-hand sides
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1 Introduction

feH(Q) for0<s< 5.— — 1. Basing the argumentation on the ideas of Sections 3.1-3.3,
we obtain decompositions similar to (1.3) whose mapping properties are studied and which
enables us to prove the desired shift theorems (Section 3.5) for Dirichlet (Theorem 3.44)
and Neumann (Theorem 3.47) boundary conditions.

In Chapter 4 we define the interpolation operators and prove that they indeed provide
optimal convergence properties for the p-method. Here, we restrict ourselves to the case
of a reference tetrahedron K (or reference triangle f in 2D), since the operators admit an
element-by-element construction and thus yield a globally conforming discretization, when
we apply them elementwise to a globally defined function. This is due to the fact that by
definition of the operators, the trace of the interpolant on a subsimplex of K is completely
determined by the trace of the function, which ensures interelement continuity.

Section 4.1 serves as an introductory section. Here we explain the main ideas of the
proois, using the rather simple example of the interpolation operator for the gradient in
2D, H%ff 2, However, we do not go into details, and a rigorous proof of the interpolation
error estimates can then be found in Section 4.6. R R

In Sections 4.2 - 4.4 the definitions of the interpolation operators Hﬁf{i 3d qurl’w and

T34 (ﬁ%ff 24 and TIE™% in 2D) are given, and we show that the definitions are in-
deed meaningful and that the operators satisfy the commuting diagram property. In the
short Section 4.5 we deal with the only one-dimensional interpolation problem. We define
an interpolation operator on the reference interval € = (—1,1) mapping in the space of
polynomials P,(€) and show error bounds, cf. Lemma 4.15.

Sections 4.6 and 4.7 are then devoted to error estimates of the interpolation operators in
2D and 3D. They are subdivided into several subsections about the different interpolation
operators. At the end of each section the main results are collected in a separate subsection
for a quick overview. The main results in 2D are collected in Theorem 4.24, the 3D results
are found in Theorem 4.42.

This chapter is then complete with another short Section 4.8. Whereas the whole work up
to now has only dealt with first kind Nédélec elements and Raviart-Thomas elements, we
use this section to provide some remarks about elements of the second kind (see e.g. [26,
Sec. 2], [55, Sec. 3] or [62, Sec. 4] for a short overview about these concepts). It will turn
out that all important results also hold in this setting.

Parts of this work, especially Chapter 4, are contained in the paper [49] which was created
during the PhD-studies and has been recently published by AMS.
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2 Background

In this chapter we introduce the various continuous and discrete function spaces that will
appear in the construction of the interpolation operators. In Section 2.1 we define Sobolev
spaces of integer order and then also of real order, and we also discuss trace operators
and trace inequalities as well as Sobolev embeddings. Section 2.2 is a short introduction
to the theory of interpolation spaces. We show how Sobolev spaces fit into this concept.
Section 2.3 is devoted to the vector-valued function spaces H({2, curl) and H(S2, div) and
how they are connected with standard Sobolev spaces via differential operators. Section 2.4
is a short introduction to the finite element method, especially to the p-method, since it
is our goal to define p-version projection-based interpolation operators which have optimal
polynomial approximation properties. Section 2.5 deals with the regularized right inverses
of [19], which are then used to construct several Helmholtz-like decompositions that are
needed later on. The final Section 2.6 in this chapter then deals with discrete Friedrichs
inequalities for the curl and div operators.

2.1 Sobolev spaces

In this section Sobolev spaces are defined, of integer order and real order, of both positive
and negative orders. For a reference see e.g. [1], [37], [45] or [51].

In this chapter Q@ C R", n € {2,3} always denotes a bounded domain (i.e. open and
connected) with Lipschitz boundary I' := 9. The following definition is from [51, Def. 3.1].

Definition 2.1. The domain 2 C R"™ has a Lipschitz boundary O) if for every x € 0S) there
is an open set O C R™ with x € O and an orthogonal coordinate system with coordinate
¢ = (.-, Cn) having the following properties: There is a vector a € R™ with

O={C:—a; < <a;,1<j<n}
and a Lipschitz continuous function ¢ defined on
O ={CeR":—a;<(<a;,1<j<n-1}
with |p(¢)| < an/2 for all ¢’ € O such that
QN0 ={¢: G <¢((), ¢ €O} and 00N O ={¢: G = ¢(¢),¢" € O}

Note that convex sets always have a Lipschitz boundary, so this is especially true for
triangles and tetrahedra.

We next denote some standard function spaces. The space LP() is the set of functions ¢
on € for which |¢|? is integrable on 2, equipped with the norm

1/p
el oy = ( / |up) .
Q
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2 Background

The space C*°(Q2) is the class of infinitably differentiable functions on Q, and C§°(?) -
often reffered to as the space of test functions - denotes the subset of C*°(€2) where the
functions u are additionally compactly supported in €, i.e. suppQ := {x € Q: u(x) # 0} is
a compact subset of ). For the notation of derivatives we use the well-known multi-index
notation. For e = (a1, ..., ay) € Nj we set |a| = > | «;, and if u is a sufficiently regular
function, we define the derivative

gled
D% = ——— .
" ozt - - dxp

In the case that the derivative does not exist in the classical sense, we can still define the
weak derivative by using a test function by

/D"‘u¢— (—1)""/uD°‘qﬁ Vo € C(Q). (2.1)
Q Q

Note that in this case, the derivative D®u is defined as linear functional in (C§°(£2))’, the
dual space of C5°(2).
Since often only the degree of the multi-index matters, we also write for k € Ny

DFu:= )" |D%ul. (2.2)
|a|=k

The Sobolev space W*P(Q), k € Ny, p € N is now defined as the space of LP(Q)-functions
where also the derivatives up to order k < oo are in LP(Q2), i.e.

WHhP(Q) == {u € LP(Q) : D*u € LP(),a € N}, || < n}.

Equipping this space with the norm

1/p
lullwesy = | D 1D%ullzr@)
lex|<k
makes (W5P(Q), ] - |wrr()) @ Banach space. The corresponding semi-norm
1/p
[l = | D> 1Dl 1oy
|oe|=k

is also often useful, e.g. when dealing with scaling arguments. In the above definitions of
Sobolev spaces, (2 = R"” is allowed, too, which gives us Sobolev spaces on the full space.
Note that C°°(Q) N WkP(Q) is dense in WHP(Q), cf. [50].

The most important Sobolev spaces occur in the case p = 2. If we equip this space with
the scalar product

(u, V) w2y = Z /DauDav,
Q

<k
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2.1 Sobolev spaces

we get a Hilbert space with induced norm || - |[yy.2(q)-
We also need fractional order Sobolev spaces on Q. For o € (0,1) define the Slobodeckij
semi-norm | - ]Wo,p(ﬂ) by

_ Ju(x) — u(y)|? e
’u‘Wﬂ,P(Q) = (/Q . —]x o dx dy .

For s € RT\N, write s = |s| + o with o € (0,1), and define the corresponding Slobodeckij
norm by!

1/p

Du(x) — P
lalhwrioy = ( lalyiney + 3 [ [ P02 axay
loe|=s]

The fractional order Sobolev space W*P(€2) is now defined in the natural way as
W=P(Q) := {u € LP(Q) : [[ullysrq) < 0o}

It is possible to define the Sobolev spaces in an alternative way. Defining the Schwartz
space by

S(R") := {¢ € C®(R") : sup [x*DP¢(x)| < oo for all multi-indices o, B}
xeR™

and the Bessel potential of order s € R by
Foulx) = [ (1+[6)72(8) exp(zrit -x) de
Rn

for x € R", where u© denotes the Fourier transform of u, cf. Definition 3.1, we can define
the Sobolev space of order s on R™ by

H*(R") :={u € (SR")) : Ju € L*(R")}.
The Sobolev spaces on £ are then defined by restriction,
H*(Q) :={u e (C°(N) :u=Ulg for some U € H*(R")}. (2.3)

Theorem 3.16 and Theorem 3.30 from [45] show that for s > 0, both definitions of Sobolev
spaces are equivalent on Lipschitz domains and the full space, for p = 2, i.e.

We2(Q) = H*(Q), WS2(R™) = H5(R™). (2.4)

LOne can also add a preceding normalizing factor to the seminorm expression, i.e.

1/p
_ Ls]!
el = (||U|€Vm,p(n)+a°l 2 orIPtubwese |

le|=Ls]

oo 4, —20—1 2miw
where a, = fo t waR",\w|:1 le 1t
constant with the minimum energy extension norm for o — 0, cf. (2.3), (2.4) and [27, p. 53]. However,

this is not necessary here since Sobolev orders are always fixed.

- 1\2 dw dt. This prevents the blow-up of the equivalence
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2 Background

Thus, we will use only the H?®-notation from now on.
We also need Sobolev spaces on the boundary I'. For 0 < s < 1 they are defined by

WP(T) := {u € LP(T) : |uflwerr < 00}, (2.5)

where || - [[yys.p(ry is again the Slobodeckij norm

1/p
o uG0) — u(y)P
fulbwesey = (e, + [ [ P22 s sty )

ds denoting the surface measure on I'.

For 1/p < s < 1, the space Ws_l/p’p(f‘) can also be seen as trace space of the space
W#P(Q). For a sufficiently smooth function u we can define boundary values of u on T,
called the trace of u. Obviously every function u € C°°(Q) is sufficiently smooth to admit
the evaluation of w on the boundary. Thus, it makes sense to define the trace operator g

on C*°(Q) by vo(u) = u|r. The following theorem from [51, Thm. 3.9] shows that the trace
operator can be extended to an operator on W*5P(€).

Theorem 2.2. Provided 1/p < s < 1, the mapping vy has a unique continuous extension
as a linear operator from W5P(Q) onto W*~YPP(I'). Moreover,

WyP(Q) = {u € WP(Q) : yo(u) = 0}.

Since the theorem gives a unique extension of g to Sobolev spaces, we will adopt the
notation u|pr and use it instead of yy(u) for functions u that are sufficiently smooth to allow
the evaluation on the boundary. Especially for p = 2 and s = 1, we get H/ 2(T) as the
trace space of H'(2), and we will denote by H~'/2(I") its dual space.

Note that in [18, Lemma 3.6] it was shown that for p = 2 (and Q a Lipschitz domain, as
was assumed in this section), Theorem 2.2 holds for 1/2 < s < 3/2.

Trace spaces for s > 0 can also be defined by restriction of more regular functions on €.
We define

H*(T) = {u € L*T) : u = U|r for some U € H*'/2(Q)}, (2.6)
with natural norm

U = inf Ull s .
[l fr(r) UeHS“/?(Q)’u:U'FH I rrs+1/2(0)

Note that the definition in (2.5) and (2.6) coincide for s < 1.

If we want to take zero boundary conditions into account, we use the following Sobolev
spaces. We define W;"(£2) as the closure of C§°(£2) in the W*P(€)-norm. In the case p = 2
we write H3(Q) = W, 2(Q) instead. If the boundary of our domain is sufficiently regular,
the following theorem from [45, Thm. 3.40] enables us to handle these spaces in a more
explicit way.

Theorem 2.3. Assume that §) C R" is a C*11_domain.

(i) If0 < s <3, then Hy(Q) = H*(Q).
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2.2 Interpolation spaces

(i) If 3 < s <k, then HE(Q) = {u € H5(Q) : yo(D*u) =0 for |a| < s — i1

We now introduce another class of Sobolev spaces, by defining? the space H $(2) as the
closure of C§°(Q2) in the H*(R")-norm, s € R.

Negative order Sobolev spaces are defined as topological dual spaces of Sobolev spaces with
positive order. For s > 0 and 1/p + 1/q = 1, we define W~5?(Q) := (W;9(Q2))" with the
usual norm

fulw-mey = sup A2
vew ) [vllwsa)
where (-, "), denotes the duality product. Note that it holds W—*2(Q) = H~%(Q) for s > 0.
By Theorem 3.30 of [45], we have (H*()) = H~%(Q) and (H*(Q)) = H5() for s € R.
For s > 0 with s+ 1/2 ¢ N, it also holds by [45, Thm. 3.33] that H*(Q) = H§(82), thus we
can identify H~*(Q2) as the dual space of H{(2) for these values of s.
For functions u € L?(2), we can equip the negative order Sobolev spaces with the norms

(u,v)2(q)
TR U2 2.7
I ”H () vEHS(Q) HU”HS(Q) -
and (s +1/2 ¢ N)
(u,v) 200
”UHH*S(Q) = sup 2D A (2.8)

vers@) vllas@)
since for sufficiently regular functions, the duality product can be identified with the inner
product in L?(Q).
If Q is piecewise smooth (e.g. polygon, polyhedron), then we also need piecewise trace
operators. This is justified by the following result, [59, Lemma 16.1] or [45, Thm. 3.37].
Lemma 2.4. For s > 1/2, functions of H*(R™) have a trace on the hyperplane x, = 0,
belonging to H*~1/2(R"~1). The mapping o is surjective from H*(R™) onto H*~1/2(R"~1).
By transformation and localization, this lemma yields for s > 1/2 and v € H*(Q)

Nl grs—1¢p) S llull s o)
for each face f of Q2.

2.2 Interpolation spaces

In this section we give a short introduction to the theory of interpolation spaces. It turns
out that the fractional order Sobolev spaces can be seen as interpolation spaces between
integer order spaces. This fact is often helpful since the norms on integer order spaces are
easier to work with than with the Slobodeckij norms. The main references for this section
are [59] and [60].

2Although established in [45, Ch. 3, p. 77], the notation I:TS(Q) is a bit misleading for s < 0, since this
space does not consist of distributions defined on €, but of distributions on R™ with support in €, as
described by the space H3 in [45, Ch. 3, p. 76]. However, in [45, Th. 3.29] it is shown that both spaces
coincide for domains Q with at least C°-boundary.
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2 Background

2.2.1 Basic interpolation results

Throughout this section, (X, ||-]|0) and (X1, ||-]|1) denote normed spaces with a continuous
imbedding X; C Xj.
One interpolation method is the K-method.

Definition 2.5. The K-functional on the space Xg is defined by

K(t,u) := Uién)gl llu —v|lo + t]|v]|1-

For 0 < 0 <1, one then defines the interpolation space as
Xo.q = (X0, X1)g,q :={u € Xo : ||Jullgq < o0},
equipped with the norm
0 dt\ M
o= ([ 0w ) e (29)
supy-ot UK (t,u), q= 00,
Lemma 2.6. The following facts are well-known, cf. [59, Ch. 22/, [60, Sec. 1.5.3].

(i) The K-functional is monotone increasing in the variable t, and t — t~ 'K (t,u) is
monotone decreasing.

(i1) For 6 € (0,1) and q € [1,00], it holds

K (tw) S llulloss S llullog.

(iii) The interpolation spaces are nested, i.e. for 6 € (0,1) and 1 < ¢ < ¢’ < 00, we have

X9,1 c X@,q - XG,q’ - X@,oo-

(iv) For 0 <@ <0 <1 and arbitrary q,q € [1,00], there holds

Xo.q & Xo g

v) Interpolation inequality: There exists a constant Cy, such that
P q Y 4
1-6 0
[ullo.g < Coqllullo™ llullz
for allu e Xy.
vi) Interpolation of a space X with itself again gives X, i.e. (X, X)gq = X.
’q

Indeed, integration to infinity in (2.9) is not necessary if the subspace X; is a proper
subspace of Xj.

10
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2.2 Interpolation spaces

Lemma 2.7. Let X1 C Xy with a continuous embedding. Then for every a >0, 6 € (0,1)
and q € [1,0], there exists C > 0 such that

/ |t*9K(t,u)|‘1% < C/ [t~ UK (t, mw%, q € [1,00),
0 0

sup t_eK(t,u) < C sup t_eK(t, u).
te(0,00) te(0,a)

Proof. For arbitrary g € X; we have
K (t,u) = infoex, [Ju—vllx, +tvllx, < flullx, < llu—gllx, + ll9llx
2\ a
< Ju=allx, + (Cxiox ) Glall

Infimizing over all g € X7 gives

K(t,u) < max{1,2a 'Cx, . x,} K(a/2,u).

O

For ¢ < oo, we now get

dt

/’u*wawt<u«wzww/ o

—_—
=:Cq

Since ¢t — K (t,u) is monotone increasing, it follows

a dt a dt a dt
t%— |K(a/2,u)|? < tOK(tu)|7— < [ [OK(tu)|—.
a 13 2 3 0 13

/2 a/
=:C3
Thus
[t gawrt < & [t wr
For ¢ = oo, the result follows in view of the monotonicity of ¢ — K (t,u). O

The usefulness of interpolation spaces comes from the following result, which can be found
in [59, Lemma 22.3].

Lemma 2.8. Let X1 C Xg and Y1 C Yy, and let T : Xog — Yy be a bounded linear operator
that maps the subspace X1 to Y1. Then T : Xg , — Yy 4 15 also bounded and linear with the
operator morm estimate

—0 0
ITllo.g S 1T Ly 1T 1%, 5, -

Suitable interpolation between Sobolev spaces can result in another Sobolev space. In
particular, it holds

(H*(Q), H*(Q))g0 = HIO*0(Q)

with equivalent norms, cf. [59, Ch. 34]. In the case p,q # 2 we generally get Besov spaces.

11
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2 Background

Definition 2.9. For 0 < s <1, the Besov space B, ,(Q) is defined by
- 1,
By Q) := (LP(Q2), WP(Q))s.4-
Remark 2.10. More generally, the Besov space B;?q(Q) can also be written as
By (Q) = (W2or(Q), W*HP(Q))eq,

where sp,s1 > 0, s9 # s1, and sg = (1 — 6)sg + 0s1, see [60, Sec. 2.4.2, Remark 4], [60,
Sec. 4.3.1, Thm. 1], [61].

Since the interpolation technique provides another normed space together with a continuous
imbedding, it is possible to interpolate between interpolation spaces. However, we do not
get completely new spaces by this procedure, as the Reiteration Theorem [59, Thm. 26.3]
shows.

Theorem 2.11 (Reiteration Theorem, [59, Thm. 26.3]). For q1,q2,q3 € [1,00], 0 < 61 <
0 <1 and 05 € (0,1), there holds

(l) ((XOaX1)917Q17 (X07X1)92,q2)03,q3 = (XO’Xl)(1—93)91+9392,Q37

(”) (X07 (X0> X1)02,QQ)037Q3 = (X0> X1)9293,QB'
The dual space of an interpolation space is again an interpolation space.

Lemma 2.12 ([60, Sec. 1.11.2]). Let X1 be a dense subspace of Xo. Then, for 1 < q < oo,
it holds

((Xo0, X1)o,)" = (X1, X0)1-0.4»
1, 1 _
where 7 + 7= 1.

Interpolation between negative and positive order Sobolev spaces is also possible.
Lemma 2.13. Let r,s > 0. Then it follows:

(i) (H™7(Q), H*(Q))g2 = H-1-07405(),

(ii) (H~"(Q), H*(Q))po = H-1=0r+05(),

(i) (@), B @) = { 27 0@ —(1= 065 <0

~A=0r+0s(Q), —(1—0)r+6s>0"’
(iv) (H"(Q),H*(Q))g1 = Byy " (Q) if (1 — 0)r + s > 0,

(v) (H™"(2), H*(2))o1 = By V") if —(1 — 0)r + s > 0.

12
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2.2 Interpolation spaces

Proof. Statements (i) and (ii) are shown in [45, Thm. B.8, Thm. B.9].
We show (iii). From

L*(Q) @ (ﬁ_S(Q%ﬁs(Q))l/zz - (ﬁ_s<9)7Hs(Q))1/2,2 C (H™5(Q), H*(2))1/2,2 © L*(Q)

for s > 0, it follows equality in these expressions. It holds for s > 0 by the Reiteration
theorem

H(Q) = (L*(92), H*(Q))o.2 = (H*(Q), H(Q))1/2.2, H* () 2
= (H*(Q), (H*(Q), H*(Q)122)1-02 = (H(Q, H D) 1092 (2.10)

= (H™°(2), H*(Q)) 120 5.

2

Lemma 2.12 then gives
H=*0(Q) = H(Q)* = (H*(Q), H*(Q)) 10 ,. (2.11)

Now assume s > 7. Then (2.10) implies

thus we obtain
(5 (9, HE () 1-rse 5, HY(9))o2
H(Q), (H*(9), H*(9)), 12222 )10

(2.12)
(1-)(1- 17122
= H_S(Q)vHS(Q))l,(l,g)(l,#)g-
If —(1—-0)r+60s >0, then
1—r/s 1+6
1—-(1-0)(1-— =
a-o0- =12
with @ =1—(1—-0)(1+r/s) € (0,1). Thus (2.10) and (2.12) yield
(f{'fr(Q% HS(Q)>9’2 _ HS(l*(l*@)(l‘i’T/S)) (Q) _ Hf(lfG)r+95(Q).
If —(1—-6)r+6s <0, then
1—r/s 1-6¢
1-(1-0)(1- 5 ) = >
with ' = -1+ (1 —0)(1 +r/s) € (0,1), thus (2.11) and (2.12) yield
(ﬁir(ﬂ),HS(Q))Q’Q _ ﬁ75(71+(179)(1+r/s))(9) — ﬁ7(179)r+93(9)'
13
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2 Background

If —(1—6)r+6s=0,then1—(1-6)(1— 1_;/5) = 1, thus we get from (2.12) that

(H(Q), H¥()p2 = L*(Q).

The case s < r is similar. Here we write

H(Q) = (7 (), H'(D) 11

and therefore obtain

(7 (), () = (H(9), (H(9), HT () 12ase o
= (7 (), () e

Case by case analysis as above gives the desired result.
Statements (iv) and (v) are shown analogously to (iii). O

The next result shows how to control the decomposition given by the K-functional.
Lemma 2.14 (Bramble-Scott, [14, Lemma)). Let u € Xg, v € X1 and t > 0 be such that
[ = vllo + tllvfly < 2K (2, ).

Then, for any (6,q) such that u € (Xo, X1)g,q, we have
lu = vllo.q < 3llullo.q-
In particular, there holds ||v||g,q < 4||ul|g,q-

Proof. We reproduce the proof for completeness’ sake. For s > t, we have K(s,u —v) <
lu —v|lo < 2K(t,u) < 3K(min(s,t),u). Now assume s < t, then we have for arbitrary
w e X1

K(s,u—v) <l[lu—v—(w—=v)o+sw—vli <|lu—-wlo+s|wli+s|v]
and therefore
K(s,u—v) < Jnf ([lu —wllo + sllwlly + sljv][1) = K(s,u) + s|lvllx

1

< K(s,u) +2§K(t,u).

As s < t and the mapping t — t "1 K (¢, u) is decreasing, we obtain K (s,u—v) < 3K (s,u) =
3K (min(s,t),u), thus we have

K(s,u—v) <3K(min(s,t),u) (2.13)
for all s > 0. Since K(-,u) is increasing, (2.13) implies K(s,u —v) < 3K (s,u) and hence
lu =vllo,g < 3llullo,q- =
14
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2.2 Interpolation spaces

2.2.2 Interpolation results in sector domains

In this subsection, we give examples how the interpolation results can be applied. Some of
the presented results will also play a role in Chapter 3.
We define the cone C by

C:={(rcos¢,rsing) :r>0,¢ € G:= (0,w)}, (2.14)
with the angle w € (0,27). For R > 0 we use the abbreviation
Cr :=CnN Bgr(0).

Obviously, functions in Cr are often written in polar coordinates. See also the beginning
of Subsection 3.1.2 for a more detailed discussion.

In the following lemma, we give examples of functions in Besov spaces. This result will be
useful later on, since these functions appear as parts of the singularity functions.

Lemma 2.15. Forr >0 and ¢ € (0,w), the following statements hold.
(i) Let « € RT\N. Then the function s*(r,$) = r®®(r, d) restricted to C1, where ® is a
smooth and bounded function, is in the space B%Jgoa (C1).
(i) Let o € (0,1). Then the function sy (r,¢) = r~*®y (r,¢), where ®; is smooth and
zero on OCq, is in the space B;;‘(Cl) = (L2(C1), H} (C1))1-a00-
(iii) Let o € (0,1). Then the function s~ (r,¢) = r=*®(r,¢), where ®~ is a smooth
function, is in the space B%;‘(Cl) = (L?(C1), H(C1))1-a,00-
Proof. We first prove (i). We write the Besov space as the interpolation space

By (C1) = (LP(Ch), HYF(C1)) 1t

[ +2°°

Next we select a smooth cut-off function x that is zero on B 1 (0), equals one on

tlel+2 /2
k

B1(0)\B - (0), and whose derivatives satisfy || D¥x||(c,) St @72, We then get

t [e%

1 t LaJ1+2 2(a+1)
II(1— X)S—"_H%Q(Cl) S / (1 —x)*r*®rdr < / P20t dp < tlalt2 (2.15)
0 0

For the derivatives we obtain

||DLaJ+2(X5+)H%2(Cl) < /0 (D*x(r))2(Dlo)+2=5p0)2p gy
0

S=

la)+2

' s 2 —la]—-2)+2
SJ/ 1 r2la=la]-2)+1 dr + Z t‘ﬁ <tﬁ) (ats—|a]—-2)+
tlel+2 /2 po
azlajoz 42 . derts el 22
ST PR EE (tﬁ) (ats=la)=2)
s=1
2(atl) o
< tlarve 2,
(2.16)
15
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2 Background

The L2-norm satisfies

1 2(at1)
r2etl g < ¢leres 2, (2.17)

st ey S

1
tlal+2 /2

since the integral is bounded and 2[201112) —2 < 0. Lines (2.15), (2.16) and (2.17) imply

K(t,s") S tT0,

thus s* € By12(C).
The proofs of (i) and (iii) follow in a similar way. We only want to mention that the
assumptions on @, imply the necessary boundary conditions. O

The following lemma gives an example how to apply the lemma about duality. Addition-
ally, the functional S in Lemma 2.16 represent the singularity functions that prevent full
regularity of the solutions, thus this result will be used in the proof of the shift theorem.

Lemma 2.16. Let 0 < o < 1 and let s~ and s, be defined as in Lemma 2.15. Then it
follows:

(i) The mapping
Fesh= [ st

is bounded and linear on B;Il(Cl) = (H7Y(C1), L*(C1))an-

(i) The mapping

8= [ 51

C1
is bounded and linear on (H='(C1), L*(C1))a.1-
Proof. Since by Lemma 2.12
so € (L2(C1), Hy(C1))1-ao0 = ((H(C1), L2(C1))an)”
and

5™ € (L2(C), H (C)1-aoe = ((H7HC1), L(C1))an )

the result is clear. O

Spaces of functions that vanish to certain order at » = 0 can be captured by interpolation
spaces.

16
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2.2 Interpolation spaces

Proposition 2.17. Let k € N. For 6 € (0,1), 0k ¢ N, it holds
(L*(C1),0H*(C1))o2 = 0 HM(C1),
where
0H(C1) := {u € H*(Cy) : D'u(0) = 0,5 =0,...,[s] —2}.

Remark 2.18. The notation ¢H*®(C;) is motivated by [43, Sec. 1.11], where oH*(Q2) was
introduced.

Proof (of Prop. 2.17). We prove this result in several steps.
Step 1: Let u € oH*(Cy) € H*(Cy) = (L?(C1), H*(C1))g2. Then for every t, there is a
function v; € H*(Cy) such that

lu—=vellzzey) + vl gre,) < 2K (). (2.18)
Now define v := b7Vt where x 7 denotes a smooth cut-off-function satisfying x %(l‘) =0

k . . ~
for |z| < 7‘[ and x g;(z) = 1 for |z] > Y/t with 1D X gl Lo er) S (¥/t)™7. Note v €

H*(Cy), thus it is now sufficient to show

! 2 dt
0 ~ ~
L (=Tl + e, ) 5 < . (219)

since (2.19) is an upper bound for |[ul|2,, cf. Lemma 2.7.
Step 2: We show estimates for the first norm in (2.19). We write

lu=llLzeyy < = well2ien) + 10 = X g)vell2ier) < 2K (8 w) + ol 2 ean g 0))

and get for the integral

1 1
dt dt dt
—20 —20 2 —260

/Ot ||UtHL2 (C1NB y;(0)) 7 N/O t ||u_vt||L2(Cl)t+/J t Hu||L2 (C1NB ;(0) 3

dt

—29
[ s o s
(2.20)

We obtain with Lemma 3.31

! dt
—20 _ —20—-1
/t HUHLZ Clme(O))t_/ t / / @)% dr de dt
/ / / t720" Y (r, ¢)%r dt dr do = / / 260 _ V)u(r, @)% dr de

—k6
S ullfeeyy S lullfmoey)-

17
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2 Background

Step 3: We show estimates for the second norm in (2.19). We have

k—1
212112 2 ~12 Q—J 2 2 2
ol = D 10y S D% il cnm o + F lotllize ey
‘ =

2j

S t?‘vth{y(clmgk -(0)) + K (t,u)*.

For each 0 < j < k, scaling, with the scaled function U;(Z) := v¢(+v/tZ), the Gagliardo-
Nirenberg inequality and Young’s inequality give

2] 2 A 11— 2 2
E el einp 0 S P ((”) ]) [0t (campa (o))

2

5l P E a2
Ytl gk (cynBy (o) 1Vt L2 (eynBy (0)) T IVEIL2(C1nB1(0))

2 14k 11\ 20%) )
Stk ( <(t ) ) |Ut‘H’“ (C1NB 1;(0) ((tk) ) HUtHL2 ClkﬂBkt(O))

Z/\

R o2
L (ClﬁB {%(0))

_ t% 27 % 2(17%) 2
= ( ) ’vt|Hk(CmB,%(0))Hvt”L%CmB;\%(O)) + ||”t“L2(CmB,\%(O))
20,12 2
St |vt’H’€(CmB 1(0) + HthLQ(ClﬂB k(0))
Thus we get
1 1

dt dt

—20,2)|~ —26

| e e T S o+ [ ol on T (2.21)

where the remaining integral in (2.21) has already been handled in (2.20).
Step 4: We combine the results from the first three steps and obtain

1 2dt
] ~ ~ 2
| (= legey + tlne)) 5 S ey < o

which shows the continuous embedding o H*?(Cy) € (L%(C1),0H*(C1))p 2.

Step 5: To see the inclusion (L2(C1),oH"(C1))o.2 CoH*(C1), let u € (L2(C1),0H*(C1))g.2-
It follows u € (L?(C1), H*(C1))g,2 and thus immediately u € H*(Cy), so we must only show
Diu(0) = 0 for all j =0,...,[kf] — 2. In order to do this, we mention that for all t > 0
there exists v; € ¢H¥(C1) with the properties

(1) [l —=villLz(eyy + thoell e,y S K (G w),
(i) DIv(0) =0forall j =0,...,k— 2,

(iif) [lu = vell gro e,y < 3llullro ey,

18
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2.3 Vector-valued function spaces and the deRham-diagram

(iv) K(t,u) S t%lulpmoc,),
cf. Lemma 2.14 for (iii). For every j =0,...,[kf] — 2, choose €; > 0 such that j +1 <
Jj+1+4¢€; < k. Then we obtain via interpolation inequality
. . 17j+1+€j Jtite;
| D7 u — DjUtHHl*Ej ©) S lu— vt|’Hj+1+€j ©) S lu— UtHL2(c)k9 llu — Ut"Hk%g(c)
(i), (id) ity ve () -2 I+t
S K@) Bl eey) S (Pl ) lull e,

for all j =0,...,[k0] — 2, where the hidden constants are independent of t. Thus we get
by a Sobolev embedding theorem

: : . : 50
D u — D7 vy oo o) S 11D u — DjthHH.Ej(C) =0,
which implies D/u(0) = 0 for all j = 0,...,[k#] — 2 with property (ii). This shows

(L*(C),0H"(C))o,2 = o H(C). O

2.3 Vector-valued function spaces and the deRham-diagram

Aside from the usual gradient operator, the other well-known differential operators curl and
divergence appear in many partial differential equations, e.g. Maxwell’s equations. The
natural functions spaces for a variational formulation containing these types of derivatives
are H(Q2, curl) and H(Q,div). After a short introduction of these spaces, as well as the
more regular subspaces H*(£2, curl) and H?((2, div), we consider how they are connected by
differential operators, leading to the formulation of the deRham-diagram which will play an
important role in our analysis of the interpolation operators. Most definitions and results
in this section are standard, but can be found e.g. in [51, Chapter 3], [62, Chapter 3].

We start this section with stating the differential operators and the vector-valued function
spaces. The gradient operator of a scalar function u is defined as

ou ou\"

Vu:i=|—,...,—

ox1 oxy,
and the divergence operator of a vector-valued function u as
ou;

divu :=

Z o
For n = 3, the curl operator of a function u is defined as

curlu :— 8u3 _ 8112 _ 8113 _ 8u1 8112 _ 8111 T
T 83:2 8%3’ 8.731 8.753 ’ 8951 81‘2

whereas for n = 2 we must distinguish between the scalar-valued curl operator of a function
u
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2 Background

and the vector-valued curl operator for a function u
< ou  Ou >T
curly = —,——— | .

Similarly to (2.1), we can define weak versions of differential operators for functions not
regular enough to admit derivatives in the classical sense.

Definition 2.19. Let u,u € L?(9).

(i) We call g = Vu the (generalized) gradient of u if there holds
/ g -v= —/ udivv Vv € C5°(Q).
Q Q
(i) We call ¢ = curlu the (generalized) curl of u if there holds
/c~v:/u-curlv Vv € C§°(9Q).
Q Q

(iii) We call d = divu the (generalized) divergence of u if there holds

/dv:—/u-Vv Vo € C3°(Q).
0 0

The vector-valued function spaces corresponding to the various differential operators are
the following. Let s > 0. The vector-valued Sobolev space H*(2) is defined to be H*(2)
componentwise, and the negative norm ||- HIfI*S(Q) is defined analogously to (2.7). For n = 3
we set

H*(Q,curl) := {u e H*(Q) : curlu € H*(Q)}
and analogously
H*(Q,div) := {u e H*(Q) : divu € H*()}.

The corresponding norms are || - H%{S(churl) = ||%{S(Q) + | curl~||%ls(m and |- ||%S(deiv) =
| - ||%IS(Q) + || div |2 +(q)» Tespectively. For n =2, we have

H*(Q, curl) := {u € H*(Q) : curlu € H*(Q)}

with norm || - H%IS(Q,curl) = ||%IS(Q) + || curl -H%IS(Q). If s = 0, we simplify the notation by
omitting the superscript s, which gives the spaces H({2, curl), H(Q2,div) and H((, curl).
The tilde norms for these spaces are defined as

= o T I curl‘||%I

(= =1l I
H~%(Q,curl) H—s( —s(Q)

and analogously || - Hﬁ—S(Q,div) and || - ||I~{_S(churl).
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2.3 Vector-valued function spaces and the deRham-diagram

For u € C§°(f2), we denote the tangential component and tangential trace as Il,u :=
n X (ulr x n) and v, := u|pr X n, where n denotes the outer normal vector of 2. The
operators 11, and ~; can then be extended to continuous and linear maps on H({2, curl),
cf. [62, Th. 3.6]. The analogous statement holds for the normal trace y,u := u - n which
can be extended to an operator on H(Q,div) ([62, Th. 3.9]).

The spaces Hy(€2, curl) and Hy(£2, div) are the subspaces of H({2, curl) and H(f2, div) with

vanishing tangential or normal trace, i.e.
H (€2, curl) := {u € H(, curl) : II,u = 0}
and

Hy(Q2,div) := {u € H(Q,div) : y,u = 0},

We note that these spaces coincide with C§° (Q)H.HH(Q’CWFD and C§° (Q)H.HH(Q'&V), respectively,
cf. [51, Thm. 3.25, Thm. 3.33].
If Q is a convex domain, we have the continuous embeddings

Ho(Q, curl) N H(Q, div) ¢ H(Q) (2.22)
and

H(Q, curl) N Hy(Q, div) ¢ H(Q), (2.23)

cf. [11, 56|, [3, Thm. 2.17], see also [51, Rem. 3.48]). If  is not convex, but a bounded
Lipschitz polyhedron, the given function may not be as smooth as H*(£2), but there is an
s € (0,1/2] such that (2.22) and (2.23) hold with H*(2) on the right-hand side, cf. [3,
Prop. 3.7] or [51, Thm. 3.50].

We have the integration by parts formula (Gauss)

/divugodx-—/u-V@dx+/ pu - nds(x) Yu e HY(Q), p € H(Q)
Q Q oN

which extends to u € H(2,div). In this case, the boundary integral is replaced by a duality
pairing, cf. [51, Th. 3.24]. Concerning the curl operator, we have the Stokes formula

/ v-curludx = / u-curlvdx — / ILu - y,vds(x) u,v € H'(Q) (2.24)
Q Q oN

which extends to u,v € H(Q,curl), cf. [51, Th. 3.29]. In two dimensions, the Stokes
formula has the form

/u-curlvdx—/vcurludx—/ vu - t ds(x) uc HY(Q),ve H'(Q), (2.25)
Q Q o0

where the boundary (and therefore the tangential vectors t) is oriented in the mathemati-
cally positive direction.

In the next part, we state the relations between the differential operators and the introduced
function spaces. For the rest of the section, we need the following assumption.
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2 Background

Assumption 2.20. Let the bounded Lipschitz domain Q additionally be simply connected
with only one boundary component.

We now state the results about the existence of scalar (and vector) potentials in the case
of curl-free (and divergence-free) vector fields.

Proposition 2.21 ([51, Th. 3.37]). Let u € L*(Q). Then curlu = 0 in Q if and only if
there is a scalar potential ¢ € H()) such that u = V. The potential ¢ is unique up to
an additive constant.

An immediate consequence of Proposition 2.21 is the identity
VH'(Q) = {v € H(Q,curl) : curlv = 0}. (2.26)

Proposition 2.22 ([36, Th. 3.4]). Let u € L?(Q2). Then divu = 0 if and only if° there is
a vector potential v € H'(Q) such that u = curl v.

Since the well-known identity div curlu = 0 holds, Proposition 2.22 implies
curl H(Q, curl) = {v € H(2, div) : divv = 0}. (2.27)
For f € L?(f2), we solve the Dirichlet problem

—(V, Vo) 2y = (f,v)r2@) Vv € Hy(Q)

and get ¢ € HE(Q) as solution. Since u := Vi) € L?(Q) satisfies divu = f, there holds
u € H(Q,div), and we get

div H(9, div) = L*(Q), (2.28)

cf. [62, Lemma 3.15].
The relations between the function spaces as stated in (2.26), (2.27) and (2.28) can be
presented in the deRham-diagram, which forms an exact sequence. That means that the
range of each operator coincides with the kernel of the following operator. In three spatial
dimensions, we have

R % HY(Q) % H(Q curl) <5 HQ, div) 2% 12(Q) % {0} (2.29)
cf. e.g. [51, eq. (3.59)]. If we also take boundary conditions into account, we obtain the
sequence ([51, eq. (3.60)])

0y % HY Q) L Ho(Q, curl) =25 Hy(Q,div) 2% £2(Q)/R 2 {0} (230)

Similar sequences hold for functions with more regularity. For s > 1

R =% H(Q) < H7H(Qcurl) S5 HTHQ,div) S5 HTHQ) 2 {0)

3Note that for domains with more than one single boundary part I';, we must additionally assume fp un=
0 on each part in order to find such a vector potential. '
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2.4 Finite element discretization

In two dimensions, the situation is similar, however, there are two possible ways to build
exact sequences due to the existence of two different curl-operators. The sequences here
are

R % 75Q) % HYQ, cwl) 2 B51(Q) 5 {0}

and

5 HTNQ) S {0

We mention that we will only use the first one for the construction of the interpolation
operators. The presented exact sequences are well-known, see e.g. [19] for a reference.

If Assumption 2.20 is violated, the sequences need not be exact. In this case the range
of each operator is still contained in the kernel of the subsequent operator, but range and
kernel do not coincide in general. The reason lies in the fact that there may be functions
in the kernel which cannot be represented as gradient (or curl) of another function, cf. [38
Remark 5 and previous pages].

R % mgs(Q) <% H-1(Q,div) 2%

2.4 Finite element discretization

In this section, we recall the basics of the finite element method, especially for the p-
version, since we construct p-version projection-based interpolation operators in Chapter 4.
Although FE triangulation can have many different types of elements (triangles, squares in
2D; tetrahedra, hexahedra, wedges, pyramids in 3D), we will concentrate only on triangles
and tetrahedra. For further reference to the finite element method, see e.g. [16], [51,
Chapter 5 ff.], or [57] especially for the p-version.

2.4.1 Spaces on the reference element

Denote by K the reference tetrahedron in 3D which is a fixed tetrahedron with diam K = 1.
In 2D, we denote the reference triangle by ]?Which is a fixed triangle with diam f: 1. The
reference element € in 1D is the interval € := (—1,1).

We next introduce the p-version finite element spaces in the classical sense, see e.g. [38, 51,
54]. For the n-dimensional manifold v € {K, f,R3,R2 R}, we denote by P, »(v) the space
of polynomials of degree p in n variables on v. If we need spaces of polynomials on faces
f € F(K) or on edges e € E(K), the spaces P »(f) and Pp(e) are defined by identifying f
or e with the reference elements f or € via an affine map.

On K , we define the discrete spaces of degree p > 0 by

W, (K) := Py(K) := span{z® : |a| < p}, (2.31a)
Qy(K) == NI(K) == {p(x) +x x q(x) : p,q € (Pp(K))*}, (2.31b)
V,(K) = RT,(K) := {p(x) + q(x)x : p € (Py(K))*, q € Pp(K)}. (2.31c)

The spaces N (K) and RT (K ) are the classical Nédélec type I and Raviart-Thomas
elements.
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2 Background

The spaces in (2.31) are defined in such way that they satisfy an exact sequence property
similar to the continuous case (2.29), namely

R S W, (K) 5 QuE) =5 v, (K) L% w,(K) 2 {0} (2.32)
see [26, (57)]. R
In 2D, the Nédélec type I elements on the reference triangle f are defined by

Q)(f) =Ny () == {p(x) + a(x)(y, —2)" : P € (Pp(f))*.q € Pp(/)},

where 75[,(]?) denotes the homogeneous polynomials of degree p on f Here we look at a
shortened sequence of the form

id NV N 1 ~N 0
R = Wyri(f) = Qu(f) = Wp(f) — {0}
Since the interpolation operators will be built up by dimension, we need the trace spaces of
the discrete spaces on various parts of the boundary. The trace spaces on faces f € F(K)
are defined by

Wy(f) = Wp(K)ls, Qul(f) == (ILQu(K))s,  Vi(f) := Vp(K) - ny,

where n; denotes the outer normal vector of f, which is fixed by coinciding with the
outer normal vector of K on f and thus also determines the orientation of f. These trace
spaces can be identified with other already known spaces. After identifying the face f
with the reference triangle f using an affine bijection, the spaces Wy (f) and V,,(f) are
both isomorphic to the polynomial space P,(R?), and the space Q,(f) to Qp(f). On edges
e € £(K), we set

Wy(e) = Wp(K)le, Qple) == Qp(K) - te,

where t. denotes the tangential vector of the edge e whose orientation is determined by the
orientation of the face f (that must obviously satisfy e € £(f)). We proceed analogously
to the faces above and identify e with e, which gives the identification of the spaces W), (e)
and (Qp(e) with the polynomial space P,(R).

2.4.2 Discrete spaces with boundary conditions

We will need subspaces with vanishing boundary values also in the discrete setting. To this
end we set

W,(K) := W,(K) N H} (K), Q,(K) :={u e Q,(K) : TL,u = 0},
V,(K) :={u € V,(K) : y,u = 0}, W (K) = {u € Wy(K) : /f(u =0}.

On the faces, the spaces look
Wo(f) = Wo(f) N H(f),  Qp(f) = {u € Qu(f) : Tl yu = 0},
Vi(f) :={u € Vy(f): /u =0}
f
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2.4 Finite element discretization

for f € F (I? ), where I ; denotes the tangential trace on the boundary of f and is defined
by (Il pu)|e = ulc-t. for each edge e € E(f) and sufficiently regular functions u. Lowering

the dimension again, we get the trace spaces on the edges e € £ (I? )

Wile) i= W(e) N HY (), Qule) i= (we @ule): [u=0}.

The exact sequences for the spaces with vanishing boundary values turn out to be

(0} 5 W (B) 5 Qu(R) 2% Vi (K) &% wever(K) % {0}
{0} i Woi(f) ~5 Qu(f) =5 V() S {0} (2.33)
{0} % Woale) 25 Qple) % {0}

where V; and V., are the surface gradient on the face f and tangential differentiation along
the edge e, respectively, and where curly denotes the surface curl on f, see [39, (4.16)]. Note
that these differential operators are defined by

Veu = (Vu)le - te, Viu= (Vu)|y —ns((Vu)|f-ny), curlf u = (curlu)|s - ny.

If we start in two spatial dimensions, we define on the reference triangle f

~

W,(f) == Wo(F) N HY(f), Qup(f) ={u€ Qy(f)|u-t.=0Vec&(f)}

and get the sequences from [26, (33)]

Id o ° curl ° N 0
{0} —— Wi (/) —— Qu(f) == V,(]) ’ {0}_ (2.34)

{0} —= Wpii(e) — Qple) —— {0}

2.4.3 Finite element spaces on meshes

In this subsection we assume that € is a bounded polygonal (in 2D) or polyhedral (in 3D)
domain with Lipschitz boundary. We now introduce triangulations and FE-spaces for the
global spaces H'(€2), H(2, curl) and H(€, div).

We use a regular, shape-regular triangulation 7 of §2 to define the discrete spaces. In 3D,
such a triangulation is assumed to satisfy the following properties:

(i) The open elements K € T are tetrahedra and cover . That is Q = e K. Their
intersection is either empty, a vertex, an edge, a face or they coincide. The sets of
vertices, edges and faces of K are denoted V(K), £(K) and F(K), respectively.

(ii) Denote by K the reference tetrahedron which is a fixed tetrahedron with diam K=1.

Associated with each element is a C''-diffeomorphism F : K — K, called the element
map.
(iii) There holds, with some shape-regularity constant -,
(dinm K) | il ) + (dinm K[ () i) <7
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2 Background

(iv) The parametrization of edges and faces is compatible, i.e. if two elements K, K "eT
share an edge (Fi(e) = Fgr(€) for e, e’ € E(K)) or a face (Fx(f) = Fr/(f') for
f,f' € F(K)), then Flgl o Fgr: f' — f is an affine isomorphism.

The global finite element spaces on €2 are defined with the aid of the Piola transform. Note
that we use the covariant transform for H(€, curl) functions and the contravariant version
for the space H(S2, div). We set

W,(T) :={u € H(Q) : u|g o Fx € Py(K)}, (2.35a)
Qp(T) == {u € H(Q, curl) : (F)Tulx o Fix € NI(K)}, (2.35b)
V,(T) := {u € H(Q,div) : (det Fi)(Fi) ‘u|g o Fx € RT,(K)}, (2.35¢)

cf. [51, (3.74), (3.76), (3.77)]. The covariant and contravariant transformations preserve
tangential and normal traces, respectively. Moreover, differentiating the transformed func-
tions is well-defined. For a function @ € H'(K) that is transformed to a function u on K
by uo Fx = 1, it holds

Vu = (Fi) TV,
where V denotes the gradient operator with respect to the coordinate system for K , cf.
[51, (3.75)]. Similar results hold for the other differentiation operators, namely,
curluo Fyx = (det Fj) ! Fjcurld

for 4 € H(K, curl) transformed by uo Fx = (Fj)~Td, and

divuo Fg = (det F}{)_léi;ﬁ
for 1 € H(K, div) transformed by uo Fi = (det F 1) "LF -, where the Piola transforma-
tions as in (2.35b) and (2.35c) are used, see [51, Cor. 3.58, Lemma 3.59].

2.4.4 A p-version approximation result

In order to improve convergence in the p-version, one has to increase polynomial degrees
in the discrete spaces (opposed to the h-version where convergence is achieved by reducing
mesh size, or to the hp-version where both is done simultanously). An important role
plays the following approximation result. For the one-dimensional case n = 1, see e.g.
[46, Thm. 5.1], the higher-dimensional results then follow by applying the case n = 1
componentwise.

Lemma 2.23. Let K be a fized n-dimensional simplez in R™, n € {1,2,3}. Fizr > 0.
Then there are approzimation operators J, : H"(K) — (P,)" such that

lu—Jpulge ) < Cp+ 1) " Iullgr ), VpeNy, 0<s<r
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2.5 Regularized right inverses and Helmholtz decompositions

2.5 Regularized right inverses and Helmholtz decompositions

Classical Helmholtz decompositions on bounded, simply connected domains 2 are well-
known, where one decomposes a vector field u € L?() into the sum of a gradient and
a divergence-free part, see e.g. [36, Cor. 3.4], or also [51, Sec. 3.7, Sec. 4.4] for similar
decompositions. However, what we need are decompositions for more regular functions in
H?(Q) for s > 0, which are constructed with the help of the following right inverses for the
differential operators from [19].

We start with the 2D-case in the reference triangle f

Lemma 2.24 ([19],[10, Sec. 2.3]). Let B C f be a ball, and let 6 € C°(B) with [0 = 1.
Define the operators

1
radux — a ula X —a (X—a)aa
Rt = [ ofa) [ wa tte—a)) dr- (x a) da

=0

Ry (x) = /a y 0(a) /t 1 tu(a -+ t(x — a)) dt < ~(x2 — ) ) da.

-0 X] — aj
Then the following statements hold.
(i) Foru € L2(f), there holds curl Ry = w.
(i4) For u with curlu = 0, there holds VR#*du = u.
(iii) If u € Qp(f), then R&*u e W,y (f).
() If u € V}g(f), then Ry € Qp(f).

(v) For every k > 0, the operators R and R are bounded linear operators Hk(]?) —

~ ~ o~

HETL(f) and HE(f) — HFYL(f), respectively.
These operators are now the main tool for the construction of regular decompositions.

Lemma 2.25. Let s > 0. Then each u € HS(‘]/‘“\7 curl) can be written as
u=Vy+z,
where ¢ € HL(f) and z € HS V().
Proof. Since Lemma 2.24, (i) shows curl(u — R°"!(curlu)) = 0, there holds
VR (u — R (curlu)) = u — R®(curlu)
by Lemma 2.24, (ii). Thus, we can write

u =V Re"™(u — R (curlu)) + R (curlu) .

v

=ip =z

The mapping properties of R and R of Lemma 2.24, (v) then give the result. O
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The following decomposition looks similar to Lemma 2.25, however, note that the proof
does not rely on the right inverses, but uses the shift theorem as its main tool.

Lemma 2.26. Let s € [1, 7 /wmaz), where wpmq, denotes the maximal interior angle of J?
Then each u € H*(f) can be written as

u= Vg + curl z, (2.36)
where o € HTY(F) N H&(A) and z € HY(f) with (z,l)LQ(A) = 0. Additionally, the
estimate

el sy + 1olen sy S Il
holds.

Proof. We define ¢,z € H SH(]?) as the solutions of the equations

—A(p = —div u,
R (2.37)
(p e O on af
and
—Az = curlu,
Opz=—t-(u—Vy) on 5J?, (2.38)

/Az:().
f

Note that t denotes the unit tangent vector on Of and is oriented such that f is “on
the left”. The Neumann problem (2.38) is solvable because the compatibility condition
is satisfied, which is immediately seen after an integration by parts argument, cf. (2.25).
Corollary 3.43 and Proposition 3.48 then yield the estimates

el ensp < vl sy S ey
and
HZHHs-H(f) S HuHHs(f)-

We now show that the decomposition (2.36). The difference 6 := u — (Vy + curlz)
satisfies divd = 0 and curld = 0. If we denote t = (t1,t2)" and n = (ny,na) ', it follows
that t = (—ng,n1) ", thus

t-0=—-0,z+t -curlz=0.
This implies § = 0, which yields the decomposition. O

In 3D, the definition of the right inverses and the resulting decompositions on the reference
tetrahedron K are similar.
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2.5 Regularized right inverses and Helmholtz decompositions

Lemma 2.27 ([19], [39, Sec. 2]). Let B C K be a ball, and let 6 € C§°(B) with Jp0=1.
Define the operators

1
rad = a u(a X —a - (x —a)da
Re u@)-[¥39<>l' (a+t(x —a))dt - (x — a) da,

=0

1
culy(x) := a u(a+t(x—a x —a)da
R = [ o) [ e t(e—a))di x (x—a)da,

1
dive(x) == a 2u(a x—a x —a)da.
ROuG) = [ 0fa) [ Pu(a e a)die— ) d

Then the following statements hold.
(i) For u with divu = 0, there holds curl R®""'a = u.
(i) For u with curlu = 0, there holds VR&™*u = u.
(iii) For u € L2(K), there holds div R%Wu = u.
(iv) If u € Qp(fi\'), then R&*u € WPH(IA().
(v) If u € Vp(IA(), then R € Qp(l?).
(vi) If u € Wp(l?), then Ry € Vp([?).

(vii) For every k > 0, the operators ]-Egrad,/\Rcur1 and ].:/{\di" are bounded linear operators
HY(K) — HMY(K), H¥(K) — H**Y(K) and H*(K) — H*(K), respectively.

Lemma 2.28. Let s > 0. Then each u € HS(I?, curl) can be written as
u=Vy+z,
where ¢ € HPY(K) and z € HYY(K), with the estimates
leleesy S Ml gommn 2o ) S leurlulp z.
Proof. Since Lemma 2.27, (i) shows curl(u — R®"!(curlu)) = 0, there holds
VR#(u — R®™(curlu)) = u — R (curlu)
by Lemma 2.27, (ii). Thus, we can write

u =V Re"™(u — R (curlu)) + R®(curlu).

/

=ip =z

The mapping properties of R and R4 of Lemma 2.27, (vii) then imply the desired
regularity of ¢ and z.
The stability properties of the operators R and R#2d then give the estimates

2

url
) 5 Hu - R (curlu)|| Hs+1(f()

||<)0H§_Ia+1(i(\' ?_15(1?) 5 ||11||2 6(1?) + ||Rcurl(curl u)||

< 2 )+l eurlul2, o) = [l

) (K curl)
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2 Background

and
12l g1 7y = IR (curlu) g z) S Il curluf g, -
Lemma 2.29. Let s € [0,1]. Then each u € H¥(K) can be written as
u= Vp+ curlz,

where ¢ € H*T(K) N H}(K K) and z € H*T(K). Additionally, the estimate

6l goes ) + I2lggos ) S e
holds.
Proof. We define ¢ € H&(IA( ) as the solution of the problem
—Ap = —divu,
p=0on oK.
Since the differential operator div maps HY(K) — L2( ) and L2( ) — HY(K), the
convexity of K gives ¢ € Ho( )if s=0and ¢ € H*(K ) N H}(K) if s = 1. Interpolation
between H(K) and H2(K) yields ¢ € H**1(K) N H}(K), and the estimate
HSOHHsH(f() N HuHHs([?)

holds. The mapping properties of Lemma 2.27, (vii) show z := R (u — V) € H*"!(K).
Note that div(u — V) = 0, hence it follows u = V¢ + curlz by Lemma 2.27, (i). The
stability property of R°"! then gives the estimate
2lgges ) = IR = Vi) g ) S 10— Vllgro ey S Il e
]

We also need decompositions similar to Lemma 2.29, but with boundary conditions for the
H(curl)-functions. We start with a lemma.

Lemma 2.30. The following regqularity statements hold:

(i) Let v € L2( ) and g € L2(8K) with gly € HY2(f) for each face f € ]-"(A) satisfy
the compatibility condition va + faKg = 0. Then the solution ¢ € Hl( ) of the
Neumann problem

—Ap=v in I?,
' (2.39)
Onplyp =9 on IK,
satisfies o € H2(K) with the estimate
lell oy S Mol oy + Do Nallare (2.40)

FEF(K)
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2.5 Regularized right inverses and Helmholtz decompositions

(i) For s €[0,1/2], let v e H Y/2*5(K) and g € L2(8K) with gly € H*(f) for each face

~

f € F(K) satisfy the compatibility condition

<'U, 1>ﬁ,1([’(\-)xH1(}?) + /A g - 0 (241)
oK

Then the solution ¢ € HY(K) of the Neumann problem (2.39) satisfies o € H*t3/2(K)

with the estimate

10 prevarz gy S N0l g—r/2s () + Z gl s f)-
JeF(K)

Proof. We start with (i). Let o € Hl(f() be a vector field with the condition o-n =g
on K. Such a vector field exists, since constructing such a vector field away from the
vertices and edges is straightforward, and near the vertices and edges, the construction is
reduced to one in an octant of R? by an affine coordinate change. Each component of o
can there be constructed separately by lifting from one of the coordinate planes, since two
components of n are always zero.

We now define z := V¢ — o. Since we have

divz = Ap —dive = —v —dive € L*(K)
and

curlz = —curlo € L*(K)

together with z-n = 0, it follows z € H(K), ¢f. [3, Thm. 2.17], which implies ¢ € H(K).
The norm estimate follows directly from the continuity of the embedding in [3, Thm. 2.17]
together with the continuity of the lifting.

We now show (ii). It is well-known that the solution u € H'(Q) of the problem

€ L*(K),

—Au = _|[?’71(g’1)L2(8[?) (2 42)

Onulygp =g € L*(0K)

lies in the space H3/2(K), with the estimate

lolrmy = [|1B1 0.0 2008 o o, + 190200y S 191205y

L2(K

cf. [51, Thm. 3.18], [40, Sec. 6]. It also holds that for v € ﬁfl/z(f(), the solution u € H(Q)
of the problem

e H'*(K),

—Au=v—|K|" (v, D) f-1(Ryx (%) (2.43)

Onulyp =0
satisfies u € H3/2([?), with the estimate

HUHH3/2([/(\') S ||,UH}~[—1/2(I?)-
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2 Background

This is seen by interpolation between the regularity results for v € H 4([? ) (cf. [51,
Thm. 3.16]) and v € L?( K) (which has been shown in (i)). Adding both problems implies
that the solution u € H!(K) of the problem

—Auw=v— K[ (0, 1) o @y @) — K170 D) 2oy € HVA(E),

R (2.44)
Onulye =g € L*(0K)

is in the space H3/2(K). Note that the compatibility conditions for the problems (2.42),
(2.43) and (2.44) are satisfied by construction.

Now assume the the compatibility condition (v,1)z_ YRy HV(R) T fal?g = 0 is satisfied.
This implies that the Neumann problems (2.39) and (2.44) are equivalent, hence we obtain
that the solution v € H'(K ) of (2.39) for v € H V2(K) and g € L*(OK) satisfies u €
H3/2(K), with the estimate

ull grare 2y S 1ol =172y + Z 9l z2(5)- (2.45)
fEF(K)

We now identify the sum of norms on the right-hand side of (2.45) with the product norm
of the space

1/2 H Lz
FEF(K)

Analogously, the right-hand side of (2.40) can be seen as a function in

T 2“2

fEF(K)

Since interpolation is compatible with generating the (finite) Cartesian product, the desired
result follows from interpolation between (2.40) and (2.45). O

Lemma 2.31. Any v € H'(K) can be written as

v = Vg + curlcurl zg, (2.46)
v = V1 + curlz, (2.47)

where ¢ € HQ(K) NHE(K K) and zo € H' (K, curl) N Hy(K, curl) and where ¢, € H2(K)
and z, € HY(K, curl) N Hy(K, curl) together with the estimates

9ol g2 () + 120l (% curty < ClIVIE ()

H‘PIHHZ(]?) + ||Z1||H1(f€,curl) < CHVHHI([?)'

Proof. We proceed in several steps.

Step 1: We construct the decomposition (2.47).
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2.5 Regularized right inverses and Helmholtz decompositions

We define o1 € H 2(IA( ) as the solution of the Neumann problem
—Ap; = —divv in I?,
Ohpr=n-v onf)l?,

cf. Lemma 2.30. Note that the compatibility condition is clearly satisfied by an integration
by parts argument. The function z; is then defined by the following saddle point problem:
Find (z1,1) € Ho(K,curl) x H}(K) such that

(curlz, curl W)Lg(f() - (Vw,W)LQ(f() = (curlv,w)LQ(f() Yw € Hy(K, curl), (2.48a)
(21,V4) 122y = 0 Vg € Hy(K). (2.48b)

We now show that the problem is uniquely solvable. We define the Eilinear forms a(w, q) =
(curlqg, curl W)LQ(;{) and b(w, ¢) 1= (w, Vgo)LQ(f{) for w,q € Ho(K, curl) and ¢ € Hi(K).
Since the kernel of b equals

kerb = {q € Hy(K, curl) : (q, V(p)LQ(f{) =0 Voe H}(K)},

coercivity of a on kerb is a direct consequence of the Friedrichs inequality for the curl-
operator (see e.g. [51, Cor. 3.51]) by

a(q, q)LZ([?) = H curlq”ip(f() 2 Hqug(f() + H CurquiQ(}?) 2 HqHH(IA(,curl)
for all q € kerb. The inf-sup-condition

b(w, p) -

inf sup
peHj(K) weH (K curl) Hvv”H(I?,curl) ||('0HH1(I?)

is shown by choosing w = V¢ € Ho(K, curl) for given ¢ € H&(IA( ), which implies

2

”WHH([?,cur])HSDHHl([?) B ”VSDHLz(I?)”SDHHl(;?)

by the standard Poincaré inequality. Thus, (2.48) has a unique solution. Choosing w = V1)
as test function in (2.48a) shows 1) = 0. The solution z; now satisfies the estimate

P

where f(w) = (curlv,w)L2(I§), and where || - || denotes the operator norm, cf. [12,
Thm. 4.2.3]. Since

IFl=  sup|(curlv, w) o | < eurl vl oz,

”w”H(I?,curl)

it follows

HZIHH([A(,CIH']) S Curlv”m(}?) S HVHHl(f()-
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2 Background

Equation (2.48b) yields divz; = 0, thus (2.22) implies ”Zl”Hl(f() < ||VHH1([?)- Note that
the difference § := v — V1 — curl z; satisfies by construction divd = 0, curld = 0, and

n-5:(n-v—6ng01)—n-curlz1:O—curlaf(HTzlz()—O:O

on the boundary, hence [51, Cor. 3.51] implies § = 0. The regularity curlz; € H!(K) now

~

follows from v € HY(K), ¢; € H?>(K) and the representation (2.47).

Step 2: We construct the decomposition (2.46). R R
The proof uses similar arguments as above. We define o € H?(K)NHE(K) as the solution
of the Dirichlet problem

—Apg=—divv in I?,
wo=0 on oK.

Next, we define (zo, v) € Ho(K, curl) x H} (K) as the solution of the saddle point problem

(curlzg, curl W)LQ(IA{) - (Vw,w)LQ(f{) =(v— Vgpo,w)LQ(f{) vw € Hy(K, curl),
(ZOa VQ)Lz(f() =0 vq € Hé([?)a

which is uniquely solvable with the same argumentation as for (2.48). Since div(v—Vy) =
0, it follows again 1 = 0. We obtain the bound

”ZOHH(CurLf() Slv— V‘P()”Lz(f() N HVHLz(f()a

which implies HZ0HH1( R) S vz (&) by (2.22) using the observation divzo = 0. Represen-
tation (2.46) now follows by an integration by parts,

curlcurlzy = v — V.
O

If v is not a function in H'(K), but only in HY/2T(K) for ¢ € (0,1/2), one can show a
similar decomposition as in Lemma 2.31. Even the proof is quite similar.

Lemma 2.32. For e € (0,1/2), any v € HY2T(K) can be written as

v = Vg + curlcurl zy, (2.49)
v = Vi + curlz, (2.50)

where o € H3*t(K) N HY(K) and zo € HY2t¢(K, curl) N Ho(K, curl) and where @1 €
H3?4¢(K) and z; € H'/?*¢(K,curl) N Ho(K, curl) together with the estimates

||900HH3/2+6(}?) + HZ0||H1/2+6(I?,curl) < C||V||H1/2+e(f<)v

||901||H3/2+e(f<) + HZ1||H1/2+€(IA<,cur1) < C||V||Hl/2+e(f()-
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2.5 Regularized right inverses and Helmholtz decompositions

Proof. We again start with decomposition (2.50).
We define ¢ € H3/?T¢(K) as the solution of the Neumann problem

~

—Apy = —divv e HV*4K) in K, (2.51)
Onpr=n-v on dK, (2.52)

cf. Lemma 2.30. R
The contribution z; is defined by the saddle point problem: Find (z;,v) € Ho(K, curl) x

~

H{(K) such that

(curlzp, curl W)LQ(IA{) - (V@Z),W)Lg(f() = (v, curl W)LQ(IA() vw € Hy(K, curl),

(21,V) 2 =0 Vg € Hy(K).

(2.53)

By the same arguments as in Lemma 2.31, the coercivity on the kernel and the inf-sup-
condition are satisfied, thus problem (2.53) is uniquely solvable with ¢» = 0 (use the test
function w = V). Furthermore, we get the estimate

HZIHH([?,CUH) N HVHL2([?) N HV”H1/2+e(f<)a

and with (2.22) it follows HZ1HH1(;?) < HVHH1/2+e(f<)- Writing 6 := v — Vg1 — curlz,
we can conclude & = 0 repeating the arguments in Lemma 2.31, which shows the desired
decomposition.

The decomposition (2.46) is constructed analogously to Lemma 2.31 after obvious changes
considering the regularity of v. We only mention that the definition of ¢y € H3/2te (K)N
H&(IA() as the solution of

~

—Agy = —divv e H/**(K) in K,
wo=0 on 0K

is again meaningful by interpolation arguments. O
In 3D, we also need a decomposition for vector fields in the space H(I? ,div).

Lemma 2.33. Let s > 0. Then each u € H*(K,div) can be written as
u = curly + z,
where @ € HYY(K) and z € H*T(K). Additionally, the estimates
1l ) S Il ey @ I2lggons ) S Il divall ez,
hold.

Proof. Since Lemma 2.27, (iii) shows div(u — R4V(divu)) = 0, there holds

curl R (u — R (divu)) = u — R (divu)
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2 Background

by Lemma 2.27, (i). Thus, we can write

u = curl R (u — R¥(divu)) + R"(divu).

/

~~

=ip =z
The stability properties of R and RYY of Lemma 2.27, (vii) then imply the estimates
H‘PHHsH(fg) < lu = R™(div u)”ﬂs(f{) S HuHHs(k) + R (div u)HHsH(f()
N ||uHHs(1?) + | diquHs(f() S HuHHs(fgdiv)

and

”ZHHs+1(f() = HRdiV(divu)HHsH(f() S diquHs(f().

2.6 Discrete Friedrichs inequalities

The well-known Poincaré inequality states that the L?-norm of a function u € H} can
be bounded by the H'-seminorm. Similar results - called Friedrichs inequalities - hold
true for functions in H(curl) and H(div), where the corresponding seminorms are defined
naturally. However, just as the Poincaré inequality requires the function u to satisfy zero
boundary conditions, additional conditions to the functions are needed for the Friedrichs
inequalities. In this section, we now state several versions of the Friedrichs inequalities
for discrete functions, first for 2D, then for 3D, which partially use the right inverses of
Section 2.5 in the proofs.

Lemma 2.34 (discrete Friedrichs inequality in 2D). The estimate
||U-||L2(f) S CurluHLz(f), (2.54)
where the constant does not depend on p and u, holds in the following two cases:

(i) ue Qp(f) satisfies (u, VU)LQ(]?) =0 forallv e Wp+1(f).

(i) u € Qp(f) satisfies (u, VU)LQ(f) =0 forallv e Wp+1(}\).

Proof. A proof of (i) is found in [29, Lemma 6] or [26, Lemma 4.1]. In order to prove
statement (ii), we use the operators R&"d and R of Lemma 2.24. We decompose u €

Qp(f) as
u =V Re"™(u — R (curlu)) +R"(curl u).
=)

~ ~

Since u € Q,(f), it follows ¢ € W,11(f) with Lemma 2.24, (iii), (iv). The property
u€e Qp(f) implies

t- Vi = —t - R (curl u),
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2.6 Discrete Friedrichs inequalities

where t denotes the tangential vector on the boundary of Zoriented in the mathematical
positive direction. Since v is continuous at the vertices of f, we obtain

W rsrzop S 1980 eop, = 6~ RO eurlw) 2 o, < IR eurlw)] 2 o,

< curl < curl < (255)
< IR ewrlw)] /a0y S IR ewrlw)ll 7y S llerlul s 5,

With the lifting operator £&24:24 . H1/2(9f) — H(f) from [5], we define
o = — LEVH(Y] ).

Since the lifting £8742¢ has the property that ¢ € Wp_;,_l(f) implies £8784:2d(y)| 8]?) €

Wp+1(f), it follows immediately g € Wpﬂ(f). Since furthermore £872424] = 1, we
get
IV L& 27y S [l o (2.56)

which results in the estimate

i, 7 = (w0, Vb + VLE2(] ) 2) + R (curl ) o
= (u, Vﬁgrad’2d(1,b|8f) + R (curl u))LQ(f)
<l o gy {IVLE 2201, ) oy + IR (eurl w7 b
(2.56) ol (2.55)
<l {1l o+ IR ewd il oy b S gl curlull s .

where we used the assumption (u, Vv),, =0 for all v € Wpﬂ (f) in the second equation.
O

We present now the corresponding result in three dimensions, which is proved in [26,
Lemma 5.1].

Lemma 2.35 (discrete Friedrichs inequality for H(curl) in 3D). The estimate
Jull i) < lleurlul 2z, (2.57)
where the constant is independent of p and u, holds in the following cases:
(i) we Qyi(K)i={veQyK): (v, V) o3y =0 Yoo € Wpia(K)},
(ii) we Qi (K)i={v € QuK): (v,Ve) o =0 Vo€ Wya(K)}.
In three dimensions, we can also state a similar inequality for H(div)-functions.

Lemma 2.36 (discrete Friedrichs inequality for H(div)). With the notation of Lemma 2.35,
the estimate

||u”L2(f() SJ ||diquL2(j€)7 (258)

where the constant is independent of p and u, holds in the following cases:

37


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2 Background

(i) ue Vp(l?) satisfies (u,curlv),, 7y =0 forallve Qp(f(\'),

(
(ii) u € Vp(I?) satisfies (u,cuer)LQ(IA{) =0 forallv e Qp(l?),
(iii) u € Vp(f() satisfies (u,curlv)Lz(f{) =0 forallv e QI,,L(I?).

Proof. The statements (i) and (ii) are shown in [26, Lemma 5.2]. In order to prove (iii),
assume that u satisfies the given condition. We then write v € Q,(K) as

v=Igys v+ (v-—1I

VWpt1 VWP+IV)’

where HVWp+1 denotes the L2-projection onto VWPH(I? ) C Qp(l? ). Since it follows v —
HVWerlv S (OQPA_(K), we obtain

(u,curl V)LQ(IA{) = (u, curl(vapHv))LQ(f{) + (u,curl(v — HVVVP+1V))L2(I?) =0.

=0 =0, since v — Il v S QP’L(I?)
p

Thus, u in fact satisfies condition (ii), and the estimate follows. O]
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3 The shift theorem in 2D

This chapter is about the regularity of the solutions of the Dirichlet problem
—Au=f inQ,

(3.1)
ulp=0 onI :=0Q

and the Neumann problem
—Au=f in Q,

(3.2)
Opulr =0 onT

for given right-hand side f in a Sobolev or Besov space in a polygonal domain Q C R2.
The goal is the statement of the shift theorem and its proof for the limit case in Besov
spaces (from which the result for right-hand sides in Sobolev spaces will follow rather
easily). Contrary to the multilevel techniques used by Bacuta [7] and Bacuta and Bramble
[8, 9] which lead to regularity in non-standard Besov spaces, we obtain regularity results
in standard spaces by the use of the Mellin calculus (provided T ¢ N).

The Mellin calculus is a well-known tool for dealing with regularity in Sobolev spaces, cf.
[20, 21, 23, 37, 41], and we review the methods in Sections 3.1-3.3 since they allow us to show
an explicit representation of the solution near the corners, cf. Lemma 2.15 and Lemma 2.16.
This representation is then the key ingredient for the proof of the shift theorem, which is
based on localization procedures and interpolation theory. Note that localization naturally
leads to considerations about regularity in sectors, see Subsection 3.1.2. These first three
sections are mainly guided by [24], see also [25].

Section 3.4 deals with more regular right-hand sides and provides more necessary tools
needed for the shift theorem. Finally, in Section 3.5 we state the shift theorems for both
Dirichlet (Theorem 3.44) and Neumann (Theorem 3.47) boundary conditions.

3.1 The Mellin transform in weighted Sobolev spaces

3.1.1 The Fourier and Mellin transforms

Although our goal is to examine regularity properties of the solution w of (3.1), we do
not directly analyze this problem, but instead work with a transformed version. We first
introduce the Fourier transform, since the Mellin transform - which turns out to be the
convenient choice for transforming equation (3.1) - is just the Fourier transform of a special
function.

Definition 3.1. The Fourier transform for functions f € LY(R) is defined by

~

FN© =119 = o= / e f () du
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3 The shift theorem in 2D

for & e R.
The Fourier transform is a well-known tool. We state some of its properties.

Lemma 3.2. (i) For functions f € L*(R), the Fourier transform is defined as

(FHE) = F€) == lim —— / e (2)

where the limit is understood in the L?(R) sense.

(ii) F : L*(R) — L2(]R) is an isometric isomorphism and it holds the Plancherel identity
(£ 9) 2wy = (F.9)r2my-

(iii) The inversion formula

f(z) e F(€) dg

\/ 27 /
holds.

(iv) If f € L*(R) has compact support supp f C [~B,B], then f can be extended to an
entire function with |f(z)] < CeBlIm Bl

(v) If f € L*(R) is supported in [0,00), then f is holomorphic on {z € C:Imz < 0}.

For a function f to be in the space L?(R) means to decay at infinity in some sense. If
we even control the exponential behavior of f at oo, we can specifically determine the
domain of holomorphy of its Fourier transformation.

Theorem 3.3 (Paley-Wiener). (i) Let a < b and e®®f € L%*(R) and ¥ f € L?(R).
Then:
(a) f is holomorphic on the strip {z € C:a < Imz < b}.

(b) The equations

e flZay = IFC + ia) 2 = Jim 1FC+in)lZam,

and
e 7 ey = 1T+ D)y = lsn 176+ im)ace
hold.
(¢) It holds lim,_q f( +in) = A(- +ia) and lim,_;, f( +in) = A(- +1b) in the L*(R)
sense.

(d) For 6 € [0,1], there holds

|FC+ iC6a+ (1 = 0)B) 2y < 17+ i) gy £ + D)Ll
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3.1 The Mellin transform in weighted Sobolev spaces

(ii) If a function f s holomorphic on {z € C : a < Imz < b} with the additional
assumption sup, ., <y, If(-+ in)|l2r) < 00, then the inversion formula

sz
fm \/ﬂ/m( =n dC

holds for any a < n < b. In this case, we also have e®®f € L*(R) and e f € L*(R).

Proof. For the proof of (ia), we get for a compact set K C {z € C: a < Imz < b} and
ze K

o] ) 00 0 00
[ @l [ @it = [ jp@leta [ iraes

—00 —00

0 00
S/ | ( )|eaax z(Im z—a) dl‘—|—/ ‘f(l,)’eb:ce:v(lmz—b) dr

—00 0

S e flleewy + HebmeL?(lR)-

Thus, the integral of the Fourier transformation is absolutely and uniformly convergent,
and the result follows. Items (ib) and (ic) follows immediately by the Plancherel identity
and the dominated convergence theorem, since €™ < max(e®*, ). Statement (id) follows
with the Plancherel identity and Holder’s inequality from

17 +i0a+ (1= Ob)IFa) = @7 f 7o
— / e29az‘f(l,)‘2962(179)b:p|f(x)|2(179) dx

(/" eM|f<z>\2da:)9 ([ e%ﬂf(x)r?dx)w.

We now show (ii). We fix € (a,b) and define, using that by assumption f( +in) € L*(R),

f(x) = li 1/R wC (€ + i) de
e r):= lim \/ﬂ 7Re m .

R—o0

The idea is to show independence of 7 by the Cauchy integral formula. Take an arbitrary
n' € (a,b) that does not equal 7. By holomorphy of f on the strip, the value of the integral
is independent of the path of integration, thus we have

/n7 ei“]?(z) dz = /Fl ei“f(z) dz + /Fn, eim]?(z) dz + /r ei“f(z) dz, (3.3)

where the paths of integration are shown in Figure 3.1.
By assumption we have sup, <, <, f |f (f +iy)|? d¢ < co. Hence, using Fubini’s theorem,

oo>// s+zy|2d£dy—// (e + iy)[2 dy de. (3.4)

41


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 The shift theorem in 2D

n
Imz=0b
Cy
n '
/\1—"’"
3
_gn 0 gn
Fl\r
D r,
Imz=a

Figure 3.1: Paths of integration (z = &£ + in)

With the definition

/

99 = [ 1fe+inPay
n

equality (3.4) implies the existence of a sequence (&,)nen, & — 00, such that g(&,) — 0.
From (3.3), we have

&n ~
tim [ G e 4 in)d = tim / &+in) Fe 4 in) d. (3.5)

n—o0 gn

Since f(- +in) and f(- +in') are both in L2(R), we get that the limits

e (€ +in) dE

lim

o7 [

and

exist in L?(R). Moreover,

&n ~
)= lim / P imde = lim, 5/ T i) s

By passing, if necessary, to subsequences, the convergence is also pointwise a.e. We conclude
with (3.5)

'L:):C iwCA d
m/mm F(¢)de = r L
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3.1 The Mellin transform in weighted Sobolev spaces

where the convergence of both integrals is understood as Fourier transformation in £ € R
(¢ = &+1in). Thus the inversion formula is independent of the choice of the imaginary part.
For the last part of the proof, note that we have for n € (a,b)

le™ fll 2y = ILFC- + iml 2y < C©

uniformly in 1 by Plancherel’s identity. Hence for x > 0 and n — b—, it follows e"*|f(x)|

eb| f(2)| and [|e"* 2 < C. The Monotone Convergence Theorem then implies et f €
| f(2)] 17 Il £2(0,00) < g D f

L? (0,00). The rest of the proof follows analogously. O

The following corollary is a simple application of the Paley-Wiener theorem by sending

a — —oo and taking b = 0.

Corollary 3.4. (i) Let f € L?(R) with supp f C [0,00). Then f is holomorphic on
{z € C:Imz < 0}. Additionally, it holds

sup | F(- + i) | 2y < I1F)l 2w
n<0

and

~

%lj}(l) 1£C+in) = fllzm) =

(ii) Conversely, a function f that is holomorphic on {z € C: Imz < 0} and satisfies
sup, <o (- + in)|| L2y < 00, is the Fourier transformation of a function f € L*(R)
with supp f C [0, 00).

The Mellin transform is closely related to the Fourier transform.
Definition 3.5. Let u = u(r) € L*(R") be a function.
(i) We define the function @ by substitution r = €', i.e. u(t) := u(e').

(ii) The Mellin transformation of u is defined as the Fourier transformation of 4, i.e.

(Mu)(§) = (Fa)(€ e~ "ta(t) dt,

\/ 27 /
defined for all ¢ € C where the integral converges.

The Mellin transformation can also be written in other useful forms, i.e.

/ 715 Inr T’) wh / 725 d’l"

\/ 27 T \/ 27 T

Results for the Fourier transform obviously carry over to the Mellin transform, e.g. the
(formal) inverse of the Mellin transformation is given by

L
ur) = o= [ M€ ds

Analogously to Corollary 3.4 one can show that for v € L2(R*) with u(r) = 0 for r > 1,
the Mellin transformation Mu is holomorphic in the half-space {z € C: Imz > 0}.
However, the domain of holomorphy can be determined more precisely, since we can apply
the Paley-Wiener theorem to Mellin transformed functions.

(Mu)(¢
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3 The shift theorem in 2D

Lemma 3.6. For u € L?>(R") and B € R there holds the equivalence of norms
1.
Ir7ull 2y = I(Mu)(- + (B + ) 2y
If B1 < B2 and rPru € L2(RT) and r?2u € L2(RY), then Mu is holomorphic on the strip
1 1
{zeC:ﬁ1+§<Imz<Bz+§}.

Proof. Since r%u € L?(RT) implies

(o.¢] oo
00 >/ r2'8|u|2dr:/ e2Pta)%et dt,
0 —00

it follows e#T2'y € L*(R) and further that (Mu)(- + (8 + 3)i) € L*(R) with equivalent
norms by Plancherel. The other implication is analogous.
The result about holomorphy follows then as a direct consequence from Theorem 3.3. [

Sometimes, we can extend the Mellin transformation meromorphically into the lower half-
plane. The extension is then holomorphic apart from simple poles that appear for negative
integers on the imaginary axis.

Lemma 3.7. Let u € C*7([0,00)) with u(r) = 0 for r > 1. Then Mu has a meromorphic
extension to {z € C : Imz > —(k + o)} with simple poles at {—it :t =0,...,k}.

Proof. We use a Taylor expansion to write

Ea

TjX(o,l)(T) + R(r),

where the remainder can be estimated by

Crkte. re(0,1)
0, r>1

Transformation leads to

k
M) =3

Since |R(t)] < Cet*+9) with supp R C (—o00,0], the Mellin transformation MR is holo-
morphic on {z € C : Imz > —(k + o)}, cf. Theorem 3.3. For the other term we can
calculate

S

O M x 0y ()(2) + (MER)(2).

/ 1 1
7“] r = " —.
" Von r\2rj—iz

M(r7x(0,1)(r)) (2

Thus we obtain
@)( 1
U
~ Vor ZO J' j — iz
The left-hand side is a priori defined for Im z > 0. However, the right-hand side is mero-

morphic on {z € C: Imz > —(k + o)} with simple poles. Thus Mu has a meromorphic
extension with the desired properties. O

(Mu)(z + (MR)(2).
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3.1 The Mellin transform in weighted Sobolev spaces

3.1.2 The weighted spaces K7
For the rest of this chapter, our underlying domain is the cone C, defined by
C:={(rcos¢,rsing) :r>0,¢ € G}, where G:= (0,w) (3.6)

with the angle w € (0,27). The boundary of C is denoted by I'. The domain C has a corner
at the origin, and one part of its boundary coincides with the positive z-axis. This choice
may appear a little arbitrary, but helps reduce the complexity of calculations. Obviously,
other cones can be considered after coordinate transformations.

Note that in the previous chapter, the boundary of the bounded domain 2 was also denoted
by I, as is the usual notation. The meaning of I' in every single case should be clear from
the context without need of more precise distinction.

For R > 0 we use the abbreviation

Cr :=CnN Bgr(0). (3.7)
We also define for 0 < p < o the annuli
A(p,o):={zeC:p<|z| <o} (3.8)

We also need Sobolev spaces defined on the cone C vanishing on the boundary I'. Thus,
we introduce the space

Hir(C) := {u measurable : u|4r2r) € H' (A(R, 2]%)),u\mmF =0VR > 0}.

The previous results, especially Lemma 3.6, suggest that it might be useful to consider
functions in L?(C) with stronger decay properties near the corner. This can be established
by considering functions in the following weighted subspace of L?(C).

Definition 3.8. For s € Ny and v € R, we define
K3(C) = {u € L, (C) : =D € L2(C), || < s}
with the natural norm

||U||%(;(C) = Z ||T|a|_s+7DaU||%2(C)-

|| <s
The spaces K5(Cr) are defined in the same way, just by replacing C by Cg.
The following statements can be useful when dealing with this type of weighted L?-spaces.
Lemma 3.9. The following statements hold true.
(i) For |a| <'s, the operator D* : K5(C) — K,“;_lO"(C) is linear and bounded.

(i) The space K5(C) is a subset of Kg_ ().
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3 The shift theorem in 2D

(iii) For s’ < s, >~ and R > 0, the inclusions
K5(Cr) € K2 (Cr), K3(Cr) € K3/(Cr)
hold. Note that this is not true on C/!
(iv) For~y <0, we have K3(Cr) C H*(CR).
(v) For v > s, we have H*(Cr) C K5(Cr)-
The following lemma is about a regularity estimate up to the boundary of the cone C.

Lemma 3.10. With the notation of (3.8), define the annuli A = A(1/2,2), Ay =
A(1/4,4) and Az := A(1/8,8). Then the following statements hold:

(i) Letk € Ng and e € (0,1). Furtherlet f € Hk+€(A3) andu € Hl(Ag) satisfy —Au = f
with zero Dirichlet boundary conditions on dA3NOC. Then it follows u € Hk+2+6(A )
with the reqularity estimate

D2l ey S 1 ey + Nl sy

(ii) Letk € Ng and e € (0,1). Further let f € Hk+€(A3) and u € Hl(Ag) satisfy —Au = f
with zero Neumann boundary conditions on 9AsNAC. Then it follows u € HF+2+¢(Ay)
with the reqularity estimate

k+2
Proof. We start with (i). We first mention that the elliptic regularity estimate

”uHHk+2(;f2) 5 HfHHk(Z;;) + HUHL2(2§) (3'9)

(cf. [24, eq. (4.3)]) shows u € H*2(A,).
We select a smooth cut-off function x with support on A(3/8,3) which equals one on Aj.
The function xu then satisfies the equation

—A(xu) = xf —2Vx - Vu— Axu =: f (3.10)

with the boundary condition yu = 0 on 8;1;. Since we have
HUHHHe(Z;) + ”VU’HHkvLE(Z;) < ||u”Hk+2(;f2) + Hvu||Hk+1(;4;) S ||U”Hk+2(;;2) ( )
3.11

5 HfHH’C(AE) + HUHL2(Z§)7

it follows f € H k+€(;1\2). Note that we can smoothen the boundary of A3 near the corners to
get a C*°-domain without changing the functions, since all functions in (3.10) are identically
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3.1 The Mellin transform in weighted Sobolev spaces

zero near the corners. This method allows us to use regularity results on smooth domains,
and we obtain yu € H**27¢(A;) with the estimate
||Xu||Hk+2+e(;f1) < ||f||Hk+e(;f2)

which follows by interpolation. The proof is complete in view of

HuHHk+2+e(74\1) = HXUHHHHe(Zﬁ) S Hf”Hk+e(1/4\2)

S Wl grseayy + VUl grse gy + 10l gise 33
(A2) (A2) (A2)

(3.11)

SOl grse sy 10l grse oy
(A2) (A2)

The proof of (ii) is similar to (i). Here we use the elliptic regularity estimate from [45,
Thm. 4.18),
lallsecn sy S 1 e + Nl - (3.12)

We now introduce the cut-off function y which only has support on A(3/8,3), equals one
in 47 and additionally satisfies 9,x = 0 on 8;1;. Such a function can be constructed as
x(r,®) = x1(r)x2(¢) in polar coordinates where xo is constant and x; satisfies the desired
properties. The function yu now satisfies the equation

—A(xu) = xf —2Vyx - Vu— Axu =: f
with boundary condition 9, (xu) = x0nu + ud,x = 0. Since we have

el gieve iy + 1V legese iy < Nl gsa iy + 1Vl g S el sy
512) (3.13)
S W llgway + Mol

it follows f €cH k+5(;1\2). The same smoothing process of the domain as above now gives
xu € H*2+¢( A1) with the estimate
HXUHHHHe(Zﬁ) S HfHHHe(;Q)-

The proof of (ii) is complete in view of

HuHHk+2+e(74\l) = HX’U'HHIC+2+E(Z\1) S Hf”Hk+e(1/4\2)

SJ HfHHkJre A ” ;uHHk+6 A, Hu”HkJre s
(Az2) (Az2) (Az2)
(3.13)

SOl grse sy 10l sz oy
(A2) (A2)

O]

The following lemma demonstrates a type of scaling arguments that we will sometimes use
when dealing with the weighted spaces. We want to remind the reader of the notation
introduced in (2.2).
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3 The shift theorem in 2D

Lemma 3.11. Let k € No, v € R and € € (0,1). Further let f € L7, (C) and u € Hj(C)
satisfy —Au = f with zero Dirichlet boundary conditions.

(i) For f € KE(C), u e Kg_k_Q(C) and B € (No)?, |B| € [0,k + 2], it holds

lr= P DR B o o) S D PRI D f| 2y + TP |2y, (314)
|| <k

where r = |x|.

(ii) Let f € H*¢(Cy) with compact support in B1(0). Further assume that there evists
R > 2 such that u satisfies

> T D M ey < 00
la| <k—2

Then it holds

IDF 2 ulgeeny S 1D flaeeny + Y M D Fllpaey+ D 727D oy,
jal<k lal<h2

where r = |x| and R > 2.

Proof. Define the annuli A; := A(1/2,2) and A, := A(1/4,4), cf. (3.8). For p > 0 scaling
yields for A4; , := pA;, i = 1,2, U(§) = u(pé) and f(£) := f(p€) that —AU = p*f on A,.
We start the proof of (i) by noting the elliptic regularity estimate

||7/IHHk+2(Zf1) rg p2HfHHk(;f2) + HaHLZ(Z})v (3'15)
cf. [24, eq. (4.3)]. We multiply (3.15) by p?~*~2 and obtain after scaling

%al+2y—2k—4 2 2la|+2v—2k 2 2y—2k—4[, 112
> prlelr 1Dl 724, ) S > prlelr= 1D Fliz2(a,,) + 97 [ullZ2(a,,)-
|| <k+2 || <k

The definition of the annuli implies 27p < r < 2%p, i = 1,2, on A; p, thus we get further

—k—2 2 —k 2 —k—2_12
Do Dy S D I TED f e, s+ 1T Rl -
ol <hr2 al<k

We now cover C by annuli A, 5-;, j € Z. Since they only have finite overlap, we obtain

- k42— —k—
|| 181+ ph+2 IBIuH%Z(C) < Z [l 2Da“||%2(0)
|| <k+4-2

< Z ”r‘aH%kDafHQLQ(C)‘F HTH’%II%Q(C)
la|<k

for |8] € [0, k + 2], whereupon the result follows.
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3.1 The Mellin transform in weighted Sobolev spaces

The proof of (ii) follows in a similar way with the regularity estimate

’DkJrzmHe(Zfl) 5 p2HfHHk+e(;1\2) + ||aHHk+2(Z\2)7 (3'16)

which follows from Lemma 3.10 after scaling with p, cf. the lines before (3.15). Here the
usual scaling arguments yield

| D+ < pr20k+2+e)| pht2g)2
p) ~

2
U\He(Al, ) Ulre(ay)

—2(k N kA ~
< P20 [ ST DRI, o+ DT 3 ID%E, o
|| <k || <k+2

2—2(k+2 4 —242 2 4 —242(k k g2
SPPIRRO A pN p DO f I 4,y 0 0D f ey
lo| <k

S p72+2\al||DauH%2(Az,p)
|| <k4-2

—2k— k —2k—2e—
<X N gy HD e gt 2 D .
|| <k || <k+2

As in (i) we obtain by covering arguments

|Dk+2u|§{5(cl) S Z ”Tﬁk*eﬂa‘DafH%%cl)“"Dkf’%{e(cl)
o] <k

—k—e—2 2
D D [ +|a‘DaUHL2(cR)-
|| <k+2

O]

A simple application of the weighted spaces is the following sort of shift theorem. It is
obtained as an immediate consequence of Lemma 3.11, using the same notation, by adding
over || < k + 2 and suitable variable substitutions.

Lemma 3.12. Let s € N, s > 2 and v € R, and let f € Ki_Q(C) and u € H&F(C) satisfy
—Au = f with zero Dirichlet boundary condition. Then the estimate

lullsier S 12, + el o
holds in the sense, that if the right-hand side is finite, then u € K3(C).

Remark 3.13. Lemma 3.12 can be generalized to elliptic operators L of order 2m: For
s €N, s>2m,let f e Kj_Qm(C) and u € H™(Cg) for all R > 0 satisfy Lu = f with

Dirichlet boundary conditions &u = 0, j = 0,...,m —1on . If u € Kg_S(C), then
u € K5(C), and the estimate

lull sy S Hf”K;*?m(c) + HUHK275(0)

holds.
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3 The shift theorem in 2D

Remark 3.14. Note that Lemma 3.12 and Remark 3.13 also hold for zero Neumann bound-
ary conditions. Line (3.15) also holds in the Neumann setting, whereas the following esti-
mates are only based on scaling arguments which are independent of the type of boundary
conditions.

Lemma 3.15. For every R > 0, it holds H}(Cr) C K}(Cg) with the mnorm estimate
lull k2 icry S llwllaricn)-

Proof. We use the notation from the proof of Lemma 3.11. Let u € H}(Cg). The Poincaré
inequality gives after scaling

1
p lull 204, ) S IVUll2ga,,) -

Thus a covering argument implies

1
-u
r

SIVullp2epy -
L2(Cr) L2(Cr)

O

Notation 3.16. We will use the following notation for working in polar coordinates: For
u = u(x), we write u(x) = u(r,0). After substitution of r with e' as before, we write
u(t,0) = u(et, 0).

The following lemma deals with transformation rules for differentiation operators. It shows
how derivatives of u are related to w and 4.

Lemma 3.17 ([24, Lemme 5.2]). The following two statements hold.

(i) For o € (Ng)?, o # 0, there ezist functions dag € C*(0B1(0)) such that

Dlu= > rlld.g(0)(ro,)" D} u,
0<|B|<a|

where B = (B1,0'). In the same way,

Dgu= Y e ¥dap(0)Df ;.
0<|B|<|a|

(ii) Conversely, for B € (Ng)2, B # 0, there exist functions dyg € C(0B1(0)) such that

Dfgi= > rlldys0)Du.
0<lal<|8|

A direct consequence of Lemma 3.17 is seen in the next lemma, which treats the transfor-
mation of the spaces K3(C) under a change of variables.
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3.1 The Mellin transform in weighted Sobolev spaces

Lemma 3.18 ([24, Lemme 5.3]). For v € R and s € Ny, there holds an isomorphism
between the space K35(C) and the space

{ae L}, RxG): e ae H (R x G)}
by change of variables x <> (t,0), cf. (3.6).
Proof. For |B| < s and u € K3(C), we have with Lemma 3.17
'Ot DP < Nl as g (0)| DRl = Y e dl 5(0)|[ D ulr
ler|<|B] la[<|B]
Thus it follows

||6 (v— s+1)D[3uHL2 RxC) Z / / 2(’Y s+|a) !Dau\Qrder
|a|<\5\

<3 / 2(y-stlal)| Doy 2 4y < oo,

|a|<\ﬁ\

since u € K35(C). This shows one implication, the other direction follows in a similar
way. ]

Next, we want to take Mellin transformations of functions u € K3(C) into account. Such
Mellin transformations are to be seen as transformations with respect to the variable r,
hence leaving the variable # as parameter. This motivates the approach to consider the
appearing functions not as functions in H*(R x G) as in the preceding lemma, but to view
them in the space L?(R; H*(G)), i.e. as functions with values in the Hilbert space H*(G).
Note that the Paley-Wiener theorem and its corollaries also hold in this setting.

Theorem 3.19. Let s € Ny and v € R, and setn:=s—v — 1.
(i) Let u € K5(C). Then t=stq € L2(R; H¥(Q)) and Mu(- —in) € L*(R; H*(Q)).
Additionally, the norms satisfy
[l ) = (M) (€ = in)|[Fre(cuje)) 45 (3.17)
v ¢eR

where the weighted norm is defined as

101F (e = D PP ID 0l Gaiy = D (14 p)* D7 ][ g (3.18)
IBI<s B'<s

with B = (b1, 5').

(ii) Conversely, let U(-—1in) € L*(R; H*(G)) with fgeR ||U(§—in)||%s(c,|€|) d¢ < oo. Then
U(- —in) is the Mellin transformation of a function u € K3(C).
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3 The shift theorem in 2D

Proof. We show (i). Note that by Lemma 3.18, u € K3(C) implies e~"a € H*(R x G)
and e "0 € L*(R; H*(G)). Hence (Mu)(- —in) € L*(R; H*(G)), cf. Lemma 3.6. From
Parseval, we get

107105 (e )13 2m) = N1€17 0y (Mu)(- — i) |2 ).
Thus it follows with 8 = (61, 8')

lullfes ey = lle™™ all s @xcy = Y 10705 (7" 0)|F2mxcy
IBI<s

~ M; /5 1] (Mu) (€ = in) 2 .
<s

which shows (3.17). The norm equivalence in (3.18) is seen by

> PID 0l Taiey = DD vl Y, PP ) (1 +p)*¢=7| DP V122
B<s Br<s B1<s—p/ G<s

For the proof of (ii), there exists a function e "% € L?(R; H*(G)) that is the inverse Fourier

transformation of U(- —in). By Parseval, we have in fact

le™™ a1 mxc) 2/ 1T = i)l ey
¢eR

and by the norm equivalence (3.17) we see u € K5(C). O

3.2 Decomposition of the solution - Dirichlet

For s > 2, we consider the following problem
~Au= e IO (319)
u=0, ¢ec{0,w}. '

Since we do not prescribe the behavior of the solution for r — 0 and r — oo, we cannot
expect uniqueness of the solution unless we specify the energy space. In fact, two solutions
uy € K5(C) and us € K3(C) may be different.

Our goal in this section is to rewrite equation (3.19) in polar coordinates and then apply
the Mellin transform. Problem (3.19) written in polar coordinates gives

— ((roy)*a+ 03u) = r*f,
or, equivalently upon substitution of r = e! as before,
— (Ofu+du) =e*f

on R x G with boundary conditions (-,0) = @(-,w) = 0. Writing § := e*f, Fourier
transform in the variable ¢ leads to

— (=¢* + 82) Mu(¢) = Mg(¢) = (F)(C) (3.20)
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3.2 Decomposition of the solution - Dirichlet

with the boundary conditions (Mu)(¢,0) = (Mu)(¢{,w) = 0. Upon introducing the oper-
ator ("Mellin Symbol”) L({) := — (—CQ + 8(%) . H?(G) N HY(G) — L*(G), we can write

line (3.20) in the more compact form

(Mu)(¢,0) = (3.21)

(Mu)((,w) =

The following equivalences are immediate consequences of the results in Section 3.1 and
show the interconnection of functions f € K35(C) with their counterparts f and ¢ and
suitable Mellin transforms.

Remark 3.20. If g := et f , the following statements are equivalent:
(i) fe K:2(0),

(ii) et f e H72(R x G),

(iif) e!O—stDg e H"2(R x @),

(iv) (Mg)(- —in) € L*(R; H*~2(G)) with n = —(y — s + 1) and

Mg (€ — in)lIFe—2 ey 46 < oo
ccR (G5l

The next lemma is the key result for solving (3.21).

Lemma 3.21. Consider the problem

(-0 +¢*)
a(0)
)

u(w

F e LI*(Q),
0, (3.22)
0.

Set 0 := {\n := In:n € N}. Then it follows:
(i) For ¢ € C\ £ io problem (3.22) has a unique solution u¢ € H*(G) N HY(G).

(i1) Assume {€+in: & € R} N+ioc = 0. Then there exists a constant C = C(n) such that
for all ¢ € {{+in : £ € R}, the solution u¢ of (3.22) satisfies

el Frz ey = (L + 1€ 1120y + (1 + [P oy + @iy < CIF I 2
Proof. We first show (i). Since problem (3.22) is a boundary value problem with constant

coefficients, for ¢ # 0 a fundamental system is given by the functions uy(t) = e and
u3(t) = e~¢*. The problem then has a unique solution if the matrix

(50w )= (& o)
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3 The shift theorem in 2D

is regular, which is true exactly for ¢ € C\ £io. If ( = 0, the fundamental system consists
of the functions uy(t) = 1 and u3(t) = ¢ with corresponding regular matrix

(o) )= (1 0)

We now show (ii). We write the function F' in terms of its Fourier series expansion F' =
\/7 Y oo2 Fnsin(A,¢) with Fourier coefficients F), and use the solution formula to obtain

2« B
U¢ = \/:Z WSIH(AnQﬁ).

Since [ sin®(A\n¢) d¢ = %, a simple calculation yields ||F||, @) = ~ Y% | |F,|%. Addition-
ally, we get

2 | Ful?
||U<”L2 Z |C2 +A2[2
LI
|UC’H1 = Z <2+ a2]2 An;

2 Ful® 4
|U<’H2 Z |C2 + )\2|2)‘n

The condition {¢ € C: Im ¢ = —n} N +ic = () implies for fixed n
1 1 1 1 1

A !C—i/\ ZIC+idal? €2+ [An + 02 €2 + (A — 12

wrer = €7t <min([E 740, Dl < ¢
Clan™ < Cmin(|¢]74 2%, [l > €]

(3.23)
<

where the last estimate for |\,| > |{] is seen by case by case analysis in the following way:

e Assume A\, > 7. In the case A\, > 2n we get A, —n = %)\n + %)\n -n> %An, and in
the case A, < 2n we have, defining § := min,en(N\, — 1),

O PRI W

n

e Assume A, < 7. In the case n > 2\, we get n — \,, = 217—|— 277 Ap > 277 > 1)\n, and
in the case n < 2\, we have, defining 6 := min,en(n — \p),

(o9

annzaziAnzfAn.
A n

n

This case analysis together with basic estimates shows (3.23). The line

(1 + P2 acN T2y + U+ €7 G + [@lFe@y S D 1Fal® = 1FI 26

finishes the proof. O
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3.2 Decomposition of the solution - Dirichlet

We can now apply Lemma 3.21 to solve (3.20). Assume s =2 and n = —(y — 2+ 1) such
that {¢ € C:Im( = —n} N +ioc = 0. Then the solution of (3.20) satisfies

[Mu(§ — i)l g2cy1epy S M€ — )l 2@
uniformly in £ € R. Hence we get with Theorem 3.19
sy S [ IMu(E — in)lBaegy @6 S [ 1Mol = il dé
EER ¢er

S flett

(3.24)
)§||2L2(Rxc) = ||€t(7+1)fH%2(RxG) N ”f“%@(C)‘

Thus, for s = 2, we have shown existence and uniqueness of a solution in K3(C) of problem
(3.19) together with a regularity estimate by using the Mellin transform and solving the
transformed problem. For general s > 2, we have the following result.

Theorem 3.22. Let s € N, s > 2 and v € R such that v — s+ 1 ¢ +o. Then, for every
fe K,Sy_2(C), problem (3.19) has a unique solution u € K3(C) with the a priori estimate

lulls ) < 11l e-2(c)-

Proof. Since f € K572(C) C K2_8+2(C), we get a solution u € K3_5+2(C) with

<
HUHK$75+2(0) ~ ”f"K275+2(C)

from the above calculations. For this solution u € K2 ,(C) € KJ_(C) we can apply
Lemma 3.12 to get u € K5(C) with the estimate

lllicz e S 1flice-2ey + o) S M les2ey + lulle o) S 1 llgecey

s+2

We consider solutions u; € H!(C) with suppu; C B1(0) of

—Auy = f € L*(0),

up =0, ¢€{0,w}. (3:25)

Note that this implies supp f C B1(0). It follows f € KJ(C) and u; € K}(C) N K3(C), cf.
Lemma 3.9, Lemma 3.12 and Lemma 3.15. By Theorem 3.22 there also exists a function
up € KZ(C) that solves (3.19). Note that both the energy solution u; and the solution
ug can be different, since they lie in different spaces. However, it will turn out that the
functions do not differ widely. We now demonstrate how the functions ug and wu; are
related.

Using the Mellin transform and considering the function spaces of ug and uy, we get

(—83, +)Muy = Mg on {¢ € C:Im¢ > 0}
and

(=03 + ¢H)Mug=Mg on {(e€C:Im¢=—1}.

55


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 The shift theorem in 2D

Since f € K{(C), it follows e~'g € L*(R x G), and thus Mg is holomorphic on {¢ € C :
Im ¢ > —1} with values in L?(G), cf. Remark 3.20 and Theorem 3.3. We get that Mu; is
holomorphic on {¢ € C : Im ¢ > 0} with values in H?(G) the same way. From Theorem 3.19
we obtain

My(- —i) € I*(R; LX(G)),  Muy € L*(R; H*(G))
and

Mug(- — i) € LA(R; H*(Q)).

Now note that the operator (£(¢))~! is meromorphic on C with poles at +i),, where
A = gn as before. From the observation

‘C(C)Mul = Mg)

where Mu; is holomorphic for Im ¢ > 0 and Mg is holomorphic for Im { > —1, we get that
Mu; can be extended meromorphically to {¢ € C:Im({ > —1} by

U(¢) = Muy(¢) = (£(¢)) " Myg(().

Let us mention that U(¢) and Mug(¢) coincide on ¢ with Im¢{ = —1. The next theorem
states the relation of ug and u;.

Theorem 3.23. It holds

21 :
Un — U1 = E Res (7% (L(C))fl Myg(¢) ),
0 ! s Vor ¢ ( )

Im ¢e(-1,0)

where 0 = {\, = In :n € N}.

Proof. We define 1y and 47 by the inverse Fourier transformation of U by

Uo(t, ) : ’“U(c) ¢, it ) : e“'U(¢) d¢.

=5 o =75 o

Note that by definition, the functlon U coincides with ug on the hne with imaginary part
—1 (and with u; at the horizontal axis, Im z = 0, respectively). Thus, both functions are
indeed the inverse transforms of ug and u;. We now proceed with similar arguments as
in the proof of Theorem 3.3, (ii), and use the residue theorem. Note that we again write
¢ = &+ in. The observation

it 2 # 2 212 2 2
L ev@teedcs ([ o) ([0 IO dc)

< [ 120 MOl )

Lemma 3.21 9 %
< ( [ MOl dc)
Im (=0

(3.24)
S HfHK? S Ifllz2ey < +oo

(3.26)
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3.2 Decomposition of the solution - Dirichlet

7777’
&, . o,
0 u
— Iy A+, —
o
-1 :

Figure 3.2: Paths of integration ({ = £ + in)

shows absolute convergence of the integral used for the definition of 47 with values in L?(G).
The same holds for .

The next step of the proof is similar to the proof of Theorem 3.3 and is motivated by [24,
Sec. 7.2]. We define for fixed ¢

0 .
1¢) = / U ey d

and get

0
1925 [ IOl dn

After fixing & > 0, we integrate over £ and obtain

0 0
1(¢)%de < L MOy d dn < Moo ded
/lf MG | /m O MOy e | /E Moy e

< 0 , J suppf<§B1(0) N B )
~ HfHKSH(c) U ~ HfHKg(c) = 1£lIz2(¢y < +oe.

Thus there exists a sequence (&,)nen, lim, o0 & = 00 such that

lim I(&,) =0 and T}Ln;o I(=¢,) =0. (3.27)

n—oo

Define R, as the path of integration formed by the boundary of the rectangle defined by
& <Re( <&, -1 <Im( < 0, see Figure 3.2. It then follows together with (3.26) and
(3.27)

=0.
L2(G)

lim
n—oo

N ict
(T ) ~ = /R LI
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3 The shift theorem in 2D

That shows that g — @1 can be approximated by closed curves, thus we can use the residue
theorem to obtain

~

1 . 271 )
Uo — U] = ——2mi Res U (¢) = Res r'SU 3.28
0 1 \/ﬂ 71— C=—in (C) \/% C=—i\1 (C) ( )

in the case of exactly one pole of ¢“*U(¢), namely at —i)\, in the strip {¢ € C : Im(() €
(—1,0)}. Changing the variables on the left side of (3.28) finishes the proof. O

Remark 3.24. We consider different values of A1 in regard to Theorem 3.23:

e If \; > 1, which appears for w < 7, then there is no pole in the strip. This implies
that the sum in Theorem 3.23 is zero, and thus ug = ;.

e If Ay < 1, which appears for w > 7, then the sum has exactly one term. In this case,
the functions ug and uq are indeed different.

e If \; =1, we can’t directly use Theorem 3.23 since we would need to integrate over
the pole. However, this is only the case for w = m, thus we have to deal with a
half-space problem, where explicit solutions are known, cf. [35, Section 2.2.4].

Considering Theorem 3.23, it is useful to evaluate the residue at the pole. For this purpose
we take the equation L£(¢)U(() = Mg(¢) and develop the right-hand side in its Fourier
expansion in the variable ¢

= 2
Mg(¢) = Fo(O)y/ —sin(\,¢
() = 30y S snne)

where F,(¢) denote the Fourier coefficients. We also take the solution formula

0= 3 45 2t

and rearrange it as

_ a1 RER SECRER
U(() - 2i\ (C—Z')q B C—i—i)\l) w Sln()\l(b) +7;2 (24_}\% wSIH(AnQS)'

Since the sum is holomorphic in {¢ € C: Im¢ € (—1,0)}, as well as the function ¢ in a

neighborhood of ( = —i\1, the desired residue can be easily determined and equals
» _ Fi(—iX1) ;- 2 .
i¢ 1 ) _ M 1) i(—ix1), | 2
Res (r(LO) T Mo(Q)) = T T = sin(Aug).
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3.2 Decomposition of the solution - Dirichlet

The next step is to evaluate the Fourier coefficient Fj(—i\;). We have

. 2 .
—i\) = \ﬁ/a sin(A1p)F (e2tf(€t,<P)) ’ézfi)q dp
- \F / Csin(hp) / (e ) N drdy
w Jo 2m J—o ’
—\/?1 /wsin()\ )/Oorf(r )r*/\ldrd
- m 1¥ 0 , P 2

2 .
\/>\/% sin(A1¢) f(x) dz.

Thus, by Theorem 3.23, we obtain

up = ug — \2/% 22,1/\1 2 \/12? </ Msin(Ar) f(z) dx) \/Esin()\lqﬁ)

=ug — % </c r~Msin( A1) f(z) dx) M sin(A1¢)

with ug € H?(Cg) for any R > 0. We wish to recall that even uy € K2(C).

The decomposition of the solution of the Dirichlet problem on a polygon €2 instead of the
cone C is now a simple consequence of (3.29) together with localization near the vertices
of Q.

Corollary 3.25. Let Q C R? be a polygon with vertices A;, i = 1,...,J and interior angles
wi # m. Let f € L*(Q), and let u € H}(Q) solve the problem —Au = f. Then u can be
written as

(3.29)

J s
U
U= Ug2 + chxl sin <w-¢i> ,
2

i=1

where ug2 € H*(Q) N HE (Q), and where the functions x; are smooth cut-off functions with
x: = 1 near A; satisfying ZZ 1 Xi = 1. The functions c; equal zero if w; <, and

a(f) = —/ f(simi) + ul(sin;)
T Ja
if wi > w, where n; is also a smooth cut-off function and

us
- T
R w; .
si=r; ' sin (gb) .
W

Furthermore, the estimate ||ugz | g20) S [1fll2(q) holds.

Proof. The idea is the localization near the vertices A; by using the cut-off functions ;.
According to (3.29), each function n;u can be written as

niu = ug,; — sin()qd))% </Q M sin(A1@) (—A(niu)) dx)
= oy =" sin()\lgé)% ( /Q si (—A(ni)) dx) ,

€H?
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3 The shift theorem in 2D

where only the H?-term remains in the case w; < 7, cf. Remark 3.24. Since As; = 0, we
get

/ —A(niu)s; de = / — (Anju + 2Vn;Vu + n;Au) s; dz
Q Q
= / ulAn;s; — 2(Vn;Vu + ulAn;)s; + fn;s; de
Q
= / ulAn;s; + 2(uVn;)Vs; + fn;is; dx
Q

:/UA(niSi)+f77i3idm-
Q

The norm estimate is a direct consequence of Theorem 3.22. ]

3.3 Decomposition of the solution - Neumann

In the case of Neumann boundary conditions, the situation is handled similarly to Sec-
tion 3.2. For w # m we consider here solutions u; € H'(C) with suppu; C B1(0) of

—Auy = f € L*(C)

67’1,“1 = 07 ¢ € {O,(.U}, (330)

This implies supp f C B;(0) as well, and it again follows f € K{(C). Note that u; € K}(C)
for every § > 0, since it is by definition equivalent to r°Vu; € L?(C) (which is obvious
since u; € H'(C)) and r°~lu; € L?(C), which follows from a Hardy inequality, cf. [48,
Lemma A.1.6, Lemma A.1.7]. From Lemma 3.9, Lemma 3.12 and Lemma 3.15 we then get
w € K}C) N K2,4(C).

Using the Mellin transform leads to

(=03 + (H)Muy = Mg on {¢ € C:Im( >}

with boundary conditions Og(Muq)(0) = 0p(Mui)(w) = 0. As in the Dirichlet case,
one can show with Remark 3.20 and Theorem 3.3 that Mg is holomorphic on {¢ € C :
Im¢ > —1} and that Muy is holomorphic on {¢ € C : Im( > §}. We again extend Mu;
meromorphically to {¢ € C:Im( > —1} by

U(¢) = Mun(¢) = (£(C) ™ My ().
The following lemma is the Neumann analog to Lemma 3.21.
Lemma 3.26. Consider the problem
(=95 +¢)a
u'(0)
)

'(w

F e L*(Q)
0 (3.31)
0.

Set oV .= {\, := Zn:n € No}. Then it follows:

w
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3.3 Decomposition of the solution - Neumann

(i) For ¢ € C\ £ic™ problem (3.31) has a unique solution u; € H?(G).
(ii) Assume {€ +in: € € R} N+ioc™ = (). Then there erists a constant C = C(n) such
that for all ¢ € {€ +in : £ € R}, the solution u¢ of (3.31) satisfies
gl Erzcugepy = (1 + 1€ 1220y + (1 + (€)1 Fn y + [aclizie) < CIFI T2

Proof. The proof follows the same lines as the proof of Lemma 3.21. The only change is
the Fourier transformation used for F' which has now the form

1 2 —
F=1~Fy+1/= 3 F,cos(Ano),
5 o+ w; cos(An®)

together with the appropriate solution formula for u¢. ]

Similar to Theorem 3.22 for the Dirichlet case, we have the following result for Neumann
boundary conditions. The proof follows analogous lines, but is based on Lemma 3.26, cf.

Remark 3.14.
Proposition 3.27. Let s € N, s > 2 and v € R such that v — s+ 1 ¢ +a¥. Then, for
every f € Kf/_Q(C), problem
~Au=fe K
fe kT (3.32)
Oophu=0, ¢e€{0,w}

has a unique solution u € K3(C) with the a priori estimate
s S 1 xs-2c-

Proposition 3.27 shows that for f € KJ(C) there exists a unique solution ug € K3(C) of
problem (3.32). One can also prove analogously to Theorem 3.23 that

w-w= 3 2 Res (€ (£(0) " Mo()

(e—io
Im ¢e(—1,6)

by obvious changes concerning the path of integration. However, the evaluation of the
residue is different since the set ¢V has an additional pole in {¢ € C:Im(¢ € (—1,6)}.
For the evaluation of the residue at the poles, we again use Fourier expansions in the
variable ¢. We get with F},(¢) denoting the Fourier coefficients

My(¢) = \f +ZF fcos( And)

> C \/7(:05()\7@)
_ k(@ L

! 2 o~ Q) \ﬁ
¢? w 21)\1 ( — i\ C+l>\1> \/:cos(A1¢)+nz::2C2+)\% acos()\ngé)

U(():
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3 The shift theorem in 2D

after rearranging the terms. The first term and the sum are obviously holomorphic on
{¢€C:Im(¢ € (~1,0)} and thus in a neighborhood of —iA\; = —iT. It follows that the
residue at the pole —iA; can be calculated similar to the previous section, and we obtain

Res (6 (£(0) " My(q)) = T, ““\/E cos(A19),

(=—i\1

where the Fourier coefficient F(—iA;) equals

Fi(=i\) = \F/ cos(M@)F (e* f(e,0)) le=—in, di
\/>/ cos(A1¢p) \ﬁ/ e f(el, p)e TR gt do
\/5 wcos )\14,0)/ rf(r,o)r “Mdrdyp

0

2 1
\/7\/ﬂ =M cos(A) f(z) d.

The pole at ¢ = 0 is a double pole of £(¢)~!. As before, we write

n(Q) \/ — cos(Ap¢
n )
-1 G+ Vw

and note that the sum is holomorphic in a neighbourhood of zero. In order to get the
residue, we use Taylor expansion to get

ZCFO \/7 \/7 zClnr
B 1 ilnr  (ilnr)?
_ﬁﬂ,@(gﬁ e iar Y,

hence
_F 1 1 1
i () B
\/7zln7“\/7/.7: 2tf ®))e= od¢+\/§F6(0)
w“m/o \ﬁ/ 2 f (et ¢)dtd¢+\/gF6(0)
1 1
== 27Tilnr/cf($)dx+\/;F(l)(0)-
Since
_ 1 BV A i
- \/; /Gﬂe%f(ew))lc dep = \[; /o \/%/OO e (' g)e™ " dtdg,
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3.3 Decomposition of the solution - Neumann

we get

R T D T o —ict
_\/;/0 m/—w ite“* f(e', p)e "t dt dg

LT e

—\E/0 m/_oo sl ) dtdp
1 /Y 1 L

—ﬂ/ \/T/ mirinrf(r,¢)drds,

where existence of the integrals is based on the compact support of f. We obtain that the

and further

expression C(f) := \/gFé(O) is just a constant depending on the function f and thus in

H? in a bounded domain, with the estimate

() s/w/lwrlnrfwdrw
0 0 1o (3.33)

1 1/2
s(/o r(Inr)? ) (/ / rfGr |2drd¢> <1l
We get

Uy = ug — C(f) — \2/712;)\170\1 2\/12771— </C r—)\l COS()\1<,D)f(13) d{L‘> \/ZCOS()\l(b)

(e
—up—C(f) - & (/c M cos(Ae) £ () d:r;) L cos(M) + ln—r (/ fx dx)

T
Since we know uj € H'(C), we see that 2 ( o f(z) dz) must equal zero, thus we conclude

up =up — C(f) — 1 </C =M cos(M ) f(z) dx) M cos(A1¢)). (3.34)

T
The proof of the following result now follows the same lines as the proof of Corollary 3.25.

Corollary 3.28. Let Q C R? be a polygon with vertices A;, i = 1,...,J and interior
angles w; # . Let f € L*(Q), and let u € HY(Q) solve —Au = f with boundary conditions
Opu = 0. Then u can be written as

J x
o m
U= ug2 + E ciXiT; ' Ccos <wgb,;> ,
K

i=1

where up2 € H?(Y), and where the functions x; are smooth cut-off functions with x; = 1
near A;. The functions ¢; equal zero if w; < 7, and

o) == [ flsm) +uasm)
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3 The shift theorem in 2D

if wy > w, where n; is also a smooth cut-off function and

™
o ™
si=r; “cos| —o ).
Wi

Furthermore, the estimate ||ugz||g2) S |1 fllz2(q) holds.

3.4 Higher regularity decompositions

In the Corollaries 3.25 and 3.28, we always made the assumption f € L?(Q2). This led
to decompositions of the solution u into a more regular H?(Q)-part and the singularity
function. In this section f will be assumed to be of higher regularity, i.e. f € H*(Q) with
s > 0, and we generalize the results of Sections 3.2 and 3.3. It turns out that the solution u
can then be written as the sum of an H>*3(2)-function and a (slightly different) singularity
function.

We start with an inequality of the Ehrling’s lemma type.

Lemma 3.29. Let 0 < p < p/, and let u € H*(A(p,p")) for k € N, e € (0,1), cf. (3.8).
Denote by T'1 and Ty the two straight-lined parts of the boundary of A(p,p'). Assume that
the direction vectors of I'y and I's are linearly independent. Then the inequality

2 k-1

[ull grrecagpryy < CUDPUlgreappy) + 3 D I1D7ullz2ry)
=1 j=0

holds with a constant C dependent on k, € and the domain. For uw € H(A(p,p')) with
€ € (1/2,1), we have the inequality

2

lull frecaco,pry) < CUulmeagp,py) + Z ullL2(r,))-
=1

Proof. Suppose the statement is false. Then for u € H*T¢(A(p, p')) with € € (0,1), there
is a function u, € H*¢(A(p, p')) for every n € N such that without loss of generality

2 k—1
1= ||unHHk+5(A(p,p’)) Z n(]Dkun|He(A(p,p/)) + ZZ HDJUHHLQ(H))' (335)
=1 j=0

As a bounded sequence in H¥**¢(A(p, p')), (un)nen has a weakly convergent subsequence,
again denoted by (up)nen, with limit ue, in H¥T¢(A(p, p')). Observation (3.35) implies
| D* | e (A(p,p)) = 0, and thus DFu is constant which implies that ue is a polynomial in
Pyr. The compact embedding of H*+<(A(p, p')) in H*(A(p, p')) allows for the extraction of
another subsequence of (uy)nen satisfying w, — us in H*(A(p, p')). By the continuity of
the trace operator, this means (D7uy,)|r, — (D’us)|r, in L2(Ty) for j = 0,...,k—1,1=1,2,
and by (3.35) we get DIuy, = 0 for j =0,...,k—1 on the boundary parts I';. Now assume
w.l.o.g. that 'y coincides with a part of the x-axis, and write us, = Zogi+]’§k aiijiyj. On

T'{, uso equals zero, i.e. Zf:o aiyox" = 0 for all z in a suitable interval, thus we get a;0 =0
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3.4 Higher regularity decompositions

for i = 0,..., k. Using the same arguments for the y-derivatives D;uoo, . ,D’;fluoo, we
obtain inductively a; ; =0 for i =0,...,k, j =0,...,k — 1. Thus u, = ao’kyk, and since
the direction vector of I's is linearly independent from the direction vector of I'y (thus the
y-coordinate of the other part cannot be constant), we can conclude agj = 0. Therefore,
U = 0 which contradicts |[un || gr+ea(p,)) =1 for all n € N,

For k = 0 the proof follows similar lines. Suppose that for every n € N there is a function

U, such that
2
unllzze (a(pry) = P|unlme(agopy) + D lunllz(ry)- (3.36)
=1
Without loss of generality, we again assume ||un||ge(a(p,y) = 1 for all n € N. It fol-
lows |un|gre(a(p,pry) < 1/n, thus (un)nen is a bounded sequence in H(A(p, p')) which then
has a subsequence, again denoted by (uy)nen, that converges weakly to a function ue
in H(A(p,p')). From inequality (3.36), we get that u~ is a constant function. Since
H¢(A(p, p')) is compactly embedded in H* (A(p, p')) for 1/2 < s’ < ¢, the sequence (up )nen
has another subsequence, denoted by (u, )nen, that converges to ue in H¥ (A(p, p')). The
trace operator is continuous, thus ||un||z2r,) = |uccllr2r,) = 0, 1 = 1,2, by (3.36) and
Uso = 0, which is a contradiction to the assumption ||un || gea(p,0y) = 1- O

The next results deal with the fact that fractional order Sobolev spaces can be seen as
subspaces of suitable weighted Sobolev spaces of the KJ-type. It is however necessary to
ensure decay at zero.

Lemma 3.30. Let f be a function with compact support in By(0). Then the following
assertions hold.

(i) Let f € H*(Cy) for e € (0,1). Then f € K°_(C).
(i) Let f € H'*¢(Cy) for e € (0,1) with f(0) =0. Then f € K'_(C).
(iii) Let f € H**¢(Cy) for e € (0,1) with f(0) =0 and Vf(0) =0. Then f € K2_(C).

Proof. We start with (i). For ¢ € (0,1/2), the result can be found in [37, Theorem 1.4.4.3].
Now assume ¢ € (1/2,1). We take for d > 0 the domains A(d,2d) and denote by I'¢ and
I'¢ the parts of 9A(d,2d) that coincide with dC. We write ffor the function f scaled to
the reference element A(1,2). We now get by scaling

Lemma 3.29

2
7“726f2 < d226/ J’EQ < g2-¢) ]’0\2 . T J’; 2
/A(d,2d) iy (A(1,2)) ZZ; | ||L2(I‘ll)

A(1,2)

2
< @219 (d_2+26‘f|%16(,4(d,2d)) +d' Yy ||f||%2(r;i)> -
=1

Covering C with annuli of the form A(d,2d), we obtain

2
/C PP S ey + 2 I e (3.37)
=1
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3 The shift theorem in 2D

where Ffl, I = 1,2, denote the straight-lined parts of dC;. The first term on the right hand

side of (3.37) is finite by assumption on the regularity of f, and for the second term note

that for f € H(C1), it follows f|.c,; € H6*1/2(Flcl), and so ||r1/2*6f\|L2(Fc1) < 0o again by
l !

[37, Theorem 1.4.4.3]. Thus the second term is also finite, and (3.37) shows f € K° (C).
The case € = 1/2 is seen by interpolation arguments, cf. [59, Ch. 23].
We now prove (ii) for € € (0,1/2). We get with Lemma 3.29

2
—2—2€ p2 < d—25/ ™ < d_26 vl]/c\z n ~2
r ~ ~ €
/A(d,Qd) f A(1,2) f ’ ‘H (A(1,2)) ; HfHLQ(Fll)

2
<d% <d2+ 2N f e agazay T4 YIS ”iw?)) :
=1

Covering C with annuli of the form A(d, 2d), we obtain

2
/CTQQEfQ 5 ‘vfﬁ#(cl) + ZZ: /FC1 r7172€f2($) ds(l‘). (3.38)
=174

The first term is finite by assumption on the regularity of f. Now note that f € H'*¢(Cy)
implies f[.c, € H 1/24e (I‘ICI) by trace estimates. Thus we get
l

by [37, Theorem 1.4.4.3], since f ]Fcl vanishes at the origin. To estimate the missing part
l

of the K!_(C)-norm, we get again with Lemma 3.29

A(1,2)

2
—2€ 2 —2€ D) — 9% ny 2
rHE s a [T S (1T aay + X
/A(d,Qd) V1l V] |/l (A(1,2)) ; 1] L2(T})
2
5 d_2€ (d_2+2(1+6)‘fﬁ_]l_'_e(A(de)) + d—l lz: ||f||iQ(F?)> ‘
=1
Covering C with annuli of the form A(d,2d), we obtain
2
/cr_2€|vf|2 S ey + DML, e < 00
=1

by [37, Theorem 1.4.4.3], which shows f € K! (C). For e € [1/2,1), the proof follows
analogously, using [37, Theorem 1.4.4.4]. We mention that the assumptions of this result

are satisfied since f[.c, € H01/2+6(F§:1) by Theorem 2.3, cf. also [45, Thm. 3.40].
1
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3.4 Higher regularity decompositions

We now show (iii) for € € (0,1/2). We obtain by Lemma 3.29

12
g [ P 1D R + 30 S I
/A(d,zd) A1) 1D flirecaq2)) ]Z:O ZZ; 107 Fll oy
2 2
< dmr <d2+2(2+6)’D2f|%[e(A(d,2d)) 4+ d-1+2 Z HVfH%z(Fld) +d! Z HinQ(F?)> ,
=1 =1

(3.39)

Covering C with annuli of the form A(d,2d), we obtain

2
—4-2¢ 2 < 2 r12 —1-2¢ 2
/C P22 D e +; ( / o TRV (@) ds(a) + / .

l Fl

P37 2 (x) ds(:v)) .
(3.40)

The first term is finite by assumption on the regularity of f. The second term satisfies

Jlo T @ ) OOV g

< ||T_(1/2+6)axf||iz(rlc1) + Hr—(1/2+e)8yf”2Lz(Flcl).

(3.41)

Since f € H**¢(Cy) implies Oz flper € H1/2+6(I‘lcl), the right hand side of (3.41) is finite

1
by [37, Theorem 1.4.4.3], since 0, f(0) = 0 and 9, f(0) = 0 by assumption. The third term
of (3.40) is handled by

/Fc1 37282 (1) ds(z) = |]r—(3/2+e)f||i2(rfl) < 400
i

and [37, Theorem 1.4.4.4], since f(0) = 0, Vf(0) = 0 and f € H>*¢(Cy) imply flper €
l
Hg’/ 2+6(Flcl), see again Theorem 2.3. Since scaling shows

o~

/ PRSP A / VAP =27l aqay
A(d,2d) AL2)

and

~

/ T_2E|D2f|2 5 d—2—2e/ |ﬁ2f|2 — d—2—2€|f|§12(14(1,2))7
A(d,2d) A(1,2)

f € K2 _.(C) follows with Lemma 3.29 together with (3.39). The case ¢ € [1/2,1) is seen
analogously using [37, Theorem 1.4.4.4]. O

Lemma 3.30 can even be generalized to higher Sobolev orders. The proofs still rely on
Lemma 3.29 and remain largely similar.
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3 The shift theorem in 2D

Lemma 3.31. Let f € H¥¢(Cy) for k € Ny and ¢ € (0,1) such that D7 f(0) = 0 for
j=0,...,k—1. Additionally assume that f is compactly supported in B1(0). Then it
follows f € K* _(C) with the norm estimate

HfHKﬁE(c) S HfHHHé(Cl)-

Proof. The cases k < 2 have already been treated in Lemma 3.30, thus we only consider
k > 2. Using the same notation as in the proof of Lemma 3.30, we get by scaling

[ R S R
A(d,2d)

k-1 2
—2k—2e+2 k72 712
<d (D Flareaq2) + Z”DJ HL?(I‘?)
=0 =1
. (3.42)
< d-2k-2e42 [ g-2+20k+) |Dkf|He(Ad2d +Zd_1+2JZHD]f”L2(Fd
j7=0 =1

k—1 2
< |Dkf|%IE(A(d,2d)) + Z Z ||f(k+ef(1/2+a))D3f||%2(1,7).
j=0 I=1

Covering C with annuli of the form A(d,2d), we obtain

k—1 2
Z ||7,7(k+e (1/247) )D]f||2
§=0 1=1

/c P22 < [DRFZ,

As f € HF¢(Cy), the trace theorem gives f| ¢\ Hk+€_1/2(f‘lcl). Since D7 f(0) = 0 for
j=0,...,k—1, we even have f| ¢ € Hk+€ 1/2(Fcl) cf. [45, Thm. 3.40]. It follows

N
—_

[~ (ere=(1/2+9) DijL?(FCl) < ”fHHzm e < HfH?qu(cl) (3.43)

<
I
o

by [37, Theorem 1.4.4.4]. Higher derivatives of f satisfy the inequalities
/ I S DI

for j =1,...,k. Proceeding as in (3.42) via Lemma 3.29, covering C with annuli and using
(3.43) shows f € K* (C). O

Solutions of the Poisson problem in weighted spaces are locally members of Sobolev spaces,
as the next proposition shows.
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3.4 Higher regularity decompositions

Proposition 3.32. Let k € Ny and € € (0,1), let w < kfﬂe’ W # e and let f €

H*<(Cy) satisfy DIf(0) = 0 for j = 0,...,k — 1 and be compactly supported in Bi(0).
Further let u € K*T2(C) solve the problem
—Au=f inC,
u=0, ¢e{0,w}

Then u € H*2+¢(CR) for R > 0 together with the estimate

ull grvorecnBrioy) S I larrecy)-

Proof. The function f € H*¢(C;) is in K*_(C) by Lemma 3.31 if extended to C by zero.
Note that the assumptions of Theorem 3.22 are satisfied since w # 777, hence it follows

u € K*2(C). We see that the problem is well-posed and u € H¥+2(Cg), and we have
lell sreiery S Nl grezey S NFlkk ) S W llmr+eey)-
Lemma 3.11 then yields

DM 20 ey S ID* flueen) + 11l ey + el erra e

S W llerreery + 1 wer ey S N Tvvecy)-

Hence we get u € H*2+¢(C N Bg(0)), and the desired estimate holds. O

Remark 3.33. Proposition 3.32 also holds in the Neumann setting, which follows after
replacing Theorem 3.22 with Proposition 3.27. The condition y—s+1 ¢ +0¥ which arises
from Proposition 3.27 is satisfied by the same arguments as in the Dirichlet case. The
additional pole in oV at zero is no problem since y—s+1 = —e— (k+2)+1 = —e—k—1 #0
for all k € Ny and € € (0,1).

We have now collected the necessary tools for proving decompositions similar to those in
Sections 3.2 and 3.3.

Proposition 3.34. Fork € Ny and e € (0,1), let w < ﬁ, w# iy and f € HR<(C)
with supp f C Bi1(0). Further assume D7 f(0) =0 for j =0,...,k —1. Then u; € H*(C)

with suppuy C B1(0) solving
—Auy = f € H* (C)

(3.44)
uy = 07 ¢ € {Oa w}
satisfies
- ug, kEt+e+1<Z
U wo - L (Jor=sin(Ag) f(z) dz) risin(\1¢), k+e+1>I
for a ug € H**2+¢(C N Br(0)) for R > 0, with the estimate
ol gr+2tecnpr(o)) S 1 larrec,)-
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3 The shift theorem in 2D

Proof. By Lemma 3.31 the function f is in the space K*_(C). By Theorem 3.22 there exists
a function ug € K*2(C) that solves

—Aug = f € K*.(0)
u =0, ¢e{0,w}

In fact, ug € H**2+¢(Cg) by Proposition 3.32. As in Section 3.2, both the energy solution
uy and the solution ug will be different, since we specify different conditions at infinity. We
now demonstrate how the functions ug and u; are related, using the ideas of Section3.2.
Using the Mellin transform and considering the function spaces of ug and u; as well as the
definition of ug by the proof of Theorem 3.22, we get

(—835 + O Mup = Mg on {¢€C:Im¢ >0}
and
(—8;+C2)Mu0:/\/lg on{CeC:Im¢(=—-1—Fk—¢€}
with the usual definition of § := thf. Since f € K*_(C), it follows by Lemma 3.18 that
e thtetl g ¢ FR(R % @),

and thus Mg is holomorphic on {¢ € C : Im¢ > —1 — k — €} with values in H*(G), cf.
Remark 3.20 and Theorem 3.3. We get that Mu; is holomorphic on {¢ € C : Im{ > 0}
with values in H2(G) the same way. From Theorem 3.19 we obtain

Mg(-— (1 +k+€)i) € L2(R; H¥(@)), Mu; € L}(R; HX(@))
and
Mug(- — (14 k + €)i) € L*(R; H*(@)).

Now note that the operator (£(¢))~! is meromorphic on C with poles at +i),, where
An = Tn as before. From the equation

L(Q)Muy = Mg(¢),

where Mu; is holomorphic for Im ¢ > 0 and Mg is holomorphic for Im{ > —1 —k — ¢, we
observe that Mu; can be meromorphically extended to {( € C:Im({ > —1—k — €} by

U(¢) == Muy(¢) = (L))~ Myg(().

Let us mention that by definition, U(¢) and Mug({) coincide on ¢ with imaginary part
—1 — k — e. Since the proof of Theorem 3.23 still holds analogously with one inverse
transform defined at Im{ = —1 — k — € instead of Im{ = —1, we get

2 i -
wom= 3 T Res (76 (L) My(0)). (3.45)

Im ¢e(—1—k—¢,0)

70


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.4 Higher regularity decompositions

where 0 = {\, : n € N}. Since w < k+1+ , the sum (3.45) is either zero or has exactly one
term. The determination of the residue then follows exactly the same lines as in Section 3.2,
so we obtain

s
up = { ) NS o, . W< TTkTe
ug — (fc r~Msin(A1p) f(x) dw) rMsin(A¢), w > T
where ug € H¥+2+¢(Cg) by Proposition 3.32. O

Proposition 3.35. Fork € Ny and e € (0,1), let w < ﬁ, w # e and f € HM<(C)
with supp f C B1(0). Further assume D7 f(0) =0 for j =0,...,k—1. Then every function
u; € HY(C) with suppu; C B1(0) solving

—Auy = f € H* (C)

3.46
Opur =0, ¢ € {0,w} (3.46)
satisfies
= o, k+et+1<Z
o { uo — 7 (Jor M cos(Mp) f(z) da) 1™ cos(Mig), k+e+1> T (3.47)

for a ug € H**2+¢(C N Br(0)) for R > 0, with the estimate

||“0||Hk+2+e(cm%R S ||f”Hk+€ (c1)-

Proof. We follow the lines of Proposition 3.34 together with the evaluation of the residue as
in Section 3.3. We point out that the main differences are the application of Proposition 3.27
instead of Theorem 3.22, that Mu; is holomorphic on {¢ € C : Im({ > §} for § > 0, and
that we get

2me i _
wom= Y T Res (14 (£0) ™ Mo(0))

Im¢e(—1—k—¢,6)

instead of line (3.45). Taking the additional pole at zero into account, (3.47) follows from
the calculations in Section 3.3 if we hide the constant C(f) in the function ug - which does
not violate the regularity and norm estimate of wug, cf. (3.33). O

The next lemma helps us to get rid of the necessary decay properties at zero that appeared
in Propositions 3.34 and 3.35.

Lemma 3.36. Leti,j, k € Ny with i+ j = k. Further assume that (k+2 ¢ N. Then there
exists a solution p; ;j of the equation

—Au=2zy onC
Y (3.48)
u]p =0
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3 The shift theorem in 2D

that is a polynomial of degree k + 2. Additionally, there exists a solution p; ;N of the
equation

—Au=2z'y onC

Buly = 0 (3.49)

that is a polynomial of degree k + 2.

Proof. As a first step we use induction to prove the existence of the desired polynomial
without taking the boundary conditions into account. We use induction in the y-variable,
the rest follows by symmetry arguments. For ¢ € N and j = 0, we get u = —mxi“
as a solution of the equation —Au = z'y®. As induction hypothesis we assume that we
already have polynomials u; ; of degrees i + j + 2 such that —Au; ; = 2’y for all i € Ny
and all j < N, and proceed with the induction step where we must verify existence of a

polynomial for the equation —Au = z'yV 1. We get
—AEF2NY) = —( 4+ 2)(i 4+ DatyN T — (N + 1) Nzt N1

By the induction hypothesis we already know the existence of a polynomial u of degree
i+ N + 1 such that —Au = (N +1)Nzi*t2yV =1, Thus the polynomial u := —2i*2yN+1 —7
is of the desired degree and solves —Au = (i + 2)(i + 1)2'yN+! which concludes the proof
by induction. The existence of a polynomial additionally satisfying boundary conditions

(both Dirichlet and Neumann) then follows with [47, Lemma 6.1.1]. O

Remark 3.37. A possible solution pg g of (3.48) for i = j =0 is

1, sin®w
Poo(,y) = =5y + = o~

Yy
in Cartesian coordinates. Thus, a solution of the problem

_AF=f(0) inC,
plr=0

is p = po,of(0).

Corollary 3.38. For k € Ny and ¢ € (0,1), let w < ﬁ, W F e . ¢ N for
n=2,...,k+1, and f € H* ¢(C) with supp f C B1(0). Further let x be a smooth cut-
off-function with support in B1(0) satisfying x = 1 near the origin. Then every function

up € HY(C) with suppuy C B1(0) solving

—Auy = f € H(C)

(3.50)
uy = 07 ¢ € {O,W}
satisfies
- UuQ, k+et+1<Z
7 Vg — L(Jor=sin(A1@) (f (%) + A(x (%) Pe—1(x))) dx) 7M1 sin(A1¢), k+e+1> T
(3.51)
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3.4 Higher regularity decompositions

with Py—1(x) := 31 jep 1 71Pig (X) (0505 £)(0), ug € HE2+(C M BR(0)) for R > 0, where
pi,j are fized polynomial functions from Lemma 3.36. Furthermore, the estimate

woll gr+2tecnBr(oy) S 1 lar+ee (3.52)

holds, where the constant is dependent on the angle w, the choice of the polynomials p; ;
and the choice of the cut-off function x.

Proof. We only consider k > 1, since the claim for £ = 0 is a restatement of Proposition
3.34.
By Lemma 3.36 we obtain possible (fixed) polynomial solutions p;; such that P,_; =

Zi—i—jgk—l ﬁpu((?;@{/f)(O) solves the problem

1 .. .
—AP,_1 = Z 2y (9;0) 1)(0)
itj<k—1 ! ! (3.53)
Pkfl = 07 ¢ € {Oaw}'

We now define uj := u; — xPx—1 which also has support in B;(0). Since u; solves (3.50),
the function u; € H'(C) solves the problem

—AUy = f = f+ A(xPe1) € H**(C)

— (3.54)
uy =0, ¢e€ {O,W}.
Note that the right-hand side fsatisﬁes fori=0,....,k—1landi+j=1

D'f(0) = (9,031)(0) + (9,9)A(xPi-1))(0)
= (920£)(0) + (9,05 AxPi-1)(0) + 2(0505(Vx - VPr-1))(0) + (9,,3) x APr-1)(0)

=0 =0 —(O:04AP1)(0)
i iai 1 i il ail ai

= @RNO = (%95 D Fme’y (@97 H(0) | (0)

i'+j'<k—1
= (8,0].1)(0) = (9,0)£)(0) = 0.

(3.55)
Thus Proposition 3.34 can be applied to problem (3.54) and we obtain

. ug, E+l+e<?Z
R I 1 <fc M sin(A\1p) f(z) dx) rMsin(A¢), k+1+e>Z

with ug € H*2+¢(C N Bg(0)) for R > 0. The proof of (3.51) is complete by defining
ug = ug + xPi_1, which obviously gives the desired regularity for ug.
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3 The shift theorem in 2D

We now show the estimate (3.52). We have

ol gxr2tecnpgr(0)) = W0 + XPr—1ll E+2tecnBr(0))
< ol grr2reenBr(o)) + IXPe=1ll r+2+<cnBg 0))
Sl mrseey + IXPeetll e cnB (o)
< [[fllgrreey + IANXPe—1) | 5rreey + IXPr—1ll mrr+2+¢(cnBr(0))
S I erveey + IXPr—1ll grrvzsecnp, o))

The polynomial functions p; ; are independent of f, thus on the bounded domain Cy, they
can be bounded by a constant only dependent on the angle w and on the polynomials.
Thus, we get

1 o
I Pr—1 HHk+2+e(CnBl(0)) = Z Z.Tj!pi,j(aazcag];f)(o)
i+j<k—1 HFk+2+¢(CNB1(0))
1 iaj
< Y Tj!||Xpi7jHH’f+2+f(CﬂB1(0))‘(@cagj/f)(o)‘
i+j<k—1
1 . N1/ ai A
Y 17 C (@ 1,7)1(9:0,)(0)]
i+j<h-1 "’
1 o
< 1 .\ |/ad aj
2 e, O N0l

By a Sobolev embedding and the 1D and 2D trace theorems we get
02051 O)] S 1 llrevivsrey S 1Fllazwvec)-

: 1
Since ) ;1 i<y 1 < exp(2), we have

IXPr—1ll gre+2+e(cnsy o)) S jmax Cw, & ) fll rre (3.56)

and hence

”U0||Hk+2+e(CmBR(o)) S Hl;!flga]ggl C(wai>j)|’f’|Hk+€(C)'

O]

We still have to deal with the singularity functions which is now accomplished through
Lemma 2.15 together with the following result which is motivated by Lemma 2.16.

Lemma 3.39. Fora > 1, a ¢ N, set k:= |a| —1 and let Py_q be the polynomial function
and x be the cut-off function from Corollary 3.38. Then the mapping

fHSUw=/0~%mm@u+Aum4»m

C1

is bounded and linear on B;;l(cl).
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3.4 Higher regularity decompositions

Proof. Choose 0 < € < 1 such that k+ 1 — a+ ¢ < 0. We have

By1H(Cr) = (H(C1), HMH(Ch)) ammie
= (H*T(C), (H(Ch), HE(C1)) 1e p) ampmroe
= (HM(Co), (H*(Cr), HE274(C1)) 1 g )i
fr (Hk+6(61),Bg:’[l(cl))a—k—l—e 1

by the Reiteration Theorem 2.11. Now assume f € C*°(Cy), f # 0, the general statement
will then follow by density arguments. For

3= min {15 1155 il € € x(o) =13,

denote by xs a smooth cut-off-function that equals zero for |z| < ¢ and is one for |x| > 24.
We can then write

S(f) = /c r sin(ag)(f + Ay Po_r)) de

- /C = sin(og) xs(f + A(xPr_1)) dx + / r~“sin(ag)(1 — xs)(f + AxPr-1)) dz.

C1
(3.57)
The first integral is estimated by
Ca . _ . + A(xPr_
e sinao)a(f + Al do| = | [ e sinaone A g
C1

Hf‘FA XPr-1) /1 —204+2k+2e+1, 2 1. ' Hf‘f‘A XPr-1) shtl-ate

k+e r X6 k+e .

r 2 r 2

L2(Cy) L2(C1)

The remaining L?-norm can be handled with Lemma 3.31: Since D’ (f +A(xPx_1))(0) =0
for j =0,...,k—1, cf. (3.55), we have

f+ AP |
|20 < AP e

k+
e L2(C1)

) (3.56) )
S+ A(ka—l)HHkJre(cl) S “f”Hk+e(cl)'

For the delta term, we analyze two cases. In the case where HJ”HH,CJFG(C1 HfHB’““(c <

 diam{z € C : x(z) = 1}, we get directly

k+1 +
sirimore — (1T I o
Hk+€ Cl Bk+1 (Cl) )

75


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 The shift theorem in 2D

since the exponent k+1—a+e€ < 0, and if HfHH,CJrG(C1 HfHBk+1 > +diam{z € C : x(z) =

1}, we note that HfHH,He(C1 HfHB’““(c < 1, since BQ,1 (C1) is imbedded in H*¢(Cy). Thus

we have

kt1—a+ 1 kel —ate 1 kt1—ate
grnreg (Jaamec @ =1) 8 (M)

since the cut-off function x has support only in By (0). For the second integral of (3.57) we
obtain

f+A()]<€Pk_1) dx‘
r

/C r~%sin(ag) (1 — xs)(f+A(xPr_1)) dz| =

Hf+A XPi-1)

/ pootk sin(a) (1 — xs)
C1

20
/ T*Oﬁl’k‘#l dr.
L>(C1NB25(0)) YO

Since A(xPy—1) = APy—1 = — > k1 l,—lj,x’yf(aiaf,f)(O) on the region where x = 1, it
follows with the embedding B, ,(C1) € C(Cy1), cf. [60, Sec. 4.6.1],

’ [+ Aﬁ(Pk—l) / poatktl g,
LOO(C1OB2§(0)) 0
< = Zi+j§k—1 ﬁxzyj((?;@f,f)(O) sht2—a
~ 2
" L(c1)

1 k42—«
< ‘|DkaLoo(cl)6k+2_a S ||f||B§j1(c1) <||f||Hk+e C1) ||f||Bk+1 e )> .

In total, we have arrived at

k4+2—a a—k—1—¢
1—e
SIS AN gase ey 11 B )’

By [59, Lemma 25.2], it follows S € <(Hk+E(Cl),B§7J{1(Cl))a k1-c 1>* = (ng;l(cl))*. O

Remark 3.40. It is obvious that Corollary 3.38 and Lemma 3.39 hold analogously for Neu-
mann boundary conditions after replacing the sine functions by cosine functions and using
a suitable polynomial function which solves (3.49).

Lemma 3.41. Let Q) be a polygonal domain with vertices A; and corresponding interior

angles w;, i =1,...,J, and define wpqs := max;—1,. jw;. Then the following holds:
(i) If - Mi ¢ N foralke{l,... [ =]}
M1 ¢ N forall ke {1,..., 77— —1}.
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3.5 The shift theorem in Sobolev and Besov spaces

Proof. A simple calculation gives _— < 7 and thus | ;7] < - for all ¢ if ;™ is not
an integer. It follows

kwi 1 1 _
7 < k@ < Lﬂ'/wmaxJ@ =1,

Wmax Wmax

ie. % ¢ N. If —"— € N the result is an immediate consequence of

Wmax

kw@’<kwm‘”<< il —1)°"m“$:1—°‘m<1.

™ ™ \Wmaz ™ ™

3.5 The shift theorem in Sobolev and Besov spaces

We can now formulate the shift theorem, first for Dirichlet boundary conditions and after-
wards in the Neumann setting.
3.5.1 The Dirichlet case

For Dirichlet boundary conditions, we get the following result.

Theorem 3.42. Let Q) be a polygonal domain with vertices A; and corresponding interior
angles wi, i = 1,...,J. Fix the vertex A;, and fir R > 0 sufficiently small such that
Aj ¢ Br(A;) for j #i. Let f € H Y(Q). Then for the solution u € H}(Q) of the problem

—Au=f inQQ,

3.58
u=0 on o ( )

the following statements hold:
(i) For f € H*(Q) with -1 < s < -—1it holdsu € H* 2(QNBg(A;)) with the estimate

1wl s+2@nBriay) S I @)

(it) If 7= ¢ N and w; <, then for f € B;r’/lwi_l(ﬂ) it holds u € ngﬁl(ﬁ N Br(4;))
with the estimate

, < w1,
||UHB;’{;}Z+1(QWBR(A-;)) ~ HfHBg’/l [ 1(Q)

(iii) If w; > m, then for f € (Hil(Q),LQ(Q))fyl it holds u € B;{;iH(Q N Br(A;)) with

the estimate

. < /[ w; — .
”uHB;/OL;)Z+1(QﬁBR(Ai)) ~ HfHB2,/1 i 1(Q)
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3 The shift theorem in 2D

Proof. We prove the result in several steps. We start with (ii) and proceed with (iii) from
which (i) follows easily.

Step 1: Assume that the balls Bj(A;) are pairwise disjoint, otherwise scale the domain
Q) and problem (3.58) appropriately. We then define a smooth cut-off function x; with
supp x; C Bi1(4;) and x; = 1 near A;. Furthermore, we denote by T" and T; the solution
operators

. {Hl(ﬂ) — HY(9)
f — U
and fori=1,...,J
T.{ HYQ) — HY(Q)
o f = xil'f

Step 2: We now show (ii). We assume 7- ¢ N and w; < 7 and start with f € Bw/w’_l(ﬂ).
This Besov space can be seen as mterpolatlon space between H~1(Q) and H*"(Q), where
s* > 7= — 1 is chosen such that |s*] = [7/w;] — 1 and s* ¢ N, cf. Lemma 2.13. Since by
mterpolatlon

By N Q) = (H1(9), H* ()

e R
we can write f = fo + f1 with fo € H~Y(Q) and f; € H*"(Q) such that

[foll 1) + tlfill st (@) < 2K(E, ) St = f | ST £

(1+ *)7 (1+s*)7

The next step is solving (3.58) for the right hand sides fp and fi. We immediately get
T; fo € HL(Q) with the norm estimate 1T follmr o) S Mfolla—1(0)-

Step 3: The function T; f1 satisfies

—A(Tif1) = = AT f1) = —xiA(T f1) = 2Vx; - V(T f1) — (T f1)Ax;
— xif1 = 2Vxi - V(Tf1) — (TH)Axi =: fi.

Note that Vy; - V(T'f1) € HSt(Q) and (Tf1)Ax; € H+2(Q), since these expressions
are only non-zero away from the vertices where we get full regularity for T'f;. Thus it
follows fZ e H (©2). We also mention in passing that the mapping f; — f, is linear and
bounded from H*(Q) to H¥(Q) for all k € Ny and thus from Bﬂ/wl_l(Q) to B;ry/lwi_l(Q) by
interpolation, and it holds supp fi C supp xi € B1(4;) and supp 7T; f1 C supp x; € Bi(4;).
We now consider a coordinate transformation B; : € — C such that A; — 0 and 9Q N
B1(A;) — 0C N B1(0) with the usual cone C. Due to the support properties of B;T; f; and
Biﬁ- we can extend them both by zero to functions on C without changing the regularity.
Since the Laplacian is invariant under orthogonal transformations, they still satisfy the
equation —AB;T; f1 = B; f;.
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3.5 The shift theorem in Sobolev and Besov spaces

The functions Biﬁ' and B;T; f1 now satisfy the assumptions of Corollary 3.38. Lemma 3.41
gives % ¢ Nfor k=2,...,[7-|. Since s* > 7 —1, we get

BiTifi = uo(fi) — % </c P sin( A1) (Bifi + A(XPLS*J—l))> ™M sin(A1 ), (3.59)

with uo(ﬁ) € H*"+2(Cy). Additionally, Corollary 3.38 gives the estimate
luo(fi)ll == +2cyy S I1Bifill g (c)

We now decompose st := 7 sin(\1 )¢, € Bw/w’Jrl(Cl) as st = 59 + 51 with so € H'(Cy)
and s; € H¥+2(Cy) such that
HSOHHl Cl) —+ tH81HH5*+2(01) 2K(t S ) S twi(1+s*) “8+”B;,gl+l(61) S twi(1+s*)’

cf. Lemma 2.15. Altogether, we have

T.f = Tofo+ Tify = Tifo + B (uo(F)l sy + SB:F)sol, o) + SBiF)silpio))

where S(B; fl = (fc M sin( A1) (B; i + AP |- ))) Since
R Lemrrgz 3.39 — < —~
(3.60)
Lemma 2.14
Uil S Ml gy
we obtain
IT: fo + B; 1S (Bifi)sol gy o)l ey S Ifoll -1y + 1SBifo)lllsoll ey 561

5 twi(lJrs*) ||f||B;r/1w171(Q)

and

IB; o (fi) |, (o) + Bz'_ls(Bi]?i)51|B1(0)HHS*+2 SIBifill o) + |S(B'ﬁ)”|31HH5*+2(Cl)

S Wille oy + 5Tl reios gy S 650l

@
(3.62)

Thus it follows

inf (IS = vl + ol ) S OIS

vEHS* +2(Q) arey b

o = Bw/wiH(Q) together with the estimate

2,00

which implies T, f € (H'(Q), H*+2(Q))
||Ef||B;7gl+l

@ S ||f||B;T’/1wi—1(Q), which proves (ii).
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3 The shift theorem in 2D

Step 4: We now prove (iii). Let w; > 7 and f € (H-Y(Q), L2(Q))§’1. We follow the lines
of step 2 and 3. We can write f = fy + f1 with fo € H~Y(Q) and f; € L?*(Q) such that
1 foll 1) + tllfill 2@ < 2K (8 f) St |l fll 2 00 S il 2 0

We immediately get T;fo € Hg(Q) with the norm estimate 1T foll o) < Ilfoll-1(q)- The
function T; fi satisfies

~A(T;f1) = xifi — 2Vxi - V(T f1) — (Tf)Axi =: f; € L*().

Note that it holds supp]/”; C suppx; C Bi(A;) and suppTif1 C supp x; C Bi1(4;). After
the coordinate transformation we have the equation —AB;T; f1 = B; f;.
Since w; > m, (3.29) (cf. also Corollary 3.25) yields

BT, f1 = uo(ﬁ-) - % </c rM sin(Algo)Biﬁ) P sin(A1¢), (3.63)

with ug(f;) € H2(C1) and the estimate
luo(Follzz2(eyy S 11Bifillz(c)

We now decompose 5T := 7 sin(\14)|e, € Bw/wlﬂ(Cl) as st = so + 51 with s € H'(C1)
and s; € H%(Cy) such that

<th-7

Isoll ey + tlstllmzieny S 2K (8 57) S 45508l grron ) S

cf. Lemma 2.15. Altogether, we have

Tif =Tifo+Tify = Tifo+ B;! (UO(fz)|B1 + S(B; f1)50|Bl + S(B; fz)81|31(0)>

where S(B;f;) = —% (fc M sin(A1 ) B; fz) Since
. Lemma 2.16,(7) Lemma 2.14
|S(Bi fi)] S Hfz” H-(@Q).L2(Q) = S HfH(Hfl(Q),B(Q))%J,
we obtain

1T fo + Bz'_ls(Biﬁ)80|B1(0)HH1(Q) S ol + ’S(B’iﬁ)mSOHHl(Cl)

S '5“’7HfH(hH(Q),L?(Q))%1

and

1B wo(fi)l Byo) + By 'S (Bifi)si |, o)l S I1Bifill 2 +\S<Biﬁ>|usl||m<c1>
S I fillze o) ot -1 220)) = s £ \|f||(H—1(Q),L2(Q))L,1-

Wi’ Wi
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3.5 The shift theorem in Sobolev and Besov spaces

Thus it follows

ve}}gf(m (1T f = vl (e + tloll az) St ”f”(H*l(Q),L%Q))WLi’la

which implies T;f € (H'(Q), H*(Q)) = o = B;{)‘Z#l(ﬁ) together with the norm estimate

w;

HTifHB;/wiH(Q) S I llr-1(9),L2(0) = ,» which completes the proof.

Step 5: We show (i). In this step, we assume - ¢ N. Let f € H*(Q2) for -1 <s < J- — 1.
For f € H71(2), we get T;f € H}(Q) directly by the regularity of the solution operator
T;, and for s > —1 we use the Reiteration Theorem to obtain

m (@) = (B, 5 (©) , = (Hlm)’ ( 1(9)’}[5*(9))@’1)

s*FF1°

w;(s+1) 2
T b

and

H2(Q) = ng,H8*+2Q — 1;[197 HIQ,H5*+ZQ
(@) = (H'@,872@) ,, | ( (@), (H'(9) ()L(amm)

S 1 Wi(s+1)72
Since the operator T; maps the space H~1(Q) to H'(Q) and the interpolation space

(H_l(Q),lLIS*(Q))W(l,lSW1 to (HY(Q), HS T2()) (choose s* = 0 if w; > m),

Lemma 2.8 shows the statement.

us
PREET R

Step 6: We now assume - € Nand f € H*(Q?) for -1 < s < - —1, s ¢ N. The
argumentation of step 3 can now be repeated in the current setting with right-hand side f
instead of f; (and s* replaced by s), i.e. the function T;f solves the problem

~A(Tif) = xif —2Vxi - V(Tf) = (Tf)Axi =: fi

with zero Dirichlet boundary conditions. Since now s + 1 < - by assumption, it follows
from Corollary 3.38 that the singular parts are not present, thus we arrive at

BiT.f =uo(f;) € H2(C).

Note that the conditions of Corollary 3.38 are satisfied since |s|+1 = 7-—1 implies k;” ¢N
for k=1,...,|s] +1 by Lemma 3.41. This implies T;f € H*"2(Q).

Step 7: We again assume - € N and f € H*(Q) for 0 < s < J- — 1, but now s € N. We
can then write H*() as the interpolation space (H*~¢(2), H*"¢(2))1 o5 for a small € > 0.
The result now follows from step 6, and (i) is proved. O

The following corollary deals with global regularity on the whole domain 2.

Corollary 3.43. With the assumptions of Theorem 3.42, we define the largest interior
angle wmay = max;=1,. jw;. Then for the solution of the problem (3.58), the following
statements hold:
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3 The shift theorem in 2D

(i) For f € H5(Q) with —1 < s < —"— — 1 it holds u € H*"2(Q) with the estimate

Wmazx

lull vy S N1 as -

(i)) If 57— ¢ N and Wmae < 7, then for f € Byy“™~1(Q) it holds u € By/<m ' (Q)
with the estimate

HUHB;’/O:maz‘Fl(Q) SJ HfHB;"’/l“’maz_l(Q)'

(iii) If Wmaz > 7, then for f € (H-Y(Q), LA(Q)) _=_ , it holds u € B/ 1(Q) with the

p—— 2,00

estimate

HU’HB;’/O:maz‘Fl(Q) SJ HfHB;Tﬁw"mz_l(Q).

Proof. The definition xg := 1 — 22721 xi gives T'f = xoT'f + Z;-jzl T;f. Note that xoT'f
is non-zero away from the vertices and thus attains full regularity only restricted by the
right-hand side f. This infers together with the regularity results from Theorem 3.42 that
we obtain the desired regularity. O

Better regularity near a corner of the polygon already follows if the right-hand side f is
only of higher regularity in a neighborhood of the corner.

Theorem 3.44 (Shift theorem, Dirichlet). With the assumptions of Theorem 3.42, let X r
denote a smooth cut-off function with supp xi, C Br(4;) and xir =1 on BT/Q(A,-). Then
for the solution of the problem (3.58), the following statements hold:

(i) For Xigrf € H*(Q) with 0 < s < J- —1 it holds u € H5"2(Q N Bprjy(A;)) with the
estimate

ull rs+2@nBr a4 S I llHs@nBRA)) + 1ullm1(0)-

(it) For x;ryaf € H*(Q) with =1 <s < J- —1 it holds u € H5"2(QN Brys(As)) with the
estimate

[ull zrs+2(@nBp (a0 S IXir/2f L (@0 BR(AY) + 10l 21 (0)-

(iii) If Z ¢ N and w; < , then for xiorf € B3y (Q) it holds u € B3/2"'(n
Bprya(A;i)) with the estimate

HUHB;giJA(QﬂBRM(Ai)) 5 ”fHB;/lwiil(QﬂBR(Ai)) + Hu||H1(Q)

(i) If wi > m, then for xippf € (HHQ),L3(Q)= 1 it follows u € B3/ (Qn
Bpr/4(A;)) with the estimate

HUHB;ﬂ{;ji“(mBR/AL(Ai)) S HXi,R/QfH(H*l(Q),LQ(Q)) 1 + HUHHl(Q)-

sl
Wi
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3.5 The shift theorem in Sobolev and Besov spaces

Proof. We prove (i). The function u; := x; g/ou solves

—Au; = —x; r2Au — 2V x; r/2 - Vu — Ax; rjou (3.64)
= Xi,r/2f — 2V Xi,r/2 - Vu — Ax; rou = fi.

On A(R/4, R/2) := QN(Bpr/2(Ai)\Br/a(A;)) (note that the notation coincides with the no-
tation introduced in (3.8) after a suitable coordinate transformation) we have the regularity
estimate
lullis+2cacrya,r2)) S Wl Escacrys,ry) + 1l macrys,r)s
cf. Lemma 3.10, (i). We have
I fill ) S X, ry2f s ) + IVXa R/2 - Vullrs ) + 1AXG, ry2ul H5(0)

S fllzs@nBray) + 1l ms+2ar/a,r/2))

S fllzs@nBray) + el g @)
Thus it follows f; € H*(2), and we can apply Theorem 3.42 to obtain u; € H*t2(Q N
Bpj2(A;)) with the estimate

lwill trs+2@n B 0 (40) S il s @)

from which

lull irs2@nBr s (a0) = il 20085 0 40) S 112 (@0 BRA)) + 1ullm1(0)
follows.
We now prove (ii). The function w; again solves (3.64), thus we have
I fill zrs ) S IxXa,ry2flms @) + IV Xa,r 2 - Vullas ) + 1AXG, r/2wll 3 ()

S I, ry2fllas@nBriay) T 1IVX Rz - Vullr2) + [1AXR2ull L2 0)
S Ixa,ry2f lEs @nBray) + 1l @ @)

We now show (iii). Here we estimate with € > 0, such that 2 — - < e <1,

4 < v, . . .
HfZHB;/IWi_l(Q) ~ ||X17R/2f||B;T’/1Wi_1(Q) + HVX’L,R/Q VUHB;/l‘Ui_l(Q) + HAX’L,R/QUHB;"/Iwi_l(Q)
S ||X’L'7R/2f||B;r’/1“’i—1(Q) + lJull grroiteacryar/2))

Lemma 3.10

S ”XZvR/QfHB;/l‘%*l(Q) + ||f||H"/Wi72+€(A(R/8,R)) + ||u||H1(Q)

SJ ||f||B;T’/1wi71(QﬁBR(Ai)) + Hu||H1(Q)7

cf. Lemma 2.6, (iv) for the changes in norms between the Sobolev and Besov spaces. Hence

it follows f; € Bg,/lwi_l(ﬂ), and we can apply Theorem 3.42 to obtain u; € B;é‘;’“(&z N

Bpr/a(A;)) with the estimate

HuiHB;{:‘H(QﬁBR/Q(Ai)) 5 ”f’i||B;"/1°‘}1'71(Q)7
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3 The shift theorem in 2D

from which
Il 3y = 10553 iy g iy + Il

follows.
For the proof of (iv), we mention the inequality

il -1 .L20)) =, S IXarj2fll 1) L20 Naat IVXi,r/2 - Vull 110 L29) 3
1A rpoull 1@ L2@) =

S Ixary2 fll-100), L2(9)) = + HUHHl
Theorem 3.42 again implies the desired estimate. O

3.5.2 The Neumann case

A similar shift theorem holds for Neumann boundary conditions.

Theorem 3.45. Let Q be a polygonal domain with vertices A; and corresponding interior
angles w; # m, i =1,...,J. Fix the vertex A;, and fix R > 0 sufficiently small such that
A ¢ BR( i) forj 75 i. Let f € HY(Q) = (HI(Q))* with the compatibility condition
(f, - QX HI(Q) = = 0. Then for the solution u € H(Q) with Jou =0 of the problem

—Au=f in§,

(3.65)
O =0 on 092

the following statements hold:

(i) For f € H*(Q) with —1 < s < min(j- —1,0) or for f € H*(Q) with 0 <s < - —1
it holds u € H* 2(Q N Br(A;)) with the estimate

<{ Hf”Hs Q) —1<5<m1n(——1 0)

[[wll rs+2 (QNBRr(A HfHHS 0<s< E -1

(ii) If == ¢ N and w; < m, then for f € Bw/wl (Q) it holds u € Bﬂ/wZH(QﬂB (4;))
wzth the estimate
||UHB;"’/O‘:Z'+1(QQB )~ ”f” 7"/“’171 )
(iii) If w; > 7, then for f € (H1(Q),L3(Q)) =, it holds u € B3/ (2N Br(A;) with
the estimate z

HUHB;@“(QHBR(AQ) S HfH(ﬁ*l(Q),LQ(Q))L

=,
Wy

1
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3.5 The shift theorem in Sobolev and Besov spaces

Proof. We follow the lines of Theorem 3.42.
In the Neumann case, we take the solution operator

[ HY(Q) — HYQ)
T‘{ f > u ’

where u with fQ u = 0 is the solution of the problem

~Au=f Q7 (F D g gy

(3.66)
Opu =0, on 0f.

Note that the right-hand side of (3.66) satisfies the compatibility condition for the Neumann
problem and thus admits a solution. The solution operators T; for ¢ = 1,..., J are defined
analogously by

™

We now assume - ¢ N and w; < m and start with f € B27/1wi_1(Q). This Besov space can

be seen as interpolation space between H~1(Q) and H*"(2), where s* > 5; — 1 is chosen
such that |s*] = |7/w;| — 1 and s* ¢ N, cf. Lemma 2.13. Since by interpolation,

7 /w;—1 Ir— s*
By Q) = (HHQ), HY ()= 1,

we can write f = fo + f1 with fo € H=X(Q) and f; € H* () such that

||f0||171_1(9) + tHfIHHS*(Q) < 2K(t, f) S twi(Fs%) ||f||$7oo S twi(AFs%) ||f||$,1

w145 (145

We then get T;fo € H'(Q) with the norm estimate

IT: foll ey S Ifo = 19071 {fo, D gy |l 7-1(0)
=< ”fOHFIfl(Q) + |Q‘71 <f071>ﬁ*1(9)><H1(Q) H1”g71(9)
S ol g1y + 127 ol g1 o Il @ 1Ll 710
S ol g1y + 127 ol -1 oy I @1l 710

< ol -1 (0
The function T, satisfies
—A(Tif1) = —ATf1) = =xATf) =2V - V(T f1) — (Tf1)Axi
=xi(fi =10 /Q f1) = 2Vxi - V(T ) = (Tf)Axi =: fi.
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3 The shift theorem in 2D

As in the proof of Theorem 3.42, step 3, we obtain fZ € H° (Q) with the same support
properties. We mention that the mapping f; — fZ is linear and bounded from H*(Q) to
H¥(Q) for k € Ny since we obtain with Jensen’s inequality

QKW{LﬁQsA]m*ﬂgﬁF

:A]m*wwémpﬂum@my

o [ ]

HY(Q)

We now get after a coordinate transformation

&nh—uwb—l(érAww@mx&ﬁ+auﬂw]»)Mwm@@x (3.67)

m
with ug(f;) € H* +2(Cy), together with the estimate
[uo(f)ll ger+2(cyy S 11Bifill e (c)

cf. Remark 3.40. We now decompose s+ := r*t cos(\1¢)|c, € BW/W’H(Cl) as sT = so + 51
with so € H'(Cy) and s; € H* T2(Cy) such that
+ i || gt PAcETD]
[sollzieyy + tisill garraeyy S 2K(E, s7) S« s ||B;r’{£i+1(cl) < toe

cf. Lemma 2.15. Altogether, we have
Tif =Tifo+Tifr = Tifo+ B <U0(fz)’B1 + S(B; fz)So\Bl + S(B; fz)51’B1(0)>

where S(B; fz = (fc M cos(A1)(B; i + AP |- 1))) Imitating the equations
(3.60), (3.61) and (3. 2), it follows

inf (IS = vllm) + ol gersaa ) S 0TI 7]

* — 1
veHS +2(Q) w; (14s*)

which implies T;f € (H (), HS*”(Q))%’OO = B;ﬁg#l(ﬁ) together with the estimate
T2 v 151 Wi proves i)
We now prove (iii). Let w; > 7 and f € (H1(Q),L*(Q)) = ;. We can write f = fo + f1
with fo € H1(Q) and f; € L2(Q) such that

sy + Al < 2K () S 517200 S 15 1]

We immediately get T;fo € H'(£2) with the norm estimate HTifoHﬁl(Q) S follg—1(q)- The
function T; fq satisfies again

~A(Tif1) = xi(f1 — 19| /Q £1) = 2Vxi - V(T f1) — (TH)Ax: = f; € L*(Q).
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3.5 The shift theorem in Sobolev and Besov spaces

Since w; > 7, (3.34) (cf. also Corollary 3.28) yields

™

B, T;fr = ug(ﬁ) 1 (/c pM cos()\lgo)Biﬁ> P cos(A19), (3.68)

with uo(ﬁ-) € H?(C1) and the estimate

luo(F)llzz2ery S 11Bifill 2 c)-

The rest of the proof follows as in step 4 of the proof of Theorem 3.42, however, use
Lemma 2.16, (ii) instead of (i).

Statement (i) follows with the same arguments as in Theorem 3.42, considering Lemma
2.13. O

An analogous proof to Corollary 3.43 gives the following result which deals with global
regularity on the domain €.

Corollary 3.46. With the assumptions of Theorem 3.45, we define the largest interior
angle Wmae = max;—1__jw;. Then for the solution of the problem (3.58), the following
statements hold:

(i) For f € H*(Q) with —1 < s < min(J- —1,0) or for f € H*(Q) with0 < s < ;7— —1
it holds u € H*2(Q) with the estimate

lull stz S HfHI?S(Qy -1<s< min(wii _ 1,0)
O~V M o)y 0<s< g2 -1

1) If —= N and wpee < 7, then for f € Bremas=(Q) it holds u € BY“m=T1(Q
2,1

Wmazx 2100
with the estimate

HU/HB;T’/C:;’maz‘Fl(Q) 5 ||f||B;r,/1ng‘z71(Q)-

(7i) If Wmaz > 7, then for f € (ﬁfl(Q),LQ(Q))%’l it holds u € B;gmaz+1(ﬂ) with the

estimate

lull gy emassray = Wl 0,020~
Also in the Neumann setting, regularity near a corner only depends on local regularity of
the right-hand side in a neighborhood of the corner. The proof fully imitates the methods
of Theorem 3.44, but uses Lemma 3.10, (ii) and Theorem 3.45 instead.

Theorem 3.47 (Shift theorem, Neumann). With the assumptions of Theorem 3.45, let
Xi,r denote a smooth cut-off function with supp x;» C Br(A;) and xip = 1 on B, ja(4;).
Then for the solution of the problem (3.65), the following statements hold:
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3 The shift theorem in 2D

(i) For Xiorf € H*(Q) with 0 < s < J- —1 it holds u € H52(Q N Brjy(A;)) with the
estimate

lull 2 @nBr 0 (a0) S Il (@0 BRA) + 1ullm(0)-

(ii) For x;r/of € INIS(Q) with —1 < s < min(wii —1,0) or x;r/of € H*(Q2) with 0 < s <
2, — 1, it holds u € H52(Q N Bpy(A;)) with the estimate

||| grs+2 " |’XivR/2f||ﬁS(QmBR(A,-)) + ”UHHl(Q), -1<s< min(wli —1,0)
HEO0BRa(AD) ~ Iy g fll s @B (an) + Il g, 0<s<Z-1
(iii) If = ¢ N and w; < , then for xiorf € B3y '(Q) it holds u € Byt (@ n
BR/4(A1')) with the estimate

<
|’uHB;gi+l(QﬁBR/4(Ai)) ~ HfHB;/lwi_l(QﬁBR(Ai)) + Hu”Hl(Q)

(w) If wi > m, then for Xiryf € (ﬁfl(Q)yLQ(Q))f,l it follows u € B;,{ziﬂ(ﬁ N
Bpr/4(A;)) with the estimate

lull gy @n, yany S R sy 20« + el @
The last result of this chapter deals with the shift theorem for Neumann problems with
inhomogeneous boundary conditions.

Proposition 3.48. Let Q) be a polygonal domain with vertices A; and corresponding interior
angles w; < m, ¢ = 1,...,J, and define the largest interior angle Wnay = MaxX;—1,.. jw;.
Then for every s € |0, — 1) there is Cs > 0 such that the following shift theorem is
true:

For every v € H*(Q) and g € L*(0Q) with g|. € H*Y/2(e) for each e € £(Q) that satisfies
additionally the compatibility condition fQ v+ fag g = 0, the solution z of the problem

Wmax

—Az=vinQ, Opz=g on 0L, /z:O,
f

satisfies z € H*T2(Q) with the estimate

Izl a2y < Cs [l + D Ngllgssirage
ecE(Q)

Proof. Let o € H*T1(Q) be a vector field with the condition o-n = g on 9. Such a vector
field exists, since constructing such a vector field away from the vertices is easy, and near
the vertices, the construction is reduced to one in a quarter plane by an affine coordinate
change together with a Piola transformation for o. Each component of o can there be
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3.5 The shift theorem in Sobolev and Besov spaces

constructed separately by lifting from one of the coordinate axes, since one component of
n is always zero.
We now solve the two problems

—Azg=v+dive in (), Onzo =0 on 09,
and
—AZzy=curle in (, zo=0 on 09.

Both problems have homogeneous boundary conditions, thus we obtain zq, Zg € H*72(Q)
with Corollaries 3.43 and 3.46. It remains to see that

Vz =0 —curlzy+ Vz.
For this purpose, we define the difference
d:=Vz— (o —curlzy + Vz),
which satisfies divd = 0, curld = 0 and d - n = 0 on 9f2. Since curld = 0, there exists a

function ¢ such that d = Vi, and divd = 0 gives —Ap = 0. Together with 0, =d-n =10
we can conclude that d = Vi = 0. O
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4 The projection-based interpolation
operators

The goal of this chapter is the definition of the desired projection-based interpolation
operators that have the optimal polynomial approximation properties assumed the given
functions are sufficiently regular. This chapter is organized as follows: In Section 4.1 we
explain the ideas of the proofs, using the example of the 2D-operator ﬁlg:ff 24 Tn Section 4.2
the interpolation operators are defined, first for 3D and then for 2D. The following results in
Section 4.3 then deal with the questions of well-definedness of the interpolation operators.
In Section 4.4, the commuting diagram property is shown. The next Sections 4.5, 4.6
and 4.7 are about the interpolation error estimates, from 1D up to 3D. The 1D-result is
rather straightforward, whereas there are more technical difficulties to deal with in higher
dimensions, especially for the interpolation operators for the H(curl) (or H(curl)). In
order to have a clear structure, these sections are subdivided in few subsections: First we
deal with the operators mapping in the H'-conforming spaces, then with those mapping in
the H(curl)-conforming spaces (in 3D the same also for H(div)), and each section finishes
with a collection of the main results for each interpolation operator. The main results
for the two-dimensional operators are stated in Theorem 4.24, those for the 3D-case in
Theorem 4.42. The concluding Section 4.8 then deals with finite elements of the second
kind.

4.1 Outline about the concepts on the example of a 2D-operator

In order to clarify the structure of this chapter, we want to present the ideas of the proofs
of the interpolation errors based on the example of the 2D-operator Hﬁf{i 24 which maps

into Pp+1(f>, the space of polynomials of degree p + 1 on the reference triangle f, see
Lemma 4.18:

The 2D-operator ﬁ%f{l 24 HJ32(F) — PPH(]?) is defined by the conditions

~

u(V) — ﬁ]goff’2du(V) =0 VYV eV()),

Y edges e of jA‘,

(Ve(u— ﬁiff’mu), Vev)r2e) =0 Vv e Wp+1(€
(V(u =T 0), Vo) oy = 0 Vo € Wy (),

of. Definition 4.5. The 1D-operator I8 : H1(2) — P,(€) is defined by

((u—TE My ) Yooy =0 Yo € Py(@) N HY (),
u(:l:l) _ (Airad’ldu)(:tl),
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4 The projection-based interpolation operators

where € denotes the reference interval (—1,1). We mention that the 1D-operator 11§44
grad,2d

o1 to an edge e if we identify e with

coincides with the restriction of the 2D-operator I
e.
For an estimate of the interpolation error |ju — I18%¢-2 =, s € [0,1], we need to

p+1 uHHlfs(f)
bound the stronger norm |ju — H%ff’zduHHl(ﬂ and the weaker norm |u — H%ff’zduHLg(f),
from which an interpolation argument gives the desired result. For the stronger norm, we

introduce the best approximation operator P#24:2¢  defined by

~

(V(u - Pgrad,?du)7 VU)L2 ) Vo € Wp—i—l( )a

(f)

=0
(U - Pgrad,?du’ 1)L2(f =0,

~

cf. Lemma 4.16, and apply the triangle inequality to obtain

HU _ ﬁgrad,Qd

d,2d d,2d rrerad,2d
B2y | gy < llu— IRy o || PRy, T

p+1 uHHl(J’c‘)-
Now the first term is handled with the best approximation result Lemma 4.16,

d,2d —
= P20 o S 0™l oo -

For the second term, we use a continuous polynomial preserving lifting £ : H'/ 2(f) —
H!(f) from the boundary. The conditions imposed on H%fff 24 and Perad2d ghow

d,2d rygrad,2d d,2d rygrad,2d d,2d yerad,2d _
(et - i), v (peadddy - Ty — p(pered 2y, - TiE u)))LQ(A) =0

and as a consequence

|Pgrad,2du _ ﬁgrad,Qd

1 U‘Hl(f) < |C(perad2dy, _ fjerad.2d

p+1 U)|H1(f)
d2d,  tigrad2d
S P = Tl a2 )

Together with the triangle inequality, this yields

ﬁgrad,Zd

rad,2d “rgrad,2d rad,2d
| e 2y — I8 A S lu— P 2 UHHl/?(af) + [lu — p+1 u”ﬂlﬂ(@f)- (4.1)

prt U S

A trace theorem and the best approximation result now give an estimate for the first term
of (4.1), whereas we use the 1D-estimate

lu =TI | 1y S P2l e,

cf. Lemma 4.15, for the second expression.
The weaker norm is treated by a duality argument and integration by parts which yields
two expressions, i.e.

Serad,2d, 112 erad,2d ryerad.2d
lw =TIl 5y = /fv(“ — ) - V2 = afanz(u — I ),
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4.2 Definition of the interpolation operators

where z solves the problem —Az = v — ﬁgf? 24y, with homogeneous Dirichlet bound-

ary conditions. Regularity theory then gives norm estimates for z. The integral on J? is
again handled by best approximation properties: The orthogonality properties satisfied by

ﬁ]goff 24 allow us to insert an arbitrary polynomial function which gives
V(u—IE2020) vzl < inf |z — 7l 5 |V (0 — TEE2M240) ||,
‘/f p+1 rePNHY(P) = prL W2

Hence, the integral on f is estimated by standard best approximation (Lemma 2.23) and
the already established H!'-result. The boundary integral on O f is then written as sum
over the edge contributions, and we estimate on each edge

/ Ons(u — T2 ) < o — TS o 1002 v
e

The proof is finished by the following error estimate for 1D from Lemma 4.15,
T1grad,ld —3/2
o — ) e S 07l o,
together with the norm estimates for z.

The results for the remaining interpolation operators follow with a similar structure, but
more technical effort. Note that the proofs are built up by spatial dimension, thus we can
use the 2D-results for the boundary expressions appearing at the error estimates in 3D
(just as we used the 1D-results for the boundary terms in 2D).

4.2 Definition of the interpolation operators

In this section, we define the prOJectlon—based interpolation operators. As introduced
in Section 2.4, we denote by K a fixed reference tetrahedron in 3D, and by f a fixed

reference triangle in 2D. In 3D, the H'-conforming operator is then denoted by ngad 3d,
the H(curl)-conforming one by I15""3® and the H(div)-conforming operator by II dlv 3d . In
2D, the notation is similar, i.e. we deﬁne the operators Hiff 24 and ngrl 2d

yerad,3d

The operators are built up by spatial dimension. For I, we start with fixing the values
in the vertices first, and then follow up on the edges, the faces and finally in the interior.
For ﬁf;uﬂ’?’d, we just start on the edges, and for ﬁgiv’gd, fixing only on the faces and the
interior remains. We note that the procedure of building the interpolation operators can
also be seen as a sequence of constrained optimizations in which the value on a subsimplex
of K is determined as the solution of a minimization problem, where the values on the
boundary subsimplices have already been fixed. In 2D, analogous statements hold.

We start with the operators in 3D.
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4 The projection-based interpolation operators

Definition 4.1 (ﬁ%ff’gd) medst . g2(Ky - WPH(I?) is given by

p+1

w(V) = (V) =0 YV € V(K), (4.2a)

(Ve(u — TP M0), Vev) 2y = 0 Vo € Wppa(e) Ve € E(K), (4.2b)

(Vy(u— TN M), Vo) o) =0 Yo € Wppa(f) Vf € F(K), (4.2¢)

(V(u =T 0), Vo) 5y = 0 Vo € Wy (K). (4.2d)
Definition 4.2 (IIg™3), TI5" . HY(K, curl) — Q,(K) is given by

(te - (u—I30) 1) 5 =0 Ve e £(K), (4.3a)

(te - (u — W130y), v )LQ(e =0 YveWyi(e) Vee&(K), (4.3b)

(I, (u — TI939w), Vo) 12y Yo e Wpii(f) Vf e F(K), (4.3c)

(curlf II-(u — ﬁ;“ﬂ’3d ), curly V)Lz Vv e Q,(f) Vfe F(K), (4.3d)

(0 =TI 3), Vo) o ) =0 Vo € Wy (K), (4.3¢)

(curl(u — ;") curl v) 2y =0 ¥V € Qy(K). (4.3f)
Definition 4.3 (Hd1V 3y, Hgiv’gd : HY2(K, div) — Vp(IA() is given by

(ng - (u—O83%), 1) 05y =0 Vf € F(K), (4.4a)

(ny - (u—TV%) 0) 2y =0 Yo e Vp(f) Vf € F(K), (4.4b)

((u— ﬁgiv’?’du), curl V)L2 Vv e Qp(l?), (4.4c)

(div(u — [I3V34y), div v)LQ(K) =0 Vv e V,(K). (4.4d)

In order to obtain a complete commuting diagram property, we also need the following
interpolation operator on the space L?(K) which is defined as the L?-projection.

Definition 4.4 (ﬁﬁz) HL2 L2(K) = W, (K K) is given by

(u— ﬁfu,v) =0 Yo e Wp(f(). (4.5)

L2(K)

In 2D, the definitions are similar.

~

Definition 4.5 (I1&24), ﬁ%ff’zd L H32(f) = Wy (F) is given by

p+1
u(V) - IE2 (V) =0 WV e V(f), (4.6a)

(Ve(u — TEP?M0), Vev) o) = 0 Yo € Wpya(e) Ve € E(f), (4.6b)
(V(u =T M0), Vo) 7y = 0 Vo € Wy (f). (4.6¢)
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4.3 Well-definedness of the projection-based operators

Definition 4.6 (II5""%%). TIS™ . HY/2(F, curl) — Q,(f) is given by

(te - (= TI™20), 1) o) = 0 Ve € E(F), (4.72)
(te - (u — [eb2y) v )m(e) =0 YoeWyi(e) Vee&(f), (4.7b)
((a =T ), Vo) o = 0 Vo € Wy (), (4.7c)
(curl(u — [y, Curlv)L2 Vv € Q,(f). (4.7d)
Definition 4.7 (ﬁf) The operator ﬁf : L2(f) — Wp(A) is defined by
(u— ﬁﬁzu,v)LQ(ﬂ =0 Y e Wp(f). (4.8)

Remark 4.8. A closer look at the definitions of the operators reveals that the operators

in 2D and 3D are closely related. In fact, if we identify a face f € F (I? ) with fvia an

affine congruence map, the restrictions of the operators H]gJ ff ,3d (and ﬁf,url’sd) to the face

inci i ygrad,2d Seurl,2d
f coincide with the operators H%fl’ (and TI™2).

4.3 Well-definedness of the projection-based operators

We now show that the interpolation operators defined in Section 4.2 are well-defined and
projections.

Lemma 4.9. For u € H2(K) there holds ul. € H'(¢) for each e € E(K) and
lulli o) S lull o e

Moreover, the operator ngad 3 well-defined.

Proof. We prove the first claim by applying the trace theorem twice. For € > 0 sufficiently
small, the first application shows that the trace operator maps H2T¢(K) — H3/2T<(f)
and H2¢(K) — H3/27¢(f), the second application gives H3/2T¢(f) — H"(e) and
H3/27¢(f) — H'~(e). Interpolation then asserts H2(K) — H(e).

We now show the well-definedness of ﬁif‘f ,3d by dimension arguments. Since we have

dim Wi (K) = S (p + 4)(p + 3)(p +2)

and the number N,,q of posed conditions in 4.2 is

(p—1p 1

1
Neona =4+ 6p + 4= +6(p—2)(p—1)p=6(p+4)(p+3)(p+2),

we observe Ngp,q = dim Wp+1(f( ). Thus, (4.2) represents a square linear system. What is
still left to show, is uniqueness of the system. Let u = 0. Then (4.2a) shows ngad’gdu(V) =

0 for all vertices V' € V(K). The conditions (4.2b) then imply that ngad 3du =0 on all
edges of K. Equations (4.2¢) then lead to ngad 39 = 0 vanishing on all faces of K and
finally (4.2d) shows TIZ7{"**u = 0. Thus, Hgfff b is well-defined. O

95


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4 The projection-based interpolation operators

Lemma 4.10. For u € H(K, curl) there holds u-t, € L*(e) for each edge e € E(K) and
- tell 20 S 1l e cn

Moreover, the operator ﬁ}c)url,?:d is well-defined.

Proof. For u € Hl(l?, curl) the trace theorem gives, for each face f, IL,u € HY2(f, curly).
Lemma 2.25 now shows that we can decompose this functions as II,u = V¢ 4+ z with
¢ € H3?(f) and z € H32(f), which implies IT,u - t. = Vepl|e + 2z|e - te € L(e).

The well-definedness of TI5™*% is seen in a similar way to Lemma 4.9. Here we introduce
the notation

ker curl = {q € Q,(K) : curlq = 0}.
Considering the exactness of the sequence (2.33), we obtain
dim Qp(fi\') = dim curl Qp(I?) +dim ker curl = dim curl Qp(l/(\') + dim VWP+1 (K).

Thus, the number of conditions in (4.3e), (4.3f) equals dim Qp(l? ). Analogously, by the

exactness of the second sequence in (2.33) we obtain, for each face f € F(K), the number
dim Qp(f) as the number of conditions in (4.3c), (4.3d). Finally, for each edge e € E(I?),
the number of conditions in (4.3b) is p and the number of conditions in (4.3a) is 6.

We now calculate the various dimensions. Using the formulas from [51, Sec. 5.5], we get

aim Qy(K) = S (p+ 4)(p +3)(p + 1)
and
dim Q(K) = dim Q,(K) — 4 - 2dim(P,-1(R?)) — 6(p + 1)
= %(p + Dp(p — 1),

cf. i51, Def. 5.30, Lemma 5.35]. Analogous considerations for 2D give for each face f €
F(K)

dim Q,(f) = 2dim P, (f) 4+ 2dim Ppy1(f) — dim Ppyo(f)
=(@+E+2)+2(p+2)-(p+3)=p@+1P+3)

and

dimQ,(f) = (p+1)(p+3) —3(p+1) =p(p+1).

Hence, an elementary calculation yields
dim Q,(K) = dim Q,(K) + 4 dim Q,(f) + 6p + 6,

which implies that the number of conditions in (4.3) coincides with dim Qp(IA( ). Thus, (4.3)
represents a square system of equations.
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4.3 Well-definedness of the projection-based operators

As in Lemma 4.9, we now show that u = 0 implies ﬁf,url’g'du = 0. Conditions (4.3a) and
(4.3b) imply that the tangential component of ﬁ;url’?’du vanishes on all edges of K. This
observation together with the orthogonality conditions (4.3c) and (4.3d) and the exact
sequence property (2.34) gives that the tangential component HTﬁf,url’Mu vanishes on all
faces of K. Finally, it follows from (4.3¢) and (4.3f) together with the exact sequence

property (2.33) that 15" = 0. O

Lemma 4.11. For u € Hl/Q(IA(,div) there holds u -ny € L2(f) for each face f € ]:(I?)
and

la-ngllizg S Il e
Moreover, the operator ﬁgiv’gd is well-defined.

Proof. We decompose u € H1/2(IA(,div) as u = curly + z with ¢,z € H3/2(IA(), cf.
Lemma 2.33. It follows ny -z € H'(f) and ¢|; € H!(f). Since (ns - curlp)|; =
curl¢(IL-)| s, we obtain (ny - curl)|r € L?(f), and thus ny - u € L2(f).

The well-definedness of the operator is again seen by dimension arguments. We introduce
the notation

kerdiv = {v € Vp(f?) sdivv = 0}.
Considering the exactness of the sequence in (2.33), we get the equality
dim V,(K) = dim div V,,(K) + dim ker div = dim div V,,(K) + dim curl Q,(K).

Thus, the number of conditions in (4.4c), (4.4d) equals dim\ofp(f( ). Furthermore, the
number of conditions in (4.4a), (4.4b) is

p+1)(p+2)

4+4dimf/;,(f):4+4(( 5 —1) = 4dim Wy,(f)

such that

(p+1)(p+2)

5 — dim V,(K).

o~ 1
dim V,(K) +4dim W, (f) = 5(p +2)(p+1)p+4
Hence, (4.4) represents a square linear system. In order to show uniqueness, we observe
that u = 0 implies II3""**u = 0, since the conditions (4.4a) and (4.4b) give ny S TR
for all faces f € F(K), and the exact sequence property (2.33) and conditions (4.4c), (4.4d)

then imply ﬁgiv’?)du = 0. O

Since the operators are defined in a similar way in 2D, it seems obvious that they are also
well-defined.

Lemma 4.12. The following statements hold:
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4 The projection-based interpolation operators

(i) Foru € H3/2(]?) there holds Veu € L*(e) for each edge e € 5(]?) and
Hv€u”L2(e) S Hu”H3/2(]?)

Moreover, the operator Hif?’% 1s well-defined.

~

(ii) Forue HY2(f, curl) there holds u - t. € L%(e) for each edge e € E(f) and
- tell L2y S MMl 7 euny-

Moreover, the operator ﬁ;url’Qd is well-defined.

Proof. For ¢ > 0 sufficiently small, the trace theorem implies u|. € H'*¢(e) for u €

~ ~ ~

H3/%%e(f) and ul. € H%(e) for u € H3/?>~¢(f). It follows u|. € H'(e) for u € H3?(f) by
interpolation. R R

By Lemma 2.25, we can write u € HY2(f,curl) as u = Vy + z with ¢ € H3?(f) and
z € H2(f). Hence, we have u-t. = Vcle + 2|c - te € L(e).

The well-definedness of the operators is seen completely analogously to the 3D case by
dimension arguments. O

Lemma 4.13. The operators defined in Definitions 4.1-4.7 are projections.

Proof. We start with the operator ﬁif{l B4 Tetu e Wp+1(f( ). Then property (4.2a) yields

u(V) = T2 0u(V) (4.9)

for all V € V(K) and therefore (u — ﬁ%ff’:sduﬂe € Wpy1(e) for all e € £(K). Thus, we can

use v = (u — ﬁzggff 34|, as test function for (4.2b) and obtain

Ve (u = T ) el 2oy = O,

p+1
which implies Ve(u—ﬁif?’gduﬂe = 0. This is equivalent to (u—ﬁ]gjiaf 34)|e being constant
on e, and together with (4.9) it follows (u — Hiff’gduﬂe =0 on e, hence (u— Hiff’gduﬂf €

I/T/erl( f) for all f € F(K). Repeating the argumentation above for the faces f in view of

(4.2¢) and for the volume K in view of (4.2d) shows that ﬁ%ff 34 is a projection.

In order to show the projection property for ﬁ;ur1’3d, we take u € QP(IA( ). Let ¢ :=

~

(u — ﬁgurl’gdu) -t be the error. We now identify an edge e € £(f) with the interval (0, L)
of length L = diame. Note that a function w € Pp(e) can then be decomposed into

w(z) =w+ </Oxw(t)dt—mw>/,

where W denotes the average of w on e. Since we have

/ w(t) dt — 2 € W1 (),
0
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4.4 The commuting diagram property

it follows (€,w)r2() = 0 by (4.3a) and (4.3b). Hence, we have shown that the operator

ﬁ;url"gd is the L2-projection on edges e € £(f), i.e.
(te - (0 —IE"™30) w) o) =0 Y € Qple). (4.10)
Thus, we can use w = t, - (u — I5™%) € Q,(e) as test function in (4.10) and obtain

te - (u—I"0) = 0 on edges e € £(K). This implies I, (u — IL5"*") € Q,(f) on all
faces f € F(K), thus

curly Il (u — ﬁ;url’gdu) =0

on f by (4.3d). By the exact sequence property, there exists ¢ € Wp-ﬁ-l (f) such that
IT, (u — I 3% ) = Ve, thus (4.3c) shows
I (u — TI™3u) = 0

on each face f, which implies u — ﬁ;url’?’du € Qp(l? ). The exact sequence property and
equations (4.3e) and (4.3f) now give the desired result.
For the projection property of IIN"*? let u € V (K K). We define ¢ : (u - ﬁgiv’gdu) ‘ny.
Since every function w € P,(f) can be written as w = W + (w — W), where w denotes the
average of w on f, the fact w —w € V,(f) gives

(ny - (u—TV3%) w) oy =0 Y € V,(f). (4.11)

in view of (4.4a) and (4.4b). Hence, we have shown that the operator ﬁgiv’3d is the L2-
projection on faces F(K). This observation justifies the use of w = ny - (u — ng’?’du) €

Vp(f) as test function in (4.11), from which
ny-(u-— ﬁgiv’?’du) =0

on each face f € ]-'(IA() follows. Now by definition, u — ﬁgiv’3du € \Ofp(f(), thus we get
div(u — ﬁdiv’wu) =0

by (4.4d). From the exact sequences, there follows the existence of a function p € Qp( A)

such that u — 13"y = curl ¢ Equation (4.4c) then shows Iy **u

The projection property of HZE is clear by definition.
Since the operators in 2D are only the restrictions of the versions in 3D (cf. Remark 4.8),
the projection properties of the 2D-operators follow from the argumentation above. O

uonK

4.4 The commuting diagram property

We use this short section to show that the interpolation operators defined in Section 4.2
satisfy the commuting diagram properties

R 4 p2(K) % HYK,curl) <% HY(EK,div) 2% HYE) 2 {0}
lngfﬁi ,3d lﬁ;url,Bd Jﬁgivﬁd lﬁy (4.12)
id ~ Vv = curl - div, 7o 0
R — Wpii(K) — Qy(K) —  Vu(K) Wy(K) — {0}
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4 The projection-based interpolation operators

in 3D and
R —4y g3/2(F) —Y HY2(F, curl) —2 HY2(F) —2 {0}
lﬁirﬁl,m lﬁ;md lﬁgz (4.13)
R — Wpn(f) —— Q) % W) —— {0)
in 2D.
Theorem 4.14. The diagrams (4.12) and (4.13) commute.

Proof. We show the 3D case (4.12). Note that the proof follows with similar arguments as
in [26, Thm. 5.1].

Step 1: We show II5"37vp = Ve, for some ¢ € H?(K) and some op € WPH(IA().

Let u = Vy for some ¢ € H2(IA() For each face f € .7-"([?) and each edge e € £(f) with
endpoints V1, V.2, we obtain fe u-t. = o(Vh) — ¢(Va), where t. denotes the tangential
vector of e in the mathematical positive direction with regard to f. Thus, (4.3a) implies

/ I, A3 = Y [u-t.=0. (4.14)

of ecof’€

Note that curly Il,u = curly 11V = 0, thus we can conclude with integration by parts
(4.14)

/ curly TL I3y = / I, (IISh3dy V=7 0, (4.15)
! of

Furthermore, the exact sequence property (2.33) gives us curly Qp( f) = Vp( f). Hence,
(4.3d) with test function curly IL L™ € V,(f) (cf. (4.15)) leads to

curly HTﬁ;url’?’du =0, (4.16)
which implies that on each face (ILII5"**u)|f is a gradient of a polynomial, i.e.
(HTH;url,3du)|f _ v@p,f

for some ¢, f € Wp1(f) for each face f € F(K).

We now claim that this piecewise polynomial can be chosen to be continuous on OK. Fix
a vertex V € V(I? ). By fixing the constant of the polynomials ¢, ; we may assume that
©op (V) = 0 for each face f with V' as a vertex. We now take an edge e that has V as
vertex, and denote by f; and f2 both faces sharing the edge e. The conditions in (4.3a)

and (4.3b) read for i = 1,2 as
(te . (V(p — V¢P7fi)7 vev)L2(e) =0

for v € Wj11(e), by definition of the functions ¢, r,. By taking v = ¢, ¢, — ¢p s, as test
function and subtracting both scalar products, we can conclude that ¢,  is continuous
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4.4 The commuting diagram property

across all edges e that have V' as an endpoint. Hence, the piecewise polynomial ¢, defined
by ¢plf = ¢p,r is continuous in all vertices of K and thus also on 0K. This continuous,
piecewise polynomial ¢, has a polynomial lifting to K that we again denote by ¢, €

~

Wpt1(K), cf. [52, 30]. Since
ﬁ;url,fidu o V(,Dp c Qp([?),
(4.3f) with test function v = II5""*u — Vi, € Q,(K) implies

curl ﬁ;url"gdu = 0. (4.17)

Note that the second line of (4.12) expresses an exact sequence property, hence step 1 is
complete.

Step 2: We show I3V = Vﬁ%ff’?’d.

The first step gives us ﬁf,url’SdVgo = Vy, for some ¢, € Wp+1(f(\' ). We fix the constant
in the function ¢, by fixing a vertex V € V(K) and then setting op(V) = ¢(V). Now let
V' € V(K) another arbitrary vertex, and let e be the edge between V and V’. From (4.3a),

we then get
0= (te (Vo = Vp), D2y = (0 = p)(V) = (¢ — p) (V') = —(0 — p)(V'),

and it follows ¢, (V') = (V') for all vertices V' € V(K) by repeating the argument.
Next, (4.2b) and (4.3b) imply

(te - (Vipp — Vﬁif?ﬁd@)v VeU)LZ(e) =0 (4.18)
for all v € Wp+1(e). Since ¢ € H%(K), (4.2a) shows

ep(V) = (V) = I 0(v)

for all vertices V € V(K) and thus

~orad,3d .
Pple — H;%lfl ¢le € Wpia(e).

Choosing v = ¢p|e — ﬁ;;f;md(p‘e as test function in (4.18) then shows ﬁ%ff’3d<p = ¢p on all

edges e € E(K).
The argument on the faces is similar. Here, (4.2c) and (4.3c) reveal

rerad,3d
(Vilpp = TET0), Viv)p2py = 0 (4.19)
for v € Wp+1(f) on each face f € ]-"(IA() Since we have recently seen ¢, — ﬁiff’?’d(p =0

on each edge, it follows

~orad,3d s
Yp — H%fl o € Wpia(f)
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4 The projection-based interpolation operators

which makes it a suitable test function for (4.19). Hence, we obtain Vj ngad Bl =

IL I 397 on each face f € F(K).
Finally on K, we compare (4.2d) with (4.3e), which yields

(Vipp — VIR ©, V) 12y = 0 (4.20)

for all v € Wp+1( ) The observation V ¢(y, — H%f? ,3d @) = 0 on each face f together with

the fact that ¢, — fjerad, 3d

1 = 0 on each edge e implies

rad,3d 1 >
Pp H;g)—fl Y E Wp+1(K)7

thus it can be used as test function for (4.20). This yields II5"?'V = Vﬂgff o on K,
which finishes step 2.

Freurl,3d _ Hle 3d

Step 3: We prove curlIl, curl.

First, we show
div I19V3 curlu = 0. (4.21)

rdiv,3d

To see this, we note that the second line of (4.12) implies divIl, "™ curlu € Wp(ff ).

Integration by parts together with (4.4a) then shows

/A div ﬁgi"’?’d curlu = /A n- ﬁgi"’w curlu = /A n-curlu= /A divcurlu =0, (4.22)
K oK oK K

thus div ﬁgiv’3d curlu € W;””(ff ). By the exact sequence property of the first line of
diagram (2.33) we obtain that div : \Ofp(f( ) — Wgrer (K) is surjective. Hence, we get from
(4.4d) that divII3 V3 curlu = 0, i.c. the claim (4.21) holds.

NextA7 by (4.21) and the exact sequence property of (4.12), there exists a vector field u, €
Q,(K) such that

ﬁgiV’Sd curlu = curlu,. (4.23)

Y% curlu = curl g™, we prove that curl 1™ € V,(K)

satisfies the equations (4.4) for Hglv 34 curlu. In this case, they are reformulated as

In order to show II,

(ny - (curlu — curl ﬁ;url"gdu), Dz =0 Vfe F(K), (4.24a)
(ny - (curlu — curl ﬁ;url’:gdu), V)2 =0 Vve V;?(f) Vf e F(K), (4.24b)
(curlu — curl ﬁ;url’?’du, curl V)LQ(K Vv e Qp(f?), (4.24¢)
(div(curlu — curl ﬁgurl’3du), div V)LQ(K Vv e Qp(f?) (4.24d)

(4.24d) is obviously true since the whole line is zero, and (4.24c) is exactly (4.3f). Using
the observation

ny - curl = curly II,
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4.5 Stability estimates in 1D

we can write (4.24b) as
(curly I, (u — TI™30) v) oy = 0 Vo € Vp(f) Vf € F(K), (4.25)

which is (4.3d) considering Vp( f) = curly Qp( f) by the exact sequence property of (2.33).
Finally, (4.24a) follows by integration by parts, which gives

(curly L (u — HE34), 1) 2y = S (I (u — TE5%0), £, 2 (432)
eCOf
This completes step 3.
Step 4: We prove div ﬁgiv’?’d = ﬁf div.
First, we have
(divu — div g™, 1), ) = /8 o (u — I9V3y) = 0 (4.26)

by (4.4a). The exact sequence property (2.33) implies that every w € nger(f( ) can be

represented as w = divw for some w € \ofp(f( ). Hence, for any w € W5ve (K), we get

(4.4d)

(divu — div ﬁgiv’3du, w) divu — div ﬁgiv’gdu, divw) ="'0. (4.27)

(i) = L2(R)
Both equations (4.26) and (4.27) now show that div I3 **u satisfies (4.5), which completes
step 4.

Thus, (4.12) is proved in the three-dimensional setting. The proof of (4.13) in the 2D case
follows analogously. Since the operators in 2D are simply restrictions of the operators in
3D (cf. Remark 4.8), the biggest change in the proof is just to stop the argumentation at

the level of the faces. O

4.5 Stability estimates in 1D

As we mentioned in the introductory chapter, we need to analyze two different norms
for proving stability estimates for our interpolation operators. Here, the estimates in the
weaker norms are obtained by duality arguments, and the proofs are, in a similar way to
the definitions of the operators themselves, built up by spatial dimension. Without going
into excessive details here, we start with the norm in 3D and use integration by parts to
obtain two expressions: The 3D-term is handled by best approximation results, and for the
boundary term, we use suitable 2D results, which are themselves based on an 1D result
after an integration by parts argument.

This section will deal with a stability result in the one-dimensional case, which is needed
for the proofs in higher dimensions. The 1D-case is rather simple and not really exciting in
terms of exact sequences or commuting diagrams, thus we haven’t included the interpolation
operator ﬁ%md’ld introduced here, which is just the restriction of the 2D-operator to one
edge, in the definitions of Section 4.2.
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4 The projection-based interpolation operators

Lemma 4.15. Let € = (—1,1) the reference element in 1D, and let ﬁ%rad’ld : H'(e) —
Pp(€) be defined by

((u—TE2 MY ) o) =0 Yo € Py(e) N HY (@), (4.28)
u(£1) = (TIgad1dy)(£1). (4.28b)

Then, for every s > 0 there is a constant Cs > 0 such that

||u - ﬁ%md’lduHHl—s(a < Csp_s ian H’LL - UHHl(g), ’Lf S € [0, 1], (429&)
vEPp(€)

l|lu — ﬁgmd’lduﬂﬁl_s(a <Ceop™® inf_|fu—1vg1e), if s > 1, (4.29b)
vEP,(e)

||(u _ ng;rad,ldu)/nﬁ_s(a < Csp~? Einf(’\) Hu - UHH1(€)7 if s > 0. (429C)
vePp(e

Proof. We start with the case s = 0. For u € H'(€), let Lu € Py(€) interpolate u in
the endpoints £1. Sobolev’s embedding theorem then gives ||Lul|g1) S [lullg1e)- Since

u— Lu € HL(@), there holds TIE Y (u — Lu) € HE(e) by (4.28b), and (4.28) yields
T4 s — ) By = (0 — L), (FE 0 — L)) oo,
which implies
T 0 — L) 12y < Ju — Lul oy
We then have
T (= Lu)[| ey S lu— Lull e
with Poincaré’s inequality. It follows

||ﬁ%rad,1du||H1(€) _ ||ﬁ§rad,1d(u o Eu) + ﬁzg)rad,ldﬁu|’H1(€)

— (4.30)
< |TIEP N 0 — Lu) || gy + 1Lull ey S lullme)-

The projection property of ﬁ%rad’ld, which follows immediately from the definition, shows

for any v € P,(€) that u — IIE*M %y = 4 — v — 181 (4 — v)). Together with (4.30) follows

the estimate (4.29a) for s = 0.

We now prove (4.29b) for s > 1 by a duality argument. With the notation € := u—ﬁ%md’ldu

and t = —(1 — s) > 0, we want to estimate

el g1 = sup 7(6’U)L2(€).
vert@) IVllHt@

For every v € H'(€), there exists a unique solution 2z € H**2(€) N H}(€) of the problem

—2"=vine
. (4.31)
z =0 on O,
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4.6 Stability estimates in 2D

which satisfies the regularity estimate | z|| g2

S lvllat ). Using integration by parts,
condition (4.28a) and the estimate (4.29a) for s = 0

already shown above, we obtain

N (4.282) '
(& v) 2@ =12 ) 2@l < 1€z inf )HZ'—W/Hm(a)

TEP,(@)NHL (@
(4.29a) with s =0

S Hg/”LQ(E)p_(H_l)||Z||Ht+2(g) S p_(t'H)

ot e ol ol
Lt = vl

cf. [57, Thm. 3.17]. This implies (4.29b) for s > 1. We mention that || - ||ﬁ0(€) =|-llz2e) =
|- | o ey, thus the intermediate cases s € (0,1) follow by interpolation.
Finally, (4.29¢) is shown by similar duality arguments. Here, we have to estimate the norm

(€,v)12(9)
€l gm = sup ———"—t.
€'l 7 ©)] vers@ |1Vl

We write the scalar product as

(€02 = E v =D 2@+ (@020
—_——
—5(E(1)—(—1))=0

where 7 = ([;v)/|€] denotes the average. Posing the dual problem
—"=v—vine
2 =0on de
for v € H%(€), we obtain

(€, 0) 20| = (€, (2") ) 29l < 1€l 2y . (H;rwal(A) 1(z") = 7'l L2 )
wePp(€)NH (€

SN 2@p™ Nzl getze Sp~° Uei%lf(e) v = vl g llvllas -
P

4.6 Stability estimates in 2D

After the definition of additional projection operators from [26, Thm. 4.2], we proceed
with the stability estimates for the operators ﬁ%ff 24 and ﬁgurl’%. In this section, we also
make frequent use of the right inverses and the Helmholtz-like decompositions introduced
in Section 2.5.

Lemma 4.16 ([26, Thm. 4.2]). Let P44y ¢ W, 1 (f) be defined by

~

0 YoeWy(f) (4.32a)
0. (4.32D)

(V(u — perad:2dy), V)25

(f
(u o Pgrad72du, 1)L2(

> =
I

Then, for r > 1, there holds

f|lu— pgrad,zduHHl(f) < Crpf(rfl)HuHHT(f)'
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4 The projection-based interpolation operators

Lemma 4.17 ([26, Thm. 4.2]). Let P24y ¢ Qp(f) be defined by

(curl(u — Pe24y) curl v)

(u _ Pcurl,2du, VU)

=0 Vv € Qp(f) (4.33a)

=0 Ywe W, (4.33b)

L2(f)
L2(f) =
Then, for r > 0, there holds

1,2d -
= Pl 7y < Gl oy

4.6.1 Stability of IT57*

The following theorem deals with the stability of the gradient interpolation operator in two
dimensions. In parts, the proof uses the similar 1D-result Lemma 4.15.
For s = 0, a similar result can be found in [10, Thm. 4.1].

Lemma 4.18. Let s € [0,7/wiaz), where wyq,_denotes the largest interior angle of f
Then there exists Cs > 0 such that for u € H3/2(f), the following stability estimates hold.

= T2l oo 5y < Cop™ VPP inf Jfu— ]|y py if 5 €10,1],  (4.34a)
vEWp11(f)
= T ull e gy < Cop™MPH)inf w0l gognzy i 5 € (1,7 /wmaa),
vEWp11(F)
(4.34b)
IV (u =T | g gy < Cop™ 2 i lu— ]l agagpy i 5 € 0,7/ wmas).
“ ey veWpia () .
(4.34c)

Proof. By the projection property of ﬁ%ff 24 it is sufficient to prove the estimates (4.34a),
(4.34b) and (4.34c) only for the special case v = 0 in the infimum, cf. the proof of

Lemma 4.15, where this fact is demonstrated for the sake of completeness.

Step 1: We show (4.34a) for the case s = 0.

From u € H3/2(f), we obtain u € H'(e) for each edge e € 5(?) by the trace theorem,
together with the bound [|ul|g1(e) S HuHHg/z( 7 of. Lemma 4.12. On every edge e € E(f),
we can now use the 1D result, thus Lemma 4.15 yields

~orad,2d _
Ju— H;gyfl UHHPS(e) <Cp SHUHH3/2(J?)7 s €[0,1].

Note that by definition, Hiff 24y, s piecewise polynomial and continuous on 6]?, hence we

get in particular for s = 0 and s = 1 the estimates
rad, 2d _
”u - H%—‘fl HHl—S(af) <Cp SHUHH3/2(]?)~ (4.35)

The bounds for s € (0,1) follow as usual by interpolation.
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4.6 Stability estimates in 2D

Trgrad,2d . . .
We now observe that P&rad:2dy, H%ffl u is discrete harmonic, i.e.,

(V (Pered2dy — T2 0) Vo) b 5 =0 Yo € Wyn(f), (4.36)
::5p€Wp+1(A)

of. (4.6¢) and (4.32a). We now use the lifting £54:2d  HY2(9f) — HY(f) of [5,
Thm. 7.4]. It bears the properties that for a piecewise polynomial function w on the
boundary, £824:2dy, is a polynomial of same degree, and moreover, it is a continuous lift-
ing, i.e.

d,2d
e g T A

It obviously holds 6§, — £&2d:2d5 ¢ I;Vp+1(f), thus

(Vo V(3, ~ cgfadﬁdap))LQ(A) —0

by (4.36), which implies
16012

= (V35 V3) 2y = (Vo VIL25,)) o S 165l ) 100 oy (4:37)

PLHY(f)

Hence, we obtain with Lemma 4.16, (4.35) and (4.37)

d,2d rad,2d rad,2d,, d,2d
|U_H;gylfl U|H1(J?) < |u— PE™ 2 U|H1 + [P 2 H%fl u’Hl(]?)
Lemma 4.16, (4.37) 19 4 Zd rad,2d
s D / HUHH3/2(]?) + [| BT H§+1 UHHl/Q(af)
(435) o (4.38)
< Y2l g, + = PE o
Lemma 4.16 1/2
S HU’HHB/Z f)a
which proves (4.34a) for the case s = 0.
Step 2: We show (4.34Db) for the case s € [1,7/wmaz) by a duality argument.
With the notation ¢ = u — Hif{mdu and t = —(1 — s), we want to estimate the norm
B (€ v) 207
lellgor s = sup_ (4.39)
veH(f) H”HHt )
For every v € HY( A), there exists a solution z € H+?( A) N Hy( A) of the problem
—Az=wv in f,
z=0 on af,
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4 The projection-based interpolation operators

with the estimate HzHHHQ(f) < CHvHHt(f), cf. Corollary 3.43. We now proceed by integra-
tion by parts to get

e, v) ;0,5 = | Ve-Vz— On z€. 4.40
@) e /f ; (4.40)

We now estimate the first term in (4.40), using the orthogonality properties satisfied by €,
Lemma 2.23 and (4.38), and get

/AV2~VE5
f

. » Lemma 2.23 —(t41) »
< inf HZ_WHHI(]?)HV@”LQ(]?) S p HzHHf‘*‘Q(f)HveHLQ(f)

mE€PRNH(f)

(4.38)
ST VNVEl glvlg S T Nl g g ol gy
(4.41)

Note that we have already established an 1D stability result in Lemma 4.15, which we now
apply to estimate the second term in (4.40). Together with trace theorems, we obtain for

~

each edge e € £(f)

Lemma 4.15

|(an2’75)L2(e)\ N ||g||f{'*(t+1/2)(e)”8HZHHt+1/2(e) S Pf(g/QH)HUHHl

S p—(1/2+s) ’

(e)”ZHHH—Z( )

’uHH3/2(f)HUHHt(f)'
(4.42)

Inserting (4.41) and (4.42) in (4.40) and (4.39) implies the desired estimate (4.34b) in the
case s € [1,7/wmag)-

Step 3: We show (4.34a) for s € (0, 1].
Note that (4.34a) and (4.34b) coincide for s = 1, thus the result follows by interpolation
between s = 0 and s = 1, cf. steps 1 and 2.

Step 4: We show the estimate (4.34c) for s € [1,7/wmaz) by a duality argument.

. . ~ = d.2d .
With the notation e := u — ng,fl’ u, we need an estimate for the norm

N (Ve V) 27
IVellg-sy = sup_ Wf) (4.43)
veH*(f) H*(f)

~

As shown in Lemma 2.26, any v € H?(f) satisfies the decomposition v = V¢ + curl z
with ¢ € H*YL(f) N H}(f), 2 € H*T1(f) and the corresponding norm estimates. We then
proceed by integration by parts (cf. (2.25)) to get

(Ve, V)Lg(}‘) =(Ve, VSO)L2(J?) +(Ve, curl Z)LQ(]?) =(Ve, VSO)LQ(]?) +(t - Ve, Z)Lz(af)-

The rest of the proof follows the lines of step 2. For the first term, we obtain with
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4.6 Stability estimates in 2D

Lemma 2.23 and (4.38)

(Ve, Vo) 2| S IVell 2 inf 5 o — mll o 7
L ( o 7rEI/Verl f) (D
Sp_l/zHuHHBﬂ SHSoHHsH(f)

< p—<5+1/2>||u||H3/2(f)Hqus(f),
and the estimate of the second term follows with Lemma 4.15

|(t - V&, 2) 12(0)| = [(Vel, 2) 12(0)| S IVelll -1/ (o) Il o172
S p_(s+1/2)||u||H1(e)Hz||HS+1/2(e) Sp et ”“HHs/z(f)HVHHs(f)

~ ~

since z € H¥T1(f) implies z € H*T1/2(e) for each edge e € £(f). Inserting the last two
estimates in (4.43) gives us (4.34c) for s € [1,7/wmaz)-

Step 5: The estimate (4.34c) for s € (0,1) follows by interpolation between s = 0 and
s=1. O

4.6.2 Stability of [1c"2

In this section, we deal with the stability of the curl-interpolation operator in two dimen-
sions. The ideas are often similar to those used in the proof of Lemma 4.18, however, the
proofs are technically more difficult. The concepts of the proofs here rely on [26] in parts.
We start with two results about estimations of negative Sobolev norms.

Lemma 4.19. Let E € H1/2(J?, curl) satisfy the orthogonality conditions

(curl E, curl V)L2 =0 Vv e Qp( f)s (4.44a)
(E, Vgo)LQ =0 Vo € Wy (f ) (4.44b)

(B te, Vep)r2() =0 Vip € Wpyile) Ve € E(F), (4.44c)
(E-te, )2 =0  Vec (). (4.444d)

Then, for s € [0,7/wmaz), where wmq, denotes the largest interior angle of ]?, there holds
the estimate

HEHH—S <C 75HEHH (F,curl)®

Proof. Step 1: Since E € H'/2(f, curl), Lemma 4.12 shows that E - t. € L2(e) for each
e € E(f), such that the conditions (4.44c) and (4.44d) are meaningful. Additionally, we
have the estimates

1E - tellL2ge) S 1Bz 7 eun)y:
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4 The projection-based interpolation operators

~

Step 2: We assume s > 1. By Lemma 2.26, any v € H*(f) can be decomposed as

v =Vp +curlz, (4.45)
where ¢ € H*PY(f) N HL(f) and z € HT(f) with (2, 1) 27 = 0, together with the norm
estimate H(p\|HS+1(f |z HHS+1(f S VI s (j)- Integration by parts (cf. (2.25)) then leads

to
(Ev V)LZ(}’F) = (Ea VSD)LZ(J’C\) + (E7 curl Z)L2(A) (446)

= (E,V@)LQ(J?) + (CuriE,z)LQ(f) - /8sz - t.

Step 3: We estimate the first term in (4.46).
With the orthogonality property (4.44b) and Lemma 2.23, we obtain

inf (E,V(p— w))Lz(A)
wEWp1(f)

S p_S”SOHHerl(f)”EHL2(f)

(E7 VSO)LZ(A)

< p_SHVHHS(f)HEHH(ﬁcuri)

Step 4: We estimate the second term in (4.46).
Here, we pose the Neumann problem

—AZ=2z in f,
9Z=0 ondf.

Since the function z has the property f =2z =0, the compatibility condition is satisfied, thus
we get a solution z with the estimate Hz||Hs+1( Szl s ) cf. Proposition 3.48. We
then define the function z := curlz, which has the properties curlz =z and z-t = 0. It
follows ||z| 4. (Feul) S S Izl s +1(7)- By the orthogonality property (4.44a), we have

(curl E, z)LQ(A) = (curlE,curlz)LQ(A) (1.400) i(gf(A)(curlE,curl(z - W))Lz(f)- (4.47)
weQp

Now note that there exists a continuous, polynomial-preserving lifting
o2 129 f) — H(f, curl)
that is in p uniformly bounded, cf. [2] and [26, eq. (164)]. Hence, it follows
cewl2d( powl2d, ¢y pewl2d, Qp(f)’

which implies that this function can be used as w in the infimum in (4.47). Since

Pcurl 2d 7 — Pcurl,QdZ)

||£cur1,2d(Pcurl,2dZ . t)

HH (frcurl) ~ ” z- t||H—1/2(3f) = H( 'tHH—l/?(af)

1,2d
5 ”Z - P ? ZiiH(ﬁcurl)
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4.6 Stability estimates in 2D

by the properties of the lifting operator and a trace inequality, cf. [26, eq. (154)], we get
with Lemma 4.17 and Lemma 2.26

(curl E, Z)LQ(J?) <l curlEHLQ(f) |z — (Peurl2dg . gourl2d( peurl2d, t))HH(ﬁwrl) (4.48)

S HEHH(ﬁcurl) (HZ - PcurldeHH(f’curl) + ||£curl,2d(Pcurl,2dZ . w”H(ﬁcurl)) (4'49)

Lem. 4.17

< Bl ey P 2 e (4.50)
Lem. 2.26

< Bl oum Vs - (451)

Step 5: We estimate the third term in (4.46). ~ R
We use the orthogonalities (4.44c) and (4.44d). Since z € H*T(f), we get z € C(df) and
z € H5T1/2(e) for each edge e € £(f), thus

/AE-tz
af

where we again used Lemma 2.23 and also the continuity of the tangential trace map,

= inf _

weW5(f)

Btz — )| S 1B tly-sop 0t [l = wllgvsor
/8; CT I H2(0])

)we »(f

SplE- t||H71/2(af)||Z||Hs+1(f) S IfSHEHH(fycurl)||VHHs(f)a

||E . tHH—1/2(8f) 5 HEHH(}\,curl)’

cf. for example [26, eq. (154)].

Step 6: Since the case s = 0 is completely trivial and the case s = 1 has been shown in
steps 2-5, the cases s € (0,1) now follow immediately by interpolation. O

Lemma 4.20. Let E € H1/2(f, curl) satisfy the orthogonality conditions (4.44a) and
(4.44d). Then, for s € [0,7/Wmaz), where wma, denotes the largest interior angle of f,
there holds

[ curlE||g_s(f) < Csp™°|| curlE||L2(J?)‘

Proof. Let s > 1, and let v € H*(f). With the notation 7 := (ffv)/\ﬂ € R for its average,
we obtain by integration by parts and the orthogonality (4.44d) that

(curl E, U)Lg(f) = (curlE,v — @)LQ(f) +7(E - t, 1)L2(af) = (curl E,v — @)LQ(]?).
Posing the Neumann problem
—Ap=v—7 in f,
Onp=0 on 8]?,

where the compatibility condition is obviously satisfied, Proposition 3.48 gives us the exis-
tence of a solution ¢ € H*T1(f) with the estimate

5 A5

||‘P||Hs+1( ) S v 76”}1&1“) ~ UHHs(J?)-
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4 The projection-based interpolation operators

Setting v := curlp, we see that curlv = —Ap =v —7 in fand t-v=—-0,p=0o0n 6]‘"\.
The orthogonality property (4.44a), Lemma 4.17 and again integration by parts now leads
to

(curl E, v — )

curl E, curl v) inf (curlE, curl(v — w))L2(A)

weQy(f)
Sp7l curlEHLQ(f) HVHHs(ﬁcuﬂ) Spel CurlEHm(f)”UHHs(f)a

L2(f) — ( L2(f) —

cf. the arguments with the lifting operator in (4.48). This concludes the proof for s > 1.
The case s = 0 is again trivial, thus standard interpolation arguments give us the result
for s € (0,1). O

The stability result for the operator ﬁgurl’Qd is again built up by spatial dimension. The

next lemma deals with stability on edges, before we can prove the desired stability result
on f (which is later on used for the analogous result on the three-dimensional tetrahedron
K).

Lemma 4.21. Letu € H1/2(J?, curl). Then there holds for each edge e € 5(]?) and s >0

fycurl,2d s -

(0 =I5 0) - tell oy < Cop™ | dnf lute = vllp2e). (4.52)

Proof. Note that Lemma 4.12 gives us u - t. € L%(e), thus all expressions in the statement
are indeed meaningful.

Let € := (u — H}C,uﬂ’Qdu) -t. be the error. We have already shown that the operator qurl’Zd

is the L2-projection on edges e € 5(]?), ie.

(te - (u— "™ 20) w) 2y =0 Vw € Qple), (4.53)

~

cf. the proof of Lemma 4.13. Thus, we can use w = (H;,url’Qdu

(4.53). Simple estimates then imply (4.52) for s = 0.
For s > 0, (4.52) is seen by a standard duality argument. We have to estimate the norm

) - te as test function in

Pliory = sup 0
H=(e) vEH3(e) HUHHS(e)

Since (€,w)2(e) = 0 for all w € Py(e) by (4.53), we obtain

e, )2 = | Inf (€,v—w)r2| < ||€llrzey inf |lv — wlr2

[(€,0) r2(e) | wepp(e)( 2| < el ) weiio | l22(e)
S P llellrze vl s e

by Lemma 2.23. O

We now show the stability result on f We mention that the case s = 0 can also be found
in [10, Thm. 4.2].
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4.6 Stability estimates in 2D

Lemma 4.22. Letu € PAIl/Q(fA, curl). Then, for s € [0,7/wmaz), Where wima, denotes the
largest interior angle of f, there holds

”u _ ﬁ;url,QduHH < Cyp~ (1/24s)  inf ||u VHH1/2 (Fourl)”

VGQp(f)

reurl,2d

s (f curl) —

Proof. Note that by the projection property of 1I, , it again suffices to only show the

bound with v = 0 in the infimum.
Let P2y defined as in Lemma 4.17. Similar to Lemma 4.18, we define

E .— pewl2d, ﬁcurl,2du €Q (f)
= » o(f)-

With the continuous, polynomial-preserving lifting
ceut2d H—l/z(af) — H(J?, curl)

already introduced in Lemma 4.19, cf. 2] and [26, eq. (164)], it follows E— LY(E-t) €
Q,(f), and the orthogonalities (4.3d) and (4.33) imply

(curl(E — £U24(E - t)), curl E)LQ(A) =0. (4.54)

Thus, we can estimate

(4.54) r1,2d
B2, ;"2 (cwnl £ (B - t), curl E)
|| cur HL2(f) curl £ ( ), cur 2(h

AchrlEHLz(f)

< || curl £24(E - t) HLQ(f)

and the continuity of the lifting operator £2? yields the bound
I curlEHL2 SIE -], 12(55)" (4.55)

We now use the discrete Friedrichs inequality (Lemma 2.34, (ii)) to obtain

IBl2(5) < B — £ - 6)]| o 5y + [ £72E - 6)] a7
< [l eurl(B — £24E )] 5+ [£7E - )] 7, (4.56)
(4.55)

< chrlEHLQ +||Lcur12d(E t)”H(f,curl) S ”E'tHH71/2(8f)’

Since u € HY2(f, curl) implies u - t. € L2(e) for each edge e € £(f) with the estimate
[u-tell 2oy S Hu||H1/2(fcurl) according to Lemma 4.12, we get with the help of Lemma 4.17
and Lemma 4.21

Tycurl,2d . _ 1,2d N ~
Hu o H}C)UT uHH(f,curl) S P uHH(f,curl) + HEHH(f,curl)

’ 1,2d
S = P g+ Tt (4.57)
11,2d Tyeurl,2d '
S lu = Pty 2l (= T2 0a) - )]y 7
Lem. 4.17, 4.21 _1/2
S ||uHI—11/2 (f,curl)’
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4 The projection-based interpolation operators

cf. also [45, Thm. 3.34, Thm. 3.40], where H'(Q) = H'(Q) for a Lipschitz domain Q and
t €10,1/2) is shown. The proof is now complete considering

—(1/24+s) |

Hu - ﬁ;urladuuﬁ—s( < p—sHu - ﬁ;:)url,Zd

freurl) ~ uHH()?,(mrl) ~ b ‘uHHl/Q(f,curl)

by Lemma 4.19 and Lemma 4.20. O

If u is even more regular, and if its curl turns out to be a polynomial function, we get the
following result.

Lemma 4.23. Let k > 1 and u € H*(f) with curlu € Pp(]?). Then, for s € [0,7/wWmaz),
where wyqe denotes the largest interior angle of f, there holds

lu— ﬁ;)url72du||ﬁ*5(ﬁcurl) < Cs,kp_(k+s)||u||Hk(f)' (4.58)
If p> k — 1, then the full norm HuHHk(f) can be replaced with the seminorm ’u‘Hk(}\)'

Proof. We follow the lines of [39, Lemma 5.8]. Using the right inverses introduced in
Section 2.5, we can decompose u as

u = VR¥(u - R curlu) + R curlu =: Vo + v

~

with ¢ € H*(f) and v € H*(f) together with the estimate
H‘pHHkH(f) + ||V||Hk(f) <C (HuHHk(f) + || CurluHHk—l(’\)) < CHu”Hk(f), (4'59)

cf. Lemma 2.25. Since curlu € Pp(]/”\), Lemma 2.24, (iv) implies v = R curlu € Qp(f)
It immediately follows

v — [ewh2dy = (4.60)

due to the fact that the operator ﬁ;uﬂQd is a projection. Hence, the commuting diagram

property Vﬁiff’m = ﬁgurl’QdV, cf. (4.13), and the estimate (4.34c) yields

H (I _ﬁ}c)url,2d) I _ﬁ;url,?d)vso + (I _ﬁ;url,2d)

(4.60) yerad,2d (4.340) — s
=V elgq S 2 el ey

uHITI_S(f,curl) = H( V”IA:I—S(J?,curl)

from which (4.58) follows by (4.59).
The additional claim that we can replace the full norm HuHHk( 7) With the seminorm \u]Hk( 7

is clear since the operator ﬁ;url’m reproduces polynomials of degree p. ]
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4.6 Stability estimates in 2D

4.6.3 The main results in 2D

We now collect the important results from the previous subsections. The following theorem
will then be our main result concerning the interpolation operators in two dimensions.

™

Theorem 4.24. For a reference triangle J? C R?, define 5 := oo—, where Wmay denotes

the largest interior angle of f Then there are constants Cs . depending only on s, k, and

the choice off such that the following assertions hold:
(i) The operators H%ff 2d, ﬁ;url’Zd, ﬁ;ﬁ are well-defined, projections, and the diagram
(4.13) commutes.

(ii) For all ¢ € H3/2(f) there holds

o = TIE20] s 7y < Copp™ M2 inf o —vllganpy, s €0,1],

pe T = VWi (f) D)
lo = 0l iy < Copp™ 24 inf o =0l 5 € [1,3),

prt TR = veWpia(f) R
IV(p =T 0) g py < Coap™ 2T inf o —ovllgapnz, 5 €10,9).

pr Pl = Wi () HA)

(iii) For all u € HY2(f, curl) there holds

Teurl,2d, | _ 1/2+ . ~
Hu _ ngr uHH s(Freurl) = < C4 kD —(1/2+s) vel(g:'(f) Hu VHHI/Q (Fcurl)’ ENS [0, 3).

~

(iv) For all k > 1 and all u € HF(f) with curlu € Pp(f) there holds

Ju— T2l e < Corp E D ullegy, s € [0.5). (4.61)

If p >k —1, then the full norm ||| . () can be replaced with the seminorm ’u’Hk(}\)'

Proof. For the subjects stated in (i), see Lemma 4.12, Lemma 4.13 and Theorem 4.14.
Item (ii) is exactly Lemma 4.18, and the results in (iii) have been shown in Lemma 4.22.
Finally, (iv) coincides with Lemma 4.23. O

If our given function is more regular, we even get better approximation properties in p.
This observation is now stated in the following simple corollary.

Corollary 4.25. Using the notation of Theorem 4.2/, the following statements hold for
k>1/2:

d,2d
e — Hifl SOHH'lfs(f/‘\) < Cs,k:p (kets) ||‘P||Hk+1 (7 s €[0,1], (4.62)
d,2d ~
H(p - Hifl (P”ﬁl—s(]?) < Cs,kp (et H(P”Hqul(f)a s € [17 8)7 (463)
Hu chrl 2duHH f curl) — Csykpi(k+5)HuHHk(ﬁcurl)’ = [0’ é\) (464)
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4 The projection-based interpolation operators

Proof. The estimates (4.62) and (4.63) follow directly from Theorem 4.24, (ii) together
with the best approximation property of Lemma 2.23.
In order to show (4.64), we write

u=Vp+z

with ¢ € H*1(f), z € HF1(f), together with the bounds el s 7y S 11allgpe (7 ener) 20
(i

HZHHHI(A) < curluHHk(f), cf. Lemma 2.25. Thus, Theorem 4.24, (iii) and Lemma 2.23
yield
u — Tieurl3dy, S < p7(1/2+s) inf Vo+z—(Vv+q =
I P HH (f,curl) vEWpH(f),H ( )||H1/2(f,cur1)
a€Qp(f)
< (1249 | ipg _ - i - A
<p inf |l — o] + inf |[z—q]
LeWp+1(f) DT qeauh) e
Lem. 2.23

—(1/2+5)—(k+1-3/2) [H@Hmﬂ(f) n HZHHk+1(f)] < pleth

S b )HuHHk(ﬁcurl)'

4.7 Stability estimates in 3D

This section is about the stability estimates for the operators in 3D. The concepts are
similar to the ideas in the 2D-case, which includes reducing the integrals to manifolds of
lower dimensions by integration by parts arguments. Hence, the results of Theorem 4.24
are frequently applied.

Note that for functions f € H® (IA( ) with s sufficiently large, it is well-known that solutions u
of the Poisson problem satisfy v € H 2(I? ) since K is a convex domain. However, the exact
value for the maximal regularity in a shift theorem for tetrahedra cannot be explicitly
stated as easily as in the 2D-case in Chapter 3. For that reason, we will formulate the
stability estimates only for negative norms H*(K) with s € [0,1] on the left-hand side.
We however mention that generalization to s € [0, 7 /wmqesz — 1) is easily possible with only
slightly changed proofs, if the choice of the tetrahedron K admits sufficient regularity for
u.

We start with the introduction of best approximation results.

Lemma 4.26 ([26, Thm. 5.2]). Let PEad3dy ¢ W, 1 (K) be defined by

Vv e Wp+1(f(), (4.65a)

(V(u — peradidy) vv) , 0
0. (4.65b)

(u _ Pgrad,Sdu’ 1)L2

(K) —

K
(K)

Then, for r > 1, there holds

|u — Pgrad,3duHH1(f() < Crpf(rfl)HUHHr(f()-
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4.7 Stability estimates in 3D

Lemma 4.27 ([26, Thm. 5.2], [29]). Let P*3du € Q,(K) be defined by

0 VveQyK), (4.662)
0 Voe Wy (K). (4.66b)

(curl(u — P34y) curl V)L2(f() =

(u _ Pcurl,Bdu’ V'U)Lg ([?)

Then, for r > 0, there holds
Hu B PcurhgduHH(I?,curl) < C’71p_rHu”H?"(I?,curl)'
Lemma 4.28 ([26, Thm. 5.2]). Let PYV3du € V,(K) be defined by

=0 VveVy(K), (4.67a)
=0 VveQyK). (4.67D)

(div(u — PIV39y), divv)

(u — P34y, divv)

L2(K)
L2(K)
Then, for r > 0, there holds

div,3d -
la = Pl 7 givy < Crp™" 0l (& aiv)-

o Trerad,3d
4.7.1 Stability of I}
This section is devoted to the analogous result of Lemma 4.18.

Proposition 4.29. Let w € (0,7), and assume that all interior angles of all faces off?
are smaller than w. Then, for every s € [0,min(m/w —1/2,1)], there exists Cs > 0 such
that for u € H*(K), the following stability estimates hold.

Tyerad,3d — s .
lu = TEEul oy < Cop™ U inf [l = 0| o 2y, (4.684)
vEWp11(K)
IV (u — T30 | =, o < Cp™ ) inf flu— ]| 0, 2. (4.68D)
p+1 H-s(K) W1 (R) H2(K)

Proof. The proof follows the lines of Lemma 4.18. Again, by the projection property of
H%ff’gd, it is sufficient to show the estimates (4.68a) and (4.68b) with v = 0 in the infimum.

Step 1: We show (4.68a) for s = 0. R
From u € H2(K), we obtain u|; € H3/?(f) for every face f € F(K) by the trace theorem,
with the bound [[ulgs/2p) < HUHH2(f()- Theorem 4.24, (ii) then shows for every face

f € F(K) and s € [0,1] that

~erad,3d _
Ju =TIl s 5y < Cp (1/2+S)HUHH2(I?)~

Now note that u — ﬁ%ff 34y, is continuous on K , hence we get in particular for s = 0 and
s=1
Serad,3d —(1/2
Ju— H%:i UH}[l—s(af() <Cp W/ +S)HUHH2([?)> (4.69)
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4 The projection-based interpolation operators

from which the estimates for s € (0, 1) follow by interpolation.
We now observe that Pgrad:3dy, Hiffl 34y is discrete harmonic, i.e.

(V(poetsty M), Vo) =0 Yo e Wy (R),

cf. (4.2d) and (4.65a). We now use a continuous, polynomial preserving lifting Lerad;3d .
HY?(OK) — HY(K), cf. [52, Thm. 1] or [30, Thm. 6.1]. Imitating equation (4.37) from
the 2D case, we get

P Sy — TRy ) S (IPER S — T s o) (4.70)
thus we obtain with Lemma 4.26, (4.69) and (4.70)
fu = Tl gy gy < Ju = PRy oy 4 | PO — TR )  g
Lemma 4.26,(4.70) R
N Pl gz iy + IPE 3 — T 12 o
(4.69)
S p_1‘|uHH2(f() + [Ju — Pgrad’gdUHHl(f()
Lemma 4.26 _1
N p HUHH2(]?)7
(4.71)

which proves (4.68a) for s = 0.

Step 2: We show (4.68a) for the case w < 27/3, i.e. s =1, by a duality argument.
We define € := u — Hzg)ﬂff’?’du. Let then z € H2(K) N H}(K) be given by the dual problem

~Az=¢ onkK,
z=0 ondK.
Integration by parts implies
~112 o ) ~ -
piy = [ 2-Ve= [ 0.z (472)

We now estimate the first term in (4.72), using the orthogonality properties satisfied by €
Lemma 2.23 and (4.71), and obtain

Lemma 2.23
‘(VZ,VaLz(f(ﬂ < inf HZ*WHHI(}?)HVEHB(R) S p_1||z||H2(f<)||vg”L2(f()
TEWpy1(K)
(4.73)
(4.71)
5p_1H€||L2([?)||ngL2([?) N p_2||g||L2([?)||u||H2(1?)- (4.74)
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4.7 Stability estimates in 3D

For the second term in (4.72), we apply the 2D result Lemma 4.18 for each face f € F (IA( ).
Since wmaz(f) < 2m/3 for each f € F(K) by assumption, Lemma 4.18 holds with s = 3/2.

Hence,

Lemma 4.18

‘(&zzaaL?(f | <0 ZHHl/Q(f)Hg”ﬁ—l/?( 1) S 72”8712'”1{1/2(]‘)||UHH3/2(f) (4.75)
P2l o ey el gz ey S 2280 il -

The equations (4.72), (4.73) and (4.75) show estimate (4.68a) for s = 1.

Step 3: We show (4.68a) for the case 27/3 < w < 7, i.e. s=m/w—1/2 <1, by a duality
argument.

The argumentation is similar to step 2. We define € := u — ngjff 34y, We now need an
estimate for the norm

) S Ile €y

~HH3/2 ©/w(RK ): sup R (476)

1€l a/2—n/ (R  Tolma o
veHﬂ/w73/2(K) v Hw/w73/2(K)

cf. [45, Thm. 3.34, Thm. 3.40], where H!(Q) = H'(Q) for a Lipschitz domain 2 and
t €[0,1/2) is shown. For v € H™/“=3/2(K), let then z € H™/*+1/2(K )ﬂHl( ) be given
by the dual problem

—Az=wv onK,

~ (4.77)
z=0 ondK.

Note that —1/2 < m/w—3/2 <0, thus the regularity of (4.77) is obtained by interpolation
between H~!(K) and L?(K) (for which convexity of K is exploited). Integration by parts
implies

(e, U)Lg(f() = /A Vz-Ve— /A Op z€. (4.78)
K oK

We mention that 9,z € LQ(ENA{ ) since w < 7, hence it is possible to split the integral over
OK into a sum of face contributions. We now estimate the first term in (4.78), using the
orthogonality properties satisfied by €, Lemma 2.23 and (4.71), and obtain

(V2 V) il < nf e =7l iy Vo)
ﬂEWp+1( )
Lemma 2.23
S TN e ) IVl )

(4.79)
—(r/w=1/2) )1y |ve|

Sp

(4.71)
S

lmromsra iy I VEl 12y
p~(T/em3/2) HUHHw/wH/Q(IA() HUHHQ(IA()'

For the second term in (4.78), we apply the 2D result Lemma 4.18 for each face f € F (K).
Since wmaz(f) < w for each f € F(K) by assumption, Lemma 4.18 holds with s = 7/w.

119


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4 The projection-based interpolation operators

Hence,

Lemma 4.18

S P A0z e

[Onz, €)r2(p)| < MOnzll s pllell gronroyy S vl sz )

< p_(l/Q—Hr/w) HzHHw/w+1/2(f<) HUHH2(R) N p_(1/2+7r/w) HUHHw/w—SN(f() HUHH2([?)-
(4.80)

The equations (4.78), (4.79) and (4.80), inserted in (4.76), show estimate (4.68a) for s =
T/w—1/2 < 1.

Step 4: We show (4.68a) for s € (0, min(7w/w — 1/2,1)).
In the first three steps, we have shown the desired estimate for the cases s = 0 and, de-
pending on w, s = min(7w/w—1/2,1). The intermediate values now follow by interpolation.

Step 5: We show (4.68b) for s = min(7/w —1/2,1), by a duality argument.
With the notation € := u — H]g;ff 3dy as before, we need an estimate for the norm
(Ve,v), o »
|]V€][1~{,S(f{) = sup LQA(K). (4.81)
veH:(R) HVHHS(K)

According to Lemma 2.29, any v € H* (IA( ) can be decomposed as v = V¢ + curlz with
¢ € HSPY(K)N HL(K) and z € H"1(K), where also the estimate

1l gess ey + Il ity S W lepsciy
holds. We proceed by integration by parts to get
(Ve, V) L2(R) = = (Ve, V@)LQ(K) + (I1, Ve, v,z )LQ(aK)
The first term is handled by Lemma 2.23 and (4.71) to obtain
(Ve Vo) oy | SIIVell 2z inf " le =7l %y S Pl o zyp Il o gy
Sl o

imitating (4.79). Now note that z € HSH(I?) implies z € H*t1/2(f) for each face f €
F(K). Thus, we use Lemma 4.18 with s = min(n/w — 1/2,1) 4+ 1/2 in order to treat the
second term, which yields

((I1-Ve,v72) 12(5)| = [(Vy€ vr2) 2 ()| S IV sellgg-corrso gy 1re2llmssara
Lemn? L8 14e) < —(14s)
S [ull grarz gy 12l e () S P ull gz ) 1V s -

Inserting the last two estimates in (4.81) gives us (4.68b) for s = min(n/w — 1/2,1).

Step 6: The estimate (4.68b) for s € (0, min(7w/w—1/2,1)) now follows by interpolation. [J
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4.7 Stability estimates in 3D

Remark 4.30. A short look at the condition on the angles in the previous result reveals that
the statements in Proposition 4.29 hold for s € [0, 1] as long as the maximal interior angle
of the faces of K is less than 2r /3, which is obviously true for every choice of the reference
tetrahedron with only acute angles. As a consequence, there is no restriction for s € [0, 1]
necessary if we choose the regular tetrahedron or the tetrahedron, where the vertices have
the Cartesian coordinates (0,0,0), (1,0,0), (0,1,0) and (0,0,1), which are both natural
choices for reference tetrahedra.

4.7.2 Stability of [Ig"%

The main goal in this subsection is the proof of the stability properties of ﬁ;url’?’d, in an

analogous way to Lemma 4.22. In 2D, the existence of a suitable lifting operator from the
boundary was crucial. This fact carries over to the three-dimensional case, where a lifting
operator is required, too.

In [31, Thm. 7.2] a lifting operator has been constructed for the space H(I?, curl), which
lives in the Banach space X 1/2, cf. [31, Sec. 2].

Definition 4.31. We define the space
X~1/2 .= IILH(K, curl),
which is equipped with the quotient norm

Z||x-1/2 := inf Vi .
H HX VEH (R curl) ” ”H(K,curl)
II,v=z

For each face f € ]:(I?) and s > 1/2, we define the space
H7(f) :={z € H*(f) : 2-ny = 0}

with the usual H*(f)-norm (which will be sometimes denoted by || - [|ms.(y) to emphasize
that only tangential vector fields are considered).

In the following lemma, we take the lifting operator from [31], state the appropriate map-
ping properties and add an additional orthogonality that is needed later on.

Lemma 4.32. There exist C >0, w/\hz'ch 1s independent of p, and, for each p € N, a lifting
operator nguﬂ’?’d IL,Qp(K) — Qp(K) satisfying the following properties:

(i) For all z € Qp(f(), there holds HT[,IC)“LM(HTZ) =1l z.
(ii) There holds the stability estimate

H[:;url’g'dzHH(l?,curl) < CHZHX*U?’

(iii) There holds the orthogonality (E;url’gdz, VU)LQ([A{) =0 for allv € WPH(I?).
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4 The projection-based interpolation operators

Proof. We define

ﬁcurl 3d gcurl — Wy
where £ : I (H(K, curl)) — H(K, curl) is the lifting operator from [31] and where wy
is defined by the following saddle point problem: R
Find wo € Q,(K K) and ¢ € W,41(K) such that for all q € Q,(K K) and all p € Wyt (K)

(curlwy, curl q)LQ(f() + (q, Vgo)m(f() = (curl(£"'z), curl Q)Lz(f() (4.822)

(Wo, V) 12() = (Ecurly, Vi) 2(R)- (4.82b)
In order to show that the saddle point problem (4.82) is uniquely solvable, we need to check
coercivity and the inf-sup-condition:

With the bilinear forms a(w, q) := (curlw, curl q)LZ(f() and b(w, ) == (w, V@)LQ(E) for

w,q € Qp(f() and ¢ € WPH(IA(), coercivity of a on
kerb={q € QP(I?): (q, V,u)LQ(f() =0Vu € Wpﬂ} = QPA_(I?)

is a direct consequence of the Friedrichs inequality (Lemma 2.35) by

f|| curlvH > min{—

2
202’ }H H H(K curl)

1
a(v,v) = [leurlvi2, o) = SVl )

K)
for all v € kerb. For the validity of the inf-sup condition

b
inf sup (W, )

> O,
eWp11(K) weQ, (R) HWHH K curl) H‘P”Hl K)

we choose w = Vi € Qp( ) for a given ¢ € Wp+1( ) Since ¢ is zero on the boundary,
the standard Poincaré inequality implies

b(w, o) _ HVSOHI} (B)
HWHH(KCHH)”@HHl(}?) HVSDHB(K)H(PHHl(}?)

Hence, the saddle point problem (4.82) has a unique solution

(Wo, ) € Qp( ) X Wp+1(K)

Choosing q = Vi as test function in (4.82a) shows ¢ = 0.

The lifting operator E;“rl’w now obviously satisfies (iii) by construction, cf. (4.82b). State-
ment (i) also holds since II;wy = 0 and the operator £ has the desired polynomial
preserving property, cf. [31, Thm. 7.2].

We now show (ii). Note that the solution wy satisfies the estimate

Iwollgg( ewrty S 1711+ 1l (4.83)
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4.7 Stability estimates in 3D

where f(v) = (curl(SC‘le),curlv)Lz(f() and g(v) = (EcurIZ,VU)Lz(f(), and || - || denotes
the operator norm, cf. [12, Thm. 4.2.3]. Hence, we have
M= s [(curl(EMa), curlv) o | < [l curlE )] a2y S l2lx-1/e

”V”H(I?,curl)Sl

(4.84)
since the operator £ already satisfies the continuity property (ii). We can also estimate
Il S swp 1(E™2,V0) 0 €] o) S lzlxne (485)
[vll g1y <1
analogously. Thus, in view of (4.83), (4.84) and (4.85), the triangle inequality

1,3d 1
125" ellex g curty < 18" 2l curty W0 lga( coary = 12l

shows (ii). O

Lemma 4.33. A function z € T := ILLH2(K) is in L2(0K) and facewise in H3T/2(f)
Moreover, there exists C' > 0 such that the inequality

lellxn <Y [||z||ﬁ;/z(f)+chrlfzuw(f)
feF(K

holds, where || - || 5-1/2,,, is defined as the dual norm to || - || 1/2
T T

() (N

Proof. We proceed in several steps.

Step 1: Clearly, z is in LQ(GIA( ) and facewise in H3/ 2( f). The surface curl of z € T which is

denoted by curly z, is by definition n-curlz € H™ 1/2(9K) for any lifting z € H(K , curl)
of z. Note that thls definition is meaningful since it is indeed independent of the lifting:
The difference d of two liftings is namely clearly in the space Hy (I? ,curl). The deRham
diagram (2.30) then implies curl § € Ho(K, div) and thus n - curl = 0.

Furthermore, since by assumption an H2-lifting of z exists, curly»z € H —1/2 (BK ) is face-

wise in HT/ (f) and coincides facewise with curly z.

Step 2: We construct a particular lifting Z € H(IA(, curl) of z € X~1/2. In order to find the
lifting, we pose the following (constrained) minimization problem: Minimize || curl Y| L2(R)

under the constraints II;Y = z and (Y,V@)Lz( 7 =0 for all p € H} (K K). Writing Y =
EMZ 4 Y, with Y, € Hy (IA( curl), the Lagrange functional £ is defined by

(Y, 9) = || url( € + Yo) 2, + (€77 + Yo, Vi) sy

L2(K)

Minimization is now equivalent to solving the following saddle point problem: Find Y, €
Hy(K, curl) and ¢ € H}(K) such that for all q € Ho(K,curl) and pu € H} (K),

(curl Yy, curl q)LQ(f() + (q, V‘P)m(f() = —(curl(&°'z), curl q)L2(f{)
(Yo, Vi) po () = —(E°'2, V1) 1o 2
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4 The projection-based interpolation operators

This problem can be solved in a similar way to (2.48) (or to (4.82), but with continuous
functions). As was observed above, the Lagrange multiplier ¢ in fact vanishes so that we
conclude that the minimizer Z solves

curlcurlZ = 0, divZ =0, 1I,Z = z.

Step 3: We estimate w := curl Z.
The assertions

curlw = 0, divw =0, n-w = curlyy z. (4.86)

are clear from step 2. Since curlw = 0 (in the distributional sense), there exists a function
¢ € HY(K) such that w = V). The second and third conditions in (4.86) then imply that
1) solves the Neumann problem

—Ay =0,

O =mn-w = curly; z on OK.

The integrability condition is satisfied since (n-w,1),, OR) = (divw,1),, (&) = 0. Hence,
standard estimates for the Laplace problem give us

leurlZ] ) = IWlo ) = 199l oy S lewlyz 2l yveory  (487)

Step 4: 1 order to bound Z, we use the right inverses introduced in Lemma 2.27. By
Lemma 2.28, there exists z € HY(K) and ¢ € H'(K) such that Z = V¢ + z with the

estimate

|z < I curlZHL2 < | curl (4.88)

(et ok 2l g-1208)-
In order to find estimates for ¢, we use integration by parts. Since divZ = 0, we obtain
Vé +7 =7 = curl R"(Z) = curl R (V¢) + curl R°(z), (4.89)

hence

(curlZ, V)LQ(IA() = (Z,curl V) 2Ry~ (z, 'yTv)LQ(af{).
follows. Choosing v = R (V¢) € H'(K) and using (4.89) yields
(curl Z,R(V9)) oy = (VO + 2, curl R(2)) 1 )
— (2, ’YTRCUTI(V(M)LZ (0K)"
In view of the mapping property R°™! : 1.2 (I? ) — Hl(I? ), we now obtain
IVl &) < leurlZ] oz IVEll ) + 2] 2 ) 12 — carl R@) | 2 2
+ |z — curl R @) || o 2 IV 2 ) (4.90)

+ ||§||L2(1?)HV¢HL2(I?) + ( 'YTRcurl(vﬁb))Lz (OK)| -
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4.7 Stability estimates in 3D

Combining the estimates (4.88) and (4.89) implies

||ZHH(1“(7cur1) N ”E”m(f{) + ||V¢HL2([?) + Curlz”m(f()

(Z7 PYTV)LZ((‘)[?

) (4.91)
+ [ curlyz ZHH—I/?(af()'

sup
veH!(R) HVHHl(f{)

~

Step 5: Note that both functions z and curlyz z lie in the space L2(8IA(). Thus, the
norm || - ||x-1/2 can be estimated in a localized way by the continuity of the inclusions

HY2(0K) c er]_.(f() HY2(f) and v, HY(K) C er}.(f{) H;/2(f). The estimates for the
dual spaces

leurlyz 2l 41 /2005) S S curly 2l 5125 (4.92a)

fEF(K)

(Za'YTV)L2 oK

Sup/\ Wi) S Z ||Z||H—1/2(f) (492b)

veH! (K) HY(K) feF(R)

follow, and the bound
(4.91), (4.92)
lallx-1e S 1Bl g oy S 2512, + ety 2l g 17ap
JEF(K)

finishes the proof. O

This lifting operator will now be used for estimating the interpolation error.

Proposition 4.34. Let u € Hl(I?, curl). Then there exists C > 0 independent of p € N
such that

Ju — TIewbddy| - <Op' inf  |u— vy n (4.93)
P H(K,curl) veQ,(R) H!(K,curl)
holds.
Proof. Step 1: By the projection property of ﬁf,url’?’d, it is again sufficient to show the

estimate for v = 0.

Step 2: We decompose the function u € H'(K,curl) as u = Vi + v, where ¢ € H%(K)
and v € H2(K) satisfy the estimates

H‘PH[p(f{) N ”uHHl([?’curl) and HVHH2([?) S CurluHﬂl(f(y (4.94)
cf. Lemma 2.28. The commuting diagram and the interpolation result Proposition 4.29
then imply

Tycurl,3d R . __ Tyerad,3d N . __ fyerad,3d R
Ve = "NVl gz ewrny = IV = L O gz ewrny = 19— Lot ™ el g, (4.95)

Sp_1”¢‘|yz(k)-
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4 The projection-based interpolation operators

Step 3: For v € HZ(IA(), Lemma 4.33 gives us

T (v = T30 |10 S (4.96)
> (v — Igh3y) lgiz172 gy + Il owrly (T (v - ")) g ovjapy (497)

fEF(K)

For each face f € F (IA( ), we can now apply the 2D results Lemma 4.19 and Lemma 4.22
to obtain

Tycurl,3d Lem. 4.19 -1/2 T1curl,3d
HHT<V - Hp ’ V)Hﬁ;l/?(f) ,S p ||HT(V - Hp ' V)HH(f,curl)
Lem. 4.22 _1/2-1/2
5 p HHTV||H1/2(f,curl)

by the continuity of the trace operator II, : H? (IA( ) — H?:’F/ 2( f) € HY2(f, curl). Similarly,
Lemma 4.20 yields

R Lem. 4.20 ~
Jewl(I (v = T ) [y S o Y2l curd (T (v — TE54) )

<P P Y ety S 07 IV g )

Inserting the last two estimates in (4.96) then implies
I, (v = T30 |y 1ja < Cp [Vl (4.98)
Step 4: With the best approximation operator P3¢ from Lemma 4.27, we have

||V _ ﬁ;:)url,3d ) < ||V N Pcurl,3d ) + Hﬁ;url,?;dv _ Pcurl,3d

ﬁcur1,3dv N Pcurl,?)d
P

V”H(I?,curl VHH(I?,curl VHH(I?,curl)

—1
<p HVHHl(I?,curl) + H v”H(I?,curl)

<p- ) + ||ﬁ;url,3dv _ peurl,3d

1
||V||H2([? VHH(I?,curl)’

since v € H2(K). Writing E := "3y — peulddy ¢ Q (K) for simplicity, the or-

thogonality conditions (4.3¢), (4.3f) satisfied by II5™**v and the orthogonality conditions
(4.66a), (4.66b) satisfied by P34y imply

(curlE, curlw)LQ(f() =0 Vwe Qp(l?), (4.99a)
(B, V) oy =0 Y € Wy (K). (4.99b)

Since we also have

(E;urLgdHTEa vw)LZ = 0 Vw S Wp—l—l(}?)

(K)
from Lemma 4.32, (iii), it follows E — Eg“rl’3dHTE € Qp’l(f(). Thus, we obtain by the
discrete Friedrichs inequality (Lemma 2.35)
||E||L2(f() < Hﬁgurl’gdHTEHm(fg) + [|E - ‘CycaurLSdHTEHB(f()
< HC;‘JH’MHTEHLQ(I?) + || curl(E — L;url’?’dHTE)HB(f() (4.100)
< ||£Curl’3dHTEHH(f(,curl) + || curl EHL?(I?) .

S MH-Ellx-12 + | curlE||L2(f().
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4.7 Stability estimates in 3D

Since condition (4.99a) leads to

|| curl E|| = (curlE, curl(E — lec)url’?’dHTE + E;“ﬂ’g’dHTE))

2
L2(R) L2(K)

= (Curl E, Curl L;url,SdHTE)Lz(I?)

< |l curl EHLQ(IA{) || curl E;url’?’dHTEHLQ(f(),

we obtain with Lemma 4.32, (ii)

lcurlEl| > ) < | curl L;urlﬁdHTEHLQ(f{) < ITLE|x-1/2, (4.101)
from which
eurl,3d R B 1,3d R ~
||V o H;Ul" VHH(K,curl) = ”V P V”H(K,curl) + ||E||H(K,curl)
(4.100),(4.101) Lad
S HV _ PCUI“, VHH(I/(\',CUI'I) + HHTEHX_1/2 (4102)

1,3d Treurl,3d (4.98) 1
< v — P vHH(Kcurl)JrHHT(V*H;C,M’ V)x-12 S P HVHH2(}?)

follows. Note that the third inequality directly follows by the triangle inequality and the
definition of the X /2-norm as an infimum. The proof is now complete in view of the
equations (4.94), (4.95) and (4.102). O

We can also control the interpolation error in negative Sobolev norms. Note that we have
to pose similar conditions on the maximal possible negative norm dependent on the angles
of K as in Proposition 4.29. As a consequence, there won’t be any additional restrictions
for reference tetrahedra with all interior angles smaller than 27/3, see also Remark 4.30.

Proposition 4.35. Let w € (0,7), and assume that all interior angles of the 4 faces ofIA(
are smaller than w. Then, for every s € [0, min(m/w — 1/2,1)], there exists Cs > 0 such
that for u € HY(K, curl), the estimate

ﬁcurl,3d —(1+s)
p

lu— inf  flu— (4.103)

Ve &
veQ, (R) H!(K,curl)

u”ITI—S(I?,curl) < Csp

holds.
Proof. We proceed in several steps.

fycurl,3d
Hp

Step 1: Since is a projection, it is again sufficient to prove the result for v = 0 in

the infimum.

Step 2: We show (4.103) for s* = min(n/w — 1/2,1). In order to do this, we first write
E := u — 15" for simplicity and then have

1Bl & e S Bl ) + | enrl Bl )

(E, v)LQ(f{) (curlE, v)LQ(f() (4.104)

= sup ———+ sup
VEHS*(I?) HVHHS*(I?) VGHS*(I?) ||v||HS*(I/€)
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4 The projection-based interpolation operators

Step 3: We estimate the first supremum in (4.104).
By Lemma 2.31, we have for v € H*" (K) the decomposition

v = Vp + curlcurl z,
where ¢ € HS 1K) N H&(IA() and z € H¥ (K, curl) N Hy (K, curl) satisfy the estimate
6l i1 )+ 125100 ety S IV g -
Since even curlz € H* (I? ,curl), Lemma 2.28 implies the decomposition
curlz = Vs + 29 (4.105)
with ¢y € H* T1(K) and zo € H¥1(K). Inserting the suitable decomposition leads to
(E, V)LQ(IA{) = (E, V(p)LQ(f{) + (E, curl curl Z)L2(f()7

where the first term is estimated by using the orthogonality condition (4.3e), Lemma 2.23
and Proposition 4.34 by

(E, V‘P)L2(f()‘ = inf (E,V(QO—’U)))LQ(IA() SJp_s*H‘P”Hs*ﬂ(f()”E”Lz(f()

weWpi1(K) (4.106)

S IV e ) B e curny S 27 VIV o 2 10l 1 2 cuurny:
and where we obtain for the second term by integration by parts and representation (4.105)

(E, curlcurl z)LQ(IA{) = (E, curl ZQ)LQ(I?)
= (curl E, ZQ)LQ(IA() + (HTE,WTZQ)LQ(MA() (4107)
= (curlE, curl Z)Lg(f() — (curlE, thg)Lg(f() + (HTE7'}/TZ2)L2(BI?)
= (curlE, curl Z)LQ(IA() — (n-curlE, (pg)L2(af() + (HTE7’)/7—Z2)L2(8R).
We estimate the three terms in (4.107) separately. For the first term, we use the orthogo-
nality condition (4.3f) to obtain

inf (curlE,curl(z — w)>L2(f<) . (4.108)
weQp(K)

(curl E, curl z)LQ(IA() ‘ =

We now want to apply Lemma 4.27 in order to get an estimate for the infimum, however,
in general P37 ¢ Q,(K). Hence, we proceed as in Lemma 4.19 and use the lifting

L83 11 Qy(K) — Qp(K)
from Lemma 4.32. Since

curl,3d curl,3d curl,3d N (I
P z— L IL, P z € Qp(K),
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4.7 Stability estimates in 3D

this function can be used as w in the infimum in (4.108). Since

L5 B Pty 2 oy S TPy e = ([T (2 — P30 |y e

1,3d
S llz = P2 g 2 ey

we get with Lemma 2.23 and Proposition 4.34

(curl E, curl z)

HH([?,curl)

LQ(R)‘ < || CurlE”LQ(I?) Hz — (Pcurl,3dz — Lgurh?)dHTPcurl,?)dz)

— 1,3d 1,3d 1,3d
Sp 1Hu||H1(I?,curl) <”Z - pet ZHH(I?,curl) + ”E}C)UT ? I P ? Z”H(I?,curl))

—(s*+1
S i  eurn 7 (7 o

N pi(s*+1) HuHHl(fgcurl) HVHHS* (R)
(4.109)

For the second term in (4.107), we first note that curlE € H'(K). Hence, the integral
over K can be split into a sum of face contributions, and it also holds

(n-curlE)|f = m}rl ILE. (4.110)

We observe that our assumptions allow us to choose s = min(n/w,3/2) = s* + 1/2 in
Lemma 4.20 and Lemma 4.22, since 7/wpmae > S. We then get for each face, using
Lemma 4.22,

Lem. 4.20

}(curlf IL.E, QOQ)Lz(f)‘ < p T2 curly ILE| 22 ()l o172y
Lem. 4.22
—(s* 4.111
< Tl e a2l e ) (4.111)
<0l e IV e 2

The third term in (4.107) now follows with Lemma 4.19 and Lemma 4.22
Lem. 4.19 —(s*+1/2)
|ILE,v2z2)r2(p| S p 1T E w1 f cur) 7722l g +1/2(p)

B 4.112
S 2 Il e 22 e 1 ) e

517_(5 +1)Hu“Hl(]?"Cllrl)HVHHS*([?)'

Adding (4.111) and (4.112) over all faces f € F (I? ) and inserting these estimates together
with (4.109) in (4.106) and (4.107) finishes this step.

Step 4: We estimate the second supremum in (4.104). R
For the second supremum in (4.104), we decompose v € H* (K) as

v=Vp+curlz
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4 The projection-based interpolation operators

with ¢ € HS+1(K) and z € H*" (K, curl) N Hy(K, curl) according to Lemma 2.31. This
leads to

(curlE, V)LQ(IA{) = (curlE, curl Z)L2(f() + (curl E, V‘P)m(f()? (4.113)

where we now have to bound both expressions on the right-hand side. For the first term
we use the orthogonality (4.3f) and Proposition 4.34 to obtain

(curl E, curl z)LQ(f()‘ =| inf (curlE,curl(z — W))Lz(fg)

WEQp(K)

e _ *+1
p ’ HEHH(I?,curl)HZHHS*(IA(,CUI‘I)Sp (s )HuHHl(I?,curl)HVHHS*(I/(\',curl)’

cf. the arguments in step 3 for handling the infimum. For the second term of (4.113), we
use integration by parts and obtain in view of (4.110)

(curlE, ch)LQ(f() = Z (curly I, E, w)Lg(f),
fEF(R)

where the decomposition into face contributions is again possible since both curl E and
V¢ are at least in L? on the boundary. We obtain

|(curl TLE, @) 25| S 2~ V2B s g cum 1]l o172 )

rgpi(s +1)Huuﬂl(fgcurl)HVHHS*(}?)

by Lemmas 4.20 and 4.22, which finishes this step.

Step 5: The general result now follows by interpolation between the cases s = 0, cf.
Proposition 4.34, and s = s*. O

For functions u with discrete curl, we have the following result.

Lemma 4.36. Let w € (0,7), and assume that all interior angles of the 4 faces ofK are
smaller than w. Then, for all k > 1 and for all u € H*(K) with curlu € V p(K), there
holds

rycurl,3d (k+s)
Hp

€ [0, min(m/w — 1/2,1)].
(4.114)

[

uHH s(K,curl) = Cs Iy ||u||Hk (R)’

If p> k — 1, then the full norm HuHHk(f{) can be replaced with the seminorm \u]Hk(f().

Proof. We imitate the proof of Lemma 4.23. Using the right inverses R84 and R
Lemma 2.28 again yields

u = VR (y — R curlu) + R curlu =: Vo + v
with ¢ € HkH( ) and v € Hk(K) together with the estimate

Il s ey + V) < Iallgeciey + lewrlull s ) S lullgezy- (4115)
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4.7 Stability estimates in 3D

Slnce curlu € V(K K) has been assumed, Lemma 2.27, (v) implies v = R curlu €

Qp(K K). Since Hfgurl 34 is a projection, it follows v — Hfgurl 3y = 0, and the commuting

diagram property Vﬂgff 3d H;ur1,3d

H (I _ﬁ;url,3d)

V and Proposition 4.29 give

LY+ (T Y
| —

uHIF:I*S(I?,curl) = H(
=0

rad,3d — s
= V-0l 5y S 2Ol s )

Note that the restriction on s posed in (4.114) is necessary due to the assumptions from
Proposition 4.29. Equation (4.114) now follows immediately with (4.115).
The additional claim that we can replace the full norm \|u||Hk( &) With the seminorm

reurl,3d

|u|Hk( R) is clear since the operator 1I, reproduces polynomials of degree p. O

4.7.3 Stability of I1¢™3

Unlike the two-dimensional case where the interpolation operators of interest are ﬁlg,fii ,2d

and TI5™2% we also have II3V*? as third interpolation operator in 3D. This subsection,
which is devoted to the error estimates of HdlV 3d , is structured in a similar way to Subsection
4.7.2, since the concepts of proof are similar, hovvever, there are less technical problems to
deal with.

Similar to Lemma 4.21 in 2D, where we proffered the interpolation error of ™% on

Fdiv,3d

edges, we start with the error of II, on faces, as they are the lowest-order manifold of

interest here.
Lemma 4.37. Let u € HY2(K div). Then there holds for each face f € F(K) and s >0

_ Tdiv.3dy) . _ < C.p~% inf ‘ns — . 4.116
|(u D u) anH s(p) = CsP vel‘z(f)uu ny U||L2(f) ( )

Proof. Note that Lemma 4.11 gives us u-ny € L?(f), thus all expression in (4.116) are
indeed meaningful.

Let € := (u — ﬁgiv’?’du) ny be the error. We already know that the operator Hdlv 34 15 the
L2-projection on faces f € F(K ), ie.
(nf-(u— ﬁgi"’g’du), w)repy =0 Vw € Vp(f), (4.117)

cf. (4.11). Hence, using w = ﬁgiv’gdu -ny as test function implies (4.116) for s = 0.

The case s > 0 now follows by a standard duality argument. We have to estimate the norm
e, v
sup 7( )L2(f).
vers(f) 1vllms(p)
Since (€,v)r2(s) = 0 for all v € P,(f) by (4.117), we obtain

Hg”ﬁ—a(f) =

=| inf (é,v—w)z2 I inf o —wllre
‘ ‘ wE’Pp(f) Je2(p)| < llellz ) wePy(f) | z2(s)

el 2 llvll s cr
by Lemma 2.23. -
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4 The projection-based interpolation operators

The analysis of the error of ﬁgurl’?)d was based on the existence of a lifting operator from 0K

on K with suitable properties. There, we used the lifting constructed in [31] and modified
it slightly in order to get an additional orthogonality. We now follow this concept by taking
the lifting operator from [32] and adjusting it to our needs.

Lemma 4.38. Denote the (normal) trace space of Vp(l?) by
v;,(af() ={ve L?(8K) |3v e Vp(I?) such that ny - v|f =wv|y Vf € f(IA()}

There exist CA> 0, which is independent of p, and, for each p € Ny a lifting operator
ng,?,d : Vo(OK) — V,(K) satisfying the following properties:

(i) For each f € F(K) and z € V},(af(), there holds ny - Egiv’3dz = z|y.

(i) There holds the stability estimate

div,3d
H‘pr’g ZHH(KdiV) < C‘|Z||f1—1/2(af()'

(iii) There holds the orthogonality (Egiv’gdz, curl V)LQ(IA{) =0 forallv e Qp(f()
Proof. We mention that we need the space
QpL(K) = {a € Qp(K): (a, V) o) = 0V0 € Wpi1 (K)}

that was first defined in Lemma 2.35. R
Let now z € H~'/2(0K) be a function with the property z|; € V,(f) for all faces f € F(K).
We define the lifting operator

£21V’3d2 = gdlvz — wo,

where €9V H=1/2(9K) — H(K,div) is the lifting operator from [32] and where wy is
defined by the following saddle point problem:
Find wo € V,(K) and ¢ € Q, | (K) such that
(divwo, divv) o ) + (v curl @) o ) = (div(EM™2), divy) o) W € Vy(K) (4.118a)
(wo, curl ,u)LQ(IA() = (Sdivz, curl ,u)LQ(f() Y € Qp7l(K).
(4.118D)

In order to show that the saddle point problem (4.118) is uniquely solvable, we again have
to check coercivity and the inf-sup-condition:
With the bilinear forms a(w, q) := (divw, div q)LQ(f{) and b(w, ¢) := (w, curl go)LQ(f{) for

w,q € Vp(f?) and ¢ € QM_(I?), coercivity of a on

kerb = {v € Vp(l?) : (v,curlu)LQ(f{) =0Vu e Qp,l(f()}
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4.7 Stability estimates in 3D

is a direct consequence of the Friedrichs inequality for the divergence operator (Lemma 2.36)
by

1, .. . 1 1
+ 5” leVHiQ([?) > min chga §}||V||§-I(I?,d1v)

. 1
(L(V,V) = || leVHiQ([?) > ﬁHVHiQ(}?)

for all v € kerb. For the validity of the inf-sup-condition

inf  sup
PEQp, L (K) weV,(K) HWHH(R,diV) ”SOHH(I?,curl)

we choose w = curlp € \o/'p(f( ) for a given ¢ € Qp, J_(IA( ). The Friedrichs inequality for
the curl-operator (Lemma 2.35) then implies

2
b(w, ) | curl SOHLQ(IA() Lem. 2.35

||WHH(1?7diV) ||‘PHH(1?7CM1) | curl ‘P||L2(f() H(P||H(f{,curl)

Hence, the saddle point problem (4.118) has a unique solution
(wo, ) € ‘O/.p(K) X QILJ-(K)~

Choosing v = curl ¢ as test function in (4.118a) shows ¢ = 0.

The lifting operator L',giv’?’d now obviously satisfies (iii) by construction, cf. (4.118b). State-
ment (i) also holds, since wq - ny for each face f € F (K) and the operator £V has the
desired polynomial preserving property, cf. [32, Theorem 7.1].

We now show (ii). Note that the solution wy satisfies the estimate

Wollgg .y S 11711+ gl (4.119)
where f(v) = (div(£4V2), div v)LQ(f() and g(v) = (€92, curl V)Lg(f(), and || - || denotes the
operator norm. Thus, we have

= sup @VEY2) divy) | < TAVE™ )] i) S 1ol srsoiy
”V”H(f(,div)§1
(4.120)

since the operator €4 already satisfies the continuity property (ii). The estimate

lol= s [(EWz curlv) gl < €2l o) S el goreer,  (4121)

Hv”H(f{,curl)Sl

follows analogously. Hence, (ii) now follows with (4.119), (4.120) and (4.121) from

div,3d di
||‘pr’3 Z”H(f(,div) <€ Wz”H(f{,div) + ||W0||H(f<,div) S ||z||ﬁ*1/2(af()'
L]

This lifting operator now enables us to estimate the interpolation error in the H(I? ,div)-
norm and afterwards in negative Sobolev norms.
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4 The projection-based interpolation operators

Proposition 4.39. Let u € H1/2(I?,div). Then there exists C > 0 independent of p € N
such that

u— 34y~ < Cp™2 inf  |Ju— Ve (4.122)
P H(K div) vev,(R) H!/2(K div)

holds.
Proof. We proceed in several steps.

Step 1: By the projection property of ﬁgiV’Bd, it is again sufficient to show the estimate for

v =0.

Step 2: Since u-ny € L*(f) on each face f € F(K), cf. Lemma 4.11, we get from
Lemma 4.37

= T3 gl e S 07200 gl S0 Pl gy (4123)
Step 3: We now estimate the error u — Il
With the best approximation operator P4V:3¢ from Lemma 4.28, we define E := ng’gdu—
Pdiv3dy € V,(K). Note that Hglv’3du satisfies the orthogonality conditions (4.4c) and
(4.4d), and PV:3dy satisfies (4.67a) and (4.67b), thus we obtain the conditions

div,3d
p .

=0  VveVyK), (4.124a)
=0 VveQyK). (4.124D)

(div E, div v)
(E, curlv)

L2(K)
L2(K)
Since E — Lgiv’?’d(E ‘n) € \O/'p(f( ) with the orthogonality condition

(E — Lgiv’3d(E -m), curlv) =0 Vv e QP(I?),

L2(K)

cf. (4.124b) and Lemma 4.38, (ili), we obtain with the discrete Friedrichs inequality
(Lemma 2.36)

1Bl ) < IE"™ (B )l ) + 1B = £5™(B - m) |
S8y + V(B = £ )2 g, (4.125)
SIEnlly e + | dVE .
Equation (4.124a) and the stability property of the lifting (Lemma 4.38, (ii)) imply
IdivEl}, &) = (divE,div LHVNE 1) oy S N AVE| 2z B -0l gy (4-126)
Hence, combining the estimates (4.125) and (4.126) yields
HEHH([’E’djV) S HE : nHHfl/?(a]?)' (4-127)

Step 4: We estimate the interpolation error in the H(I/(\' ,div)-norm.
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4.7 Stability estimates in 3D

This is now achieved by the triangle inequality, equation (4.127) together with the 2D-result
(4.123), and the best approximation property of Lemma 4.28,

S div,3d
[la — pr’3 u”H(f(,div

(4.127) s
5 Hu - P u”H(I?,div) + HE ' n”H—l/Q(aR\')

div,3d 1ydiv,3d
< la =PI e S = ) g

div,3d
) <fu-pP% ’3 “”H(f{,div) + ”EHH(Kdiv)

fEF(K)
(4.123),Lem. 4.28 12
S p ||u”H1/2([?,div)'

O]

Proposition 4.40. Let u € Hl/z(l?,div). Then, for s € [0,1], there exists Cs > 0 such
that the estimate

=di ,3d _ R —1/2— : _ ~
= T g 7 iy < Cop™" Tt =Vl & i)

holds.

Proof. We proceed in several steps.

Step 1: Since ﬁgiv’?’d is a projection, it again suffices to prove the result with v = 0 in the
infimum.

Step 2: In order to show the desired estimate for s = 1, we introduce the abbreviation
=div,3d .
E :=u —1II, """u and now have to estimate the norm

Bllg-1 i aivy S Bllg-1 i) + 1 divEl - (4.128)
= sup % + sup M (4.129)
veH!(K) HVHHl(f{) veH(K) ||”“Hl(f{)
Step 3: We estimate the first supremum in (4.128).
According to Lemma 2.31, we write v € H(K) as
v=Vp+curlz
with ¢ € HQ(IA() and z € Hl(f(, curl) N HO(IA(, curl) that satisfy the bound
Il s ) + I2lggs 2 ety S IV lg2s
We now have to handle the two terms in
(E,V)LQ(IA() = (E, curl z)LQ(f() + (E, V@)Lg(f() (4.130)
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4 The projection-based interpolation operators

separately. For the first term of (4.130), the orthogonality (4.4c) and Proposition 4.39 give

(E, curl Z)L2(f()‘ = inf _ (E,curl(z — W))p(f{) = p_lHEHL2(}?)||Z||H1(f(7¢ur1)
weQp(K)
Sp_3/2Hu”H1/2([/€7div)||V||H1([?)>

where the infimum is estimated as in Proposition 4.35, without repeating the arguments
here. For the second term of (4.130), we use integration by parts to obtain

(Evvw)y(f() = —(divE, @)p(fq + Z (E-ny, ‘P)L2(f)a (4.131)
JEF(K)

where the decomposition in the sum over the faces is allowed by sufficient regularity of
E and ¢, since E-ny € L?(f) for each face f € F(K) by Lemma 4.11. If we denote by

7= (rv)/ |I? | the average of ¢, integration by parts together with condition (4.4a) yields
(le E7 @)[ﬂ(i{) = (le E’ Y- @)L2(f€) + @(E -1, 1)[/2(8[?) = (le E7 ¥ - @)L2(f€) (4132)
We then define the function ¢ € H2(K) as the solution of the Neumann problem

A¢:¢_¢a
O =0 on OK

and set ® := Vi) € HY(K). Since div® = Ay = p—p € H(K), it follows ® € H! (K, div),
and we get

’(div E,o— @)Lz(f()‘ = ‘(divE, div @)LQ(R)‘

(44d) | . ' . B
W it (v Ediv(@ - w) )| S0 Bl | Bl gy (4139)
weV,(K)
S 27 20l @ i 19l ) S P72l g IV e -

Note that the estimate of the infimum in (4.133) follows the same lines of argumentation as
in Proposition 4.35. One simply has to take the H(I?, div)-lifting from Lemma 4.38 here.
Thus, the estimates for the volume term on the right-hand side of (4.131) are complete.
For estimates for the boundary terms, we use the orthogonality properties (4.4a) and (4.4b)
as well as Lemma 2.23 and Lemma 4.37 to obtain

|(E -n, SD)LQ(f)‘ = ei‘f/lf(f)(E ‘n, Q= w)L2(f) = p_IHE ) nHﬁ[—l/2(f)||¢HH3/2(f)
weVp
N pig/QHH ) nHL2(f)”90HH2(f() N p73/2HuHH1/2(KdiV)||V||H1(I?).

This finishes the estimate of the first term of (4.128).

Step 4: We estimate the second supremum in (4.128).
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4.7 Stability estimates in 3D

This estimate is completely analogous to (4.132) and (4.133). Note that the H2(K)-
regularity of the function ¢ was not necessary in these equations, while H!(K)-regularity
was indeed sufficient.

Step 5: The cases s € (0, 1) now follow by interpolation between s = 0 (cf. Proposition 4.39)
and s = 1. O

For functions u with discrete divergence is a polynomial, we have the following result similar
to Lemma 4.36.

Lemma 4.41. Let w € (0,7), and assume that all interior angles of the 4 faces ofl? are
smaller than w. Then, for all k > 1 and for allu € H*(K) with divu € P »(K), there holds

|lu— ﬁgiv’:sduHﬁ,s(Kdiv) < Cypp k) HuHHk (R)’ € [0, min(7/w —1/2,1)]. (4.134)

If p > k — 1, then the full norm ||uHH,C(f() can be replaced with the seminorm ’u‘Hk(I?)'

Proof. We imitate the proofs of Lemma 4.23 and Lemma 4.36. Using the right inverses
R and RYY, Lemma 2.33 yields

u = curl R (u — R" divu) + RY divu =: curl ¢ + z
with ¢ € Hkﬂ( ) and z € Hk(f(\'), together with the estimate
1l )+ W2lge ) S lallgeqy + 1 divell s ) < Cllulgey (4135)

Since we assumed divu € P, (A) Lemma 2.27, (vi) implies z = RV divu € Vp(I?).

1434 it follows z — ﬁgiv’gdz = 0, hence, we get from the

reurl,3d _ Hle 3d

By the projection property of 1I,

commuting diagram property curllIl, curl, Lemma 2.23, Proposition 4.35

and (4.135)
IO=TEY Dl g & gy = ALY curle + (-TEY Dz g & g
N——
=0
= [ curl(I *H;url’gd)‘PHH s(K,div) <|d *H;uﬂ’?)d)‘p”ﬁ—s(ﬁcurl)
Prop. 4.35 (14s) (1+s)
< — s . f _ N < S 4 f -V ~
< p inf |-V SP il
ety 1 V0 R cur ey Ve
Lemma 2.23

o (@iss)
S p S”S"HHkH B S P S”“”H’C(f{)'

Note that the restrictions on s posed in (4.134) are necessary because of the application of
Proposition 4.35.
The additional claim that we can replace the full norm HuHHk( &) With the seminorm

div,3d

]u|Hk( R) is clear since the operator 1I, reproduces polynomials of degree p. O
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4 The projection-based interpolation operators

4.7.4 The main results in 3D

The following theorem is the main result about the interpolation operators in three dimen-
sions and has been fully proved in the previous subsections.

Theorem 4.42. Let w € (0,7), and assume that all interior angles of the 4 faces of the
reference tetrahedron K C R3 are smaller than w. Define the value s* := min(m/w—1/2,1).
Then there are constants Cs and Csy, depending only on s, k, and I/(\', such that the
following assertions hold:

. -~ = ~di =72 S
(i) The operators Hzggff’g'd, Hf,url’3d, ng’gd, Hﬁ are well-defined, projections, and the

diagram (4.12) commutes.

(ii) For all ¢ € HX(K) there holds

lp — TIEX3 0|y oy < Cp™ ) inf o =0l p s 8 € 0,57,
p+1 H=s(K) s oW st (R) H2(K)

IV (p — T 0) |50y < Csp™ W inf o —ll,pmy, 5 €[0,5%].
p+1 H-5(K) s o EWnar (R) H2(K)

(iii) For all u € Hl(I?, curl) there holds

Ju — I35 < Cep~ 1) inf  [ju— Vg #ewny:  $ € 10,57

(K ,curl) veQ,(R)

w) For a >1and allu e Awit curlu € AQ K there holds
(iv) For all k d allu € H*(K) with curlu € V,(K) 2 (P,(K))? there hold

Hu _ H;url’?’duuflﬂ(l?,curl) < Cs,kpf(kJrs)HuHHk(]?)v s € [0, 3*].

If p > k—1, then the full norm ||uHHk(f() can be replaced with the seminorm ’U-\Hk(f()-

(v) For allu € HY2(K,div) there holds

u — [1div:3dy s s < Cspf(l/ﬂs) inf u—v S, s €10,1].
H 14 HH (K ,div) VEVp(I?) ” HHl/Q(K,dlv) [ ]
(vi) For all k> 1 and all u € H*(K) with divu € Pp(l?) there holds
Hu - H]giv,?’duuﬁfs(]?’div) < Os,kp_(k+s) ”uHHk(I?)y S € [0, S*].

If p > k—1, then the full norm ||uHHk(f() can be replaced with the seminorm ]u\Hk(f().

Proof. For the subjects stated in (i), see Lemma 4.9, Lemma 4.10, Lemma 4.11 and The-
orem 4.14. Item (ii) is exactly Proposition 4.29, and (iii) is shown in Proposition 4.35.
Assertion (iv) is seen in Lemma 4.36 and statement (v) in Proposition 4.40. Finally, (vi)
is proven in Lemma 4.41. O
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4.7 Stability estimates in 3D

Remark 4.43. For a reference tetrahedron K , all statements in Theorem 4.42 hold for s €
[0, 1] which is the case for the most natural choices of reference tetrahedra, cf. Remark 4.30.
We also mention that the case s = 0 is always admissible, completely independent of the
angles of K.

If we start with a more regular function, then we obtain better approximation properties.
The following result, which is the 3D-analog to Corollary 4.25, deals with this observation.

Corollary 4.44. Using the notation of Theorem 4.42, the following statements hold for
kE>1:

yerad,3d — .
H‘P - H%—fl SOH}]lfs(f() < CS,k‘p (k) H‘»OHHkJrl(]?)? s € [07 mln(ﬂ-/w - 1/27 1)]7
(4.136)
o = T g 2 eurty < Corp™ 0l ez cuny 8 € [0, min(m/w - 1/2,1)],
(4.137)
la = Il 2 gy < Conp™ "l gy s € 10,1, (4.138)

Proof. The estimate (4.136) follows directly from Theorem 4.42, (ii), together with the best
approximation property of Lemma 2.23. R
In order to show (4.137), we write u € H*(K, curl) as

u=Vyp+z

with ¢ € HFY(K), z € H*1(K), and the bounds Hg0||H,€+1(f() < ||u||H,€(f<’wrl) and
HZHHkH(f() S curluHHk(f(), cf. Lemma 2.28. Thus, Theorem 4.42, (iii) and Lemma 2.23

yield
Ju =T g g oy ST inf [Vt z— (Yot @)l
P H—s(K,curl) ’UEWP+1@), H!(K,curl)
q9€Qp(K)

< p—(1+s) inf _ _ ' _ _
Sp inf _ [lo = + inf |z—q|
LGWW(K) HEE) T qequ() A

Lemn? 2.23 p—(1+s)—(/€+1—2)

~

ol g ) + W2l y) S 27 g 2 ey
For the estimate (4.138) we use the decomposition of u € Hk(IA(, div) in
u=curly+z,

where ¢ € HFt1(K) and z € H*"(K) with the estimates el g gy S Illge i giv) and
||Z||Hk+1(1?) < || div u||Hk(f() according to Lemma 2.33. Theorem 4.42; (v) and Lemma 2.23
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4 The projection-based interpolation operators

then give us

sy
”u_ng,:J. uHH s (R ,div)

< p—(1/2+4s) f B R
NYY in _leurlp +z — (curlq + V)|l g1/2(% giv
qeQ,(K),veV,(K) H/2(K div)

< = (1/2+s) inf i _ _
Sp inf_ [l —dllgs;gy+  inf_ |z — Vg,

q€Q,(R) AR T ey ®) HYAE)
Lemma 2.23

k)
s ¢t HuHHk (K div)’

which completes the proof. O

4.8 Extensions to finite elements of the second kind

In addition to the classical finite elements introduced in (2.31) which are called elements
of the first kind, one can also use elements of the second kind, defined by full polynomial
spaces as spaces of functions together with suitable degrees of freedom, cf. [26, Sec. 2], [55,
Sec. 3| or [62, Sec. 4]. This gives (adapting the notation in order to support the notation
in all previous chapters) the discrete spaces

Wp1(K) = Ppy3(K),
Qp(K) = (Ppra(K))?, (4.139)
Vy(K) = (Pps1(K))’
with the following exact sequence
R 2 Wyi(R) 5 QuR) <% vy (R) 2% By(R) 2 {0}, (4.140)
cf. [26, eq. (45)]. We then define the interpolation operators ngad 3d, H;url’Sd, ﬁgiv’gd and

ﬁf analogously to Definitions 4.1 - 4.4. The same arguments as in Sections 4.2 - 4.4 show
that they are well-defined and that the diagram

R 4 p2R) % HYEK,curl) <% HY(EK,div) 2% HYEK) % {0}

lnzgjff 3d lﬁ;url,sd J/ﬁgiv,sd lﬁ[ﬁ (4.141)
id = \Y4 = curl = d1v 0
R = Wpn(K) —  QpK) —— Vp(K) — Pp(K ) — {0}

commutes. To get a bit more into details, the dimension arguments from Section 4.3 still
hold by counting, and only the exact sequence property is relevant for the commuting
diagram property.

Anyway, all results about the interpolation operators shown for the elements of the first
kind, can be completely repeated for the elements of the second kind. This is based on the
fact that the concrete form of the discrete spaces is mostly irrelevant:
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4.8 Extensions to finite elements of the second kind

e Many arguments are based on the commuting diagram property or the discrete spaces
building an exact sequence. This holds true for the elements of the first kind as well
as for the elements of the second kind.

e We used the best approximation operators Pgad3d  peurl3d oq pdividd introduced
in Lemmas 4.26, 4.27 and 4.28, for the interpolation error estimates. They map in the
corresponding discrete spaces and satisfy orthogonality conditions, which still holds
for elements of the second kind, cf. [26, Thm. 5.2] and the lines at the beginning of
[26, Sec. 5.1].

e Another main ingredient of our studies are the right-inverse operators Re2d Rewl
and R4V from [19], presented in our work in Lemma 2.27. As is seen in [19, Sec. 4.2],
the properties stated in Lemma 2.27, (iv), (v), (vi) only rely on the polynomial spaces
forming an exact sequence and thus hold for elements of the second kind.

o We sometimes made use of continuous, polynomial-preserving liftings from the bound-
ary. Since WpH(IA( )= Ppﬂ(ff ) for elements of both first and second kind, and since
the liftings £ and €Y are even polynomial-preserving for full polynomial spaces,
cf. [31, Thm. 7.2], [32, Thm. 7.1], the arguments concerning the liftings also work for
elements of the second kind.

e Since the discrete Friedrichs inequalities presented in Section 2.6 rely more or less on
the right-inverse operators, they still hold in the current setting, cf. the proofs in [26,
Sec. 5].

Thus, our main result Theorem 4.42 holds for elements of the second kind.

Theorem 4.45. Define the interpolation operators ﬁ%ff Ad T3 ond T3 analogously

to (4.2) - (4.4), corresponding to the discrete spaces Wp+1(f(), Qp(I?) and Vp(I?) defined
in (4.139). Then, under the hypotheses of Theorem 4.42, all assertions of Theorem 4.42
are valid in the setting of elements of the second kind.

In 2D, the elements of the second kind are also defined by full polynomial spaces as the
function spaces, i.e.

Woald) = Ppsald) ) (4.142)
Qp(f) = (Pp41([))
with the exact sequence
R =5 Won(f) = Quf) =5 Pp(f) = {0) (4.143)

cf. [26, eq. (22)]. If we define the interpolation operators ﬁ%ff 24 T2 and ﬁT’}Q
analogously to Definitions 4.5 - 4.7, then the diagram
R —9 m32(f) — HY2(J,curl) —2 HY2(F) —— {0}
J/ﬁlg?fiiﬂd Jﬁ;url,Qd J/ﬁzlag (4144)

v A curl N

R won(f) —— Q) 2 2, —2 {0}
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commutes.
Similar lines of argumentation as in 3D now work for the case of two spatial dimensions.
Hence, Theorem 4.24 holds true for 2D-elements of the second kind.

Theorem 4.46. Define the interpolation operators ﬁiffl 24 ond ﬁf,urud analogously to

(4.6) - (4.7), corresponding to the discrete spaces WPH(I?) and Qp(ff) defined in (4.142).
Then, under the hypotheses of Theorem 4.24, all assertions of Theorem 4.24 are valid in
the setting of elements of the second kind.
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