
Formal Methods in Computer-Aided Design 2020

Runtime Verification on FPGAs with LTLf
Specifications

Tommy Tracy II

University of Virginia
Charlottesville, Virginia 22904

Email: tjt7a@virginia.edu

Lucas M. Tabajara

Rice University
Houston, Texas 77005

Email: lucasmt@rice.edu

Moshe Vardi

Rice University
Houston, Texas 77005
Email: vardi@rice.edu

Kevin Skadron

University of Virginia
Charlottesville, Virginia 22904
Email: skadron@virginia.edu

Abstract—Runtime verification is a technique that evaluates a
system’s execution trace at runtime against a formal specifica-
tion. This approach is particularly useful for safety-critical and
autonomous systems to verify system functionality and allow for
graceful recovery or intervention in the case of system faults.
Specifications are often provided in a high-level form using some
type of temporal logic, which can then be compiled into an
automaton to be used as a monitor for the system. Existing
work has mainly focused on implementing such monitors in
software. In recent years there has been extensive research,
however, in hardware acceleration of automata applications,
which can potentially be extended to runtime monitoring. In this
paper, we introduce an open-source framework for translating
formulas in Linear Temporal Logic over finite traces (LTLf)
into automata implementations on FPGAs for high-efficiency
and high-performance runtime monitoring. By using the spatial
dimension of FPGAs, we run many of these automata in parallel,
significantly reducing the latency between violation and monitor
report and achieving significant throughput. We compare the
performance of four different architectures corresponding to the
combinations of deterministic or nondeterministic automata with
an explicit or symbolic representation, and determine the design
parameters that result in efficient hardware utilization and higher
clock frequencies. We found that explicit automata tend to use
more hardware resources, in particular Lookup Tables (LUTs),
than symbolic automata. An exception to this is in the case of
Flip-Flop (FF) usage, where symbolic DFAs tend to use more
FF resources than explicit NFAs for smaller designs. We also
found that explicit NFAs can run at higher clock frequencies,
except for very large automata with high edge densities. Symbolic
NFAs use fewer Look-Up Table resources and run at higher
clock frequencies than symbolic DFAs, whereas symbolic DFAs
required fewer Flip-Flop resources, except in the case of very
simple small automata with lower edge densities. Finally, we
found that explicit automata hardware utilization significantly
increases with input signal widths, motivating the use of symbolic
automata for wide input signals.

I. INTRODUCTION

While other types of formal verification seek to verify a sys-
tem before it is deployed, the goal of runtime verification is to
monitor the execution of a system in real time in order to detect
behavior that violates the system’s formal specification [1], [2],
[3]. This gives the system a chance to mitigate, recover from,
or document the error. Runtime verification is particularly
valuable for safety-critical and autonomous systems [4], where
errors that are not immediately dealt with can have catastrophic
consequences. Such systems also often operate in physical

environments, which are hard to model accurately and often
behave in unexpected and unpredictable ways. Therefore, even
if the system has been formally verified beforehand, it is
possible that it might still display errors during runtime due
to assumption violations.

Most existing work on runtime verification has focused
on monitors implemented in software [1], [2]. Motivated by
the slowing down of Moore’s Law and the end of Dennard
Scaling [5], there has been a recent trend to use specialized
hardware [6]. Specialized hardware that is designed to perform
a particular task can be optimized for that task much more
than it would be possible for general-purpose hardware. Fur-
thermore, the application can benefit directly from the natural
parallelism that hardware provides. For runtime verification, an
on-board hardware implementation translates to more efficient
real-time monitoring with lower latency.

Monitors used for runtime verification usually take the form
of (deterministic or nondeterministic) finite-state automata.
Automata applications have already been a target of hardware
acceleration, as exemplified by Micron’s Automata Proces-
sor [7], [8] and subsequent work targeting FPGAs [9], [10].
Specialized architectures for simulating automata have been
employed for a number of data- and string-processing appli-
cations, including bioinformatics [11], [12], machine learn-
ing [13], [14], and natural language processing (NLP) [15].
As an application that also runs automata over streaming data
- in this case traces of the system’s execution - the extension
to runtime verification is a natural one.

Unlike data- and string-processing applications, automata
used for formal verification, including runtime verification, are
often generated from formal specifications given as formulas
in a temporal logic [16], [17], rather than directly as finite
automata. A major difference between automata constructed
from temporal-logic formulas and those obtained for other
applications is the alphabet construction. Data- and string-
processing application usually assume a static and relatively
small symbol alphabet. For example, an NLP automaton would
likely use ASCII as the symbol alphabet, and bioinformatics
applications may only need four symbols corresponding to the
four nucleotide bases A, T, C and G.

In the case of automata used for formal verification, the
symbol alphabet consists of propositional interpretations of the

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 10 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD20
https://orcid.org/0000-0002-9872-0246
https://orcid.org/0000-0001-9608-1404
https://orcid.org/0000-0002-0661-5773
https://orcid.org/0000-0002-8091-9302
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10
https://creativecommons.org/licenses/by/4.0/

atomic propositions in the formula. The number of possible
such interpretations, and therefore the size of the symbol
alphabet, is exponential in the number of propositions, leading
to potentially much larger alphabets. The problem of the
exponential alphabet is usually solved in formal-methods ap-
plications by not explicitly representing the transitions on each
symbol, but instead labeling transitions by Boolean expres-
sions, with the understanding that a transition is activated by
an interpretation if that interpretation satisfies the expression.

Tools that construct automata from temporal formulas [18],
[19] often represent transitions in this way. While being
very natural when the automaton is generated from a logic
formula, this symbolic representation of the transition relation
is not supported by Micron’s Automata Processor, for example,
which uses eight bits per symbol in the alphabet and a memory
column of 256 bits per state to recognize the unique symbols
in the alphabet. Sadredini et al. [20], with their Flexamata
compiler and subsequent Grapefruit [10] FPGA implementa-
tion, which integrates Flexamata into a full-stack automata
processing framework, addressed this concern by converting
among automata of differing symbol alphabet sizes. They do
this by trading off symbol alphabet size with automata size and
throughput. Unfortunately, this requires temporal multiplexing,
where the system signals would need to be buffered and
serialized at the reduced width. This approach could work for
lower sampling rates of the system signals, but could also
bottleneck the system for some applications.

Our main contribution in this work is an investigation
among four possible architectures for implementing automata-
based monitors for temporal-logic properties on a field-
programmable gate array (FPGA). These four architectures
are defined by two axes: deterministic vs. nondeterministic
and explicit vs. symbolic. The first axis specifies whether the
temporal logic specification is converted into a deterministic
finite automaton (DFA) or a nondeterministic finite automaton
(NFA). It is difficult to predict a priori which of these
representations is more efficient in terms of the number of
states. Although NFAs have an exponentially smaller worst-
case size, DFAs have an exact minimization algorithm that
runs in polynomial time, while for NFA minimization, which
is PSPACE-complete [21], we are forced to rely on heuristics.
The second axis determines whether the state space of the
automaton should be represented explicitly or symbolically.
In an explicit representation, each state has its own hardware
component, called a State Transition Element (STE), that is
activated when the automaton moves into that state. Each STE
has its own state memory and logic to match the input to
the matching symbol set of that state. In this architecture,
hardware parallelism allows nondeterminism to be simulated
at no additional cost, as multiple STE can be active at the same
time. In a symbolic representation, the current state (or set of
states, in the case of an NFA) is represented by a bitvector,
which is given along with the current input to a logic circuit
that computes the bitvector representing the next state. An
advantage of DFAs in the symbolic representation is that the
current state can be represented in a logarithmic number of

bits, while NFAs require a bit per state. On the other hand, the
logarithmic encoding in the DFA might lead to more complex
(deeper) combinational logic.

We evaluate each of these four options on a set of randomly-
generated formulas in Linear Temporal Logic over Finite
Traces (LTLf) [22], formed by taking random conjunctions of
common temporal patterns [23]. LTLf was chosen because it
is a convenient way of specifying events that happen in a finite
time, such as the ones that runtime verification seeks to detect,
and a lot of machinery exists for translating such formulas
into finite automata [24], [25]. The formula set is converted
into separate automata, which are then implemented on one
FPGA. Each automaton monitors a different property, but the
set shares input signals corresponding to shared propositions
between the formulas. We scale our benchmarks by varying
the number of formulas, the number of different variables
across all formulas (number of unique system signals), and
the number of conjuncts per formula (formula complexity).

The results of our evaluation provide insight on the different
tradeoffs that emerge when considering solutions implemented
directly in hardware as opposed to software. We found that
symbolic automata tend to use less hardware than explicit
automata and that explicit NFAs tend to run at higher clock
frequencies, except in the case of very small formulas or very
complex formulas. Overall, we find that symbolic NFAs tend
to perform best of all of our evaluated architectures across
most experiments with the lowest hardware utilization.

Finally, we found that explicit automata hardware utilization
significantly increases with the size of the symbol alphabet,
motivating the use of symbolic automata for wide input
signals, which happens when the formula has a high number of
propositions. Our investigation allows us to better understand
the considerations that must be taken into account when im-
plementing runtime monitors in hardware, and concludes that,
while no particular approach dominates, each one has its own
pros and cons that should be considered when deciding how
to accelerate runtime verification for a specific application.

II. BACKGROUND

A. Linear Temporal Logic

Linear Temporal Logic over Finite traces (LTLf) is a
variant of Linear Temporal Logic that is interpreted over finite
rather than infinite traces. Its syntax is identical to LTL
over infinite traces, and is defined as follows for a set of
propositions P:

ϕ ::= > | p ∈ P | (¬ϕ) | (ϕ1 ∨ ϕ2) | (Xϕ) | (ϕ1Uϕ2)

Lichtenstein, Pnueli, and Zuck showed in [26] that every LTL
formula is equivalent to a formula of the form

∧n
i (GFφi ∨

FGψi), where φi and ψi contain only past operators. In
other words, φi and ψi are finite-trace formulas. Thus, finite-
trace monitors are the foundation on which one can build
a monitoring framework for LTL [27], which motivates our
focus on LTLf .
X and U are the temporal connectives “next” and “un-

til”. We can define other temporal connectives such as F

37

(“eventually”), G (“always”) and W (“weak until”) in terms
of those. A propositional interpretation τ ∈ 2P is a set
of propositions representing the propositions that are true at
a given time. A trace is a finite sequence ρ ∈ (2P)∗ of
propositional interpretations ρ0, ρ1, . . . , ρn, where ρi is the set
of propositions that are true at time i. We denote that an LTLf

formula ϕ is satisfied by a trace ρ at time i by ρ, i |= ϕ, and
shorten ρ, 0 |= ϕ to ρ |= ϕ. Refer to [22] for the semantics
of LTLf formulas. The language of an LTLf formula ϕ,
denoted by L(ϕ), is the set of finite traces that satisfy ϕ.
The reverse of a trace ρ = ρ0, . . . , ρn, denoted by ρR, is the
trace ρn, . . . , ρ0. The reverse of the language of a formula ϕ,
denoted by LR(ϕ), is the set of traces ρR for ρ ∈ L(ϕ).

B. Finite State Automata

A Finite State Automaton (FSA) is a mathematical model
of the form A = (S,Σ, I,∆, F), where: S is a finite set of
states, Σ is a finite set of symbols called the input alphabet,
I ⊆ S is a set of initial states, ∆ ⊆ S ×Σ× S is a transition
relation indicating the successor states of a given state when
the automaton reads an input symbol in Σ, and F ⊆ S is a
set of accepting states. FSA are often represented by a graph
of nodes connected by edges. Figure 1.A shows an example
FSA, where the left-most state is an initial state, and the right-
most is an accepting state. Edges represent transitions, and are
labeled by the corresponding transition symbols from the input
alphabet. FSAs process input signals by transitioning between
states. The computation begins at the initial state and proceeds
at every time interval, evaluating an input symbol. If that input
symbol matches a transition symbol, a transition is made to
the next state, and so forth. If an accepting state is reached,
then the automaton has accepted the input; if not, the input is
not accepted. The set of finite traces accepted by an FSA A
is the language of the FSA, and denoted by L(A).

FSAs can be deterministic or nondeterministic. Determin-
istic Finite Automata (DFAs) have at most one initial state,
and at most one transition from each given state on a given
input symbol. Nondeterministic Finite Automata (NFAs), on
the other hand, are more general and can have multiple
transitions from each state on the same input symbol. As
a consequence, when running an NFA over a sequence of
inputs, multiple transitions can be taken at once, and multiple
states can be active at the same time. Every NFA can be
determinized into a DFA that recognizes the same language,
but in the worst case the smallest DFA for a given language
may be exponentially larger than the smallest NFA. Because of
this, DFAs potentially yield a significant increase in memory
utilization, while NFAs are memory-bandwidth bounded by
potentially many parallel transitions. However, DFAs have an
efficient and exact minimization algorithm, while NFAs can
practically only be minimized heuristically [28].

Previous work has demonstrated how finite state automata
can be used to accelerate a variety of applications that go
beyond the usual string matching applications, including bioin-
formatics [11], [12], machine learning [13], [14], and natural
language processing [15]. These works represent FSAs in

Fig. 1. Non-homogeneous (A) vs. Homogeneous automaton (B).

a homogeneous representation, where matching computations
are done on the states, rather than the edges. More specifically,
a homogeneous automaton is one where all transitions into a
state have the same symbol set [29], [30]. We depict such
automata by placing the symbol sets on the states rather than
on the edges. Figure 1 depicts a non-homogeneous automaton
and its equivalent homogeneous automaton. Homogeneity is
used in hardware implementations to simplify the mapping of
automata to hardware for parallel transition computation on the
nodes, as demonstrated in Micron’s Automata Processor [7].
This transformation also comes at a significant increase in the
number of states in the automata, scaling with the edge density
of the non-homogeneous representation.

Every LTLf formula ϕ over a set of propositions P can
be converted into a (deterministic or nondeterministic) FSA
Aϕ with alphabet 2P , such that L(Aϕ) = L(ϕ). In the worst
case, the smallest NFA for an LTLf formula may be at most
exponential in the size of the formula, while the smallest DFA
may be doubly-exponential. The tool MONA [18] implements
an algorithm for constructing a minimal DFA from a formula
in Monadic Second-Order Logic (MSO). Since every LTLf

formula can be converted into MSO [22], MONA can be used
to generate minimal DFAs for LTLf formulas. As part of
our framework, we present a solution to using MONA for
generating NFAs as well.

C. Automata Acceleration with FPGAs

Field Programmable Gate Arrays (FPGAs) are used in
computing systems to implement reconfigurable hardware. Ex-
isting automata engines including REAPR [9], REAPRpp [31],
and Grapefruit [10] accelerate a variety of applications with
explicit automata on FPGAs. Figure 2 illustrates how ex-
plicit automata are represented in hardware by these explicit
engines, with constituent states of the automata instantiated
with separate memory and logic resources. This requires
that the spatial resources used by the design grow in the
size of the automata, but also allows all automata states to
make transitions in parallel, making this approach particularly
efficient for processing NFAs, where the number of active
states can be variable and for evaluating multiple automata
in parallel.

REAPR works by generating Verilog from ANML [7]
automata description files, an XML-like homogeneous FSA
representation, and generates an architecture that is very
similar to Micron’s Automata Processor (AP) [7], using the
homogeneous automata representation. One limitation REAPR
inherited from the AP is the static 8-bit symbol width. AP-like
automata processing assumes an input symbol of 8 bits and a

38

Fig. 2. Architecture of explicit automata.

corresponding 256-bit matching column for representing the
full 8-bit symbol alphabet. Although useful when considering
pattern matching on ASCII or byte-level data, when imple-
menting runtime verification, this limits the number of system
signals that our formulas could process in one cycle to 8.

Rahimi et al. [10] implement the Flexamata [20] compiler
in their Grapefruit full-stack automata engine. They overcome
the symbol-width limitation by extending ANML and allowing
for arbitrary bitwidths by trading off symbol alphabet size with
automata size and throughput. In addition to this, Grapefruit
also includes heuristic-based NFA minimization, which allows
the tool to reduce the size of explicit finite state automata in
hardware. We utilize Grapefruit and extend its functionality to
also include symbolic automata (see Section III-B.

D. Runtime Monitors

Although there are many types of runtime monitors with
different semantics, in this work we define a monitor for an
LTLf formula ϕ as an FSA (NFA or DFA) that accepts a
finite trace iff this trace satisfies ϕ. As the monitor reads the
trace produced by the system, it continuously reports whether
the finite trace observed from the beginning of the execution
until the current time step satisfies the formula.

Previous work on runtime monitors has focused on automat-
ically generating runtime system monitors on CPUs as well as
on FPGAs. Drusinsky [32] introduces a verification tool that
generates code from LTL and MTL assertions written into
C, C++, Java, Verilog and VHDL code to evaluate runtime
systems against the formulas at runtime.

Tabakov et al. [2] introduce a technique for automatically
generating SystemC runtime monitors from LTL formulas.
They identify four important components that they optimize
to minimize runtime overhead: state minimization, alphabet
representation, alphabet minimization, and monitor encoding.
They then identify the configurations that offer the best moni-
tor performance in terms of runtime overhead. Pike et al. [33]
introduce Copilot, a domain-specific language built on top of
Haskell for programming runtime monitors for distributed real-
time systems. Boule and Zilic [34] use a recursive technique
that breaks properties into syntax trees. Each node in the tree
is used to create a sub-property automaton which are concate-
nated with the rest in an automata generation algorithm.

Geist et al. [35] implement runtime observers in their system
on processors implemented on their FPGA. Meredith et al. [36]
with MOP and Pellizzoni et al. [37] with BusMOP use the
Monitoring Oriented Programming (MOP) framework to syn-

thesize hardware monitors for runtime verification. BusMOP
generates monitor blocks from temporal logic specifications.
These monitor blocks use symbolic DFAs to verify system
properties at runtime.

Jaksič et al. [38] translate Signal Temporal Logic (STL)
assertions into hardware runtime monitors on FPGAs. They
synthesize temporal testers, or transducers, that output a signal
if a specification has been satisfied. Selyunin et al. [39]
translate Signal Temporal Logic (STL) and Timed Regular
Expressions (TRE) into hardware monitors on FPGAs. They
demonstrate a High-Level Synthesis (HLS) and automata-
based approach for temporal tester transducers.

Selyunin et al. [40] apply runtime monitoring for au-
tomata systems and use HLS to synthesize monitors for
FPGAs. Baumeister et al. [41] compile RTLola, a stream-
based specification language used for real-time properties, into
VHDL for FPGA deployment. Convent et al. [42] introduce
the Temporal Stream-based Specification Language (TeSSLa)
used to specify constraints on railway cyber-physical systems.
Their approach differs considerably from previous approaches,
because they allow for runtime reconfigurability. They do
this by creating a set of event processing units that can be
combined at runtime to monitor for complex properties.

Schumann et al. [4] introduce R2U2, a monitoring and
diagnosis framework for unmanned aerial systems. R2U2 is
implemented on an FPGA and monitors streams of data from
the GPS and ground control station, flight software status,
sensor readings, and actuator outputs. They implement their
runtime monitors in logic as presented by Reinbacher et al. [3].

While previous work has implemented runtime monitors on
FPGAs, our work differentiates itself in a few ways. First, we
take advantage of recent progress made in hardware accelera-
tion of automata by using state-of-the-art approaches from that
field. We also focus on LTLf as a specification language for
runtime properties, allowing us to also use recently-developed
techniques for converting LTLf formulas into automata. Fi-
nally, as far as we are aware we are the first to perform
an experimental comparison between deterministic and non-
deterministic as well as symbolic and explicit automata, in
order to determine the advantages and disadvantages of each
representation in an FPGA implementation.

III. IMPLEMENTING LTLf MONITORS IN HARDWARE

We present an open-source software pipeline[43] for con-
verting LTLf formulas into automata-based runtime monitors
implemented on a cloud-deployed FPGA. We explore four
possible automata representations placed along two axes:
deterministic/non-deterministic and explicit/symbolic. Each
representation is described later in this section.

For generating the automata from the temporal formulas,
we employ an approach centered on the tool MONA [18],
which can construct finite automata from formulas in Monadic
Second-order Logic (MSO), a logic strictly more expressive
than LTLf . We chose this tool based on its performance
and versatility. Other possible options for converting LTLf to

39

https://github.com/tjt7a/LTLfAutomata

automata would be the tools SPOT [19] and LISA [44]. Pre-
vious comparisons, however, have shown MONA to perform
better than SPOT [24], while LISA only has support for DFAs.
Because MONA is based on MSO, we can use a technique
based on reversing the formula to construct NFAs as well, as
described in Section III-A.

Although there are several existing tools for deploying
automata on FPGAs, most focus on memory-based DFA
solutions. We found the FPGA automata processing framework
Grapefruit [10] to be the best solution that provides both
DFA and NFA functionality as well as a full end-to-end
solution. Grapefruit also demonstrated higher performance
over previous work such as REAPR. Grapefruit generates
an explicit Hardware Description Language (HDL) module
from a description of a homogeneous automaton. We extend
Grapefruit to also generate HDL modules that represent logic
transitions for symbolic non-homogeneous DFAs and NFAs.

A. Generating Finite Automata from LTLf Formulas

The first half of our pipeline takes in an LTLf formula
ϕ and constructs an abstract non-homogeneous representation
of a finite automaton that recognizes the language of ϕ. As
previously mentioned, we explore two different constructions,
one which produces a deterministic and another which pro-
duces a non-deterministic automaton. We start by describing
the deterministic construction:

1) Translate the LTLf formula ϕ into a formula fol(ϕ)
in First-Order Logic (FOL) over finite traces. This is
possible since FOL has the same expressive power as
LTLf . A translation algorithm can be found in [22].

2) Use the tool MONA to convert fol(ϕ) into a DFA
Aϕ that recognizes the same language. This is possible
because MONA accepts inputs in MSO, which is a
superset of FOL.

It is important to point out that the DFA constructed by
MONA is minimal, meaning that it is the smallest DFA that
recognizes the language.

Because the construction algorithm implemented in MONA
heavily relies on the fact that DFAs can be efficiently min-
imized, the automaton output by the tool is always deter-
ministic. Yet, it is known that there are languages for which
the smallest DFA is exponentially larger than the smallest
NFA [45]. Therefore, if our construction algorithm can exploit
non-determinism, we may obtain an exponentially smaller
automaton. Furthermore, recall that non-determinism allows
us to take advantage of the natural parallelism among multiple
active states in each automaton, as well as parallelism across
multiple automata, and leverages the high degree of parallelism
afforded by FPGAs. In order to use MONA to generate an NFA
instead, we make use of a technique introduced in [46]:

1) Convert the LTLf formula ϕ into a PastLTL formula
ϕR such that L(ϕR) = LR(ϕ), i.e., ϕR is satisfied by
exactly those traces that are the reverse of a trace that
satisfies ϕ. To do this, it is enough to replace all future
temporal operators in ϕ with past temporal operators.
See [25] for details.

2) Translate ϕR into a FOL formula fol(ϕR) describing
the same language. See [25] for a translation algorithm.

3) Use MONA to construct a DFA AR
ϕ for fol(ϕR). Note

that this DFA accepts the reverse language of ϕ.
4) Reverse AR

ϕ by turning initial states into accepting states
and vice versa, and swapping the source and destination
states of each transition. The result is an NFA Aϕ that
accepts the reverse language of AR

ϕ , and therefore the
same language of ϕ [46].

The minimal DFA for the reverse language of an LTLf

formula is guaranteed to be at most exponential in the size
of the formula (see [22] on converting an LTLf formula to
a linear-sized alternating automaton, and [47] on obtaining
an exponential-sized DFA for the reverse language of an
alternating automaton). In contrast, the DFA for the formula
itself can be doubly-exponential. Therefore, the NFA generated
by this approach has the potential to be exponentially smaller
than the DFA that would be constructed by simply using
MONA directly.

B. Implementing Monitors in FPGA

Having obtained an automaton from the LTLf formula, we
explore two ways to implement them on an FPGA: explicitly
or symbolically. In either case, each input signal of the circuit
corresponds to a proposition in the formula, and multiple
LTLf formulas can be processed in parallel, up to the capacity
of the FPGA.

The explicit implementation follows a similar architecture
to REAPR and Grapefruit as presented in Section II-C. In
this architecture, each state of the automaton is represented
by a separate hardware module called a State Transition
Element (STE). The STE consists of an activation bit and
logic corresponding to the transition condition of this state (the
explicit implementation is based on homogeneous automata,
so the transition condition is associated with the state, not
the edge). The activation bit for a state is set to 1 if any
of its predecessors were active in the previous step and the
current input satisfies the state’s transition condition. Note that
if the automaton is an NFA, multiple STEs can be active at
the same time. The STE for an accepting state also generates
a report bit. Given an automaton (DFA or NFA) Aϕ generated
by MONA, we perform the following operations to implement
Aϕ explicitly:

1) Convert Aϕ from a non-homogeneous representation
given in the output format of MONA into a homogeneous
automaton in the ANML format.

2) Use Grapefruit to heuristically minimize the automaton
(and remove unreachable states) and generate HDL.

3) Synthesize and target FPGA.
It is important to note that the conversion algorithm to

homogeneous automaton may turn a non-homogeneous DFA
into a homogeneous NFA, and may come at an increase
in automata size. Therefore, when we refer to an ”explicit
DFA” implementation, we only mean that the automaton
was initially constructed and minimized as a DFA, but the

40

Fig. 3. Architecture of symbolic automata.

homogeneous automaton implemented in the FPGA may be
non-deterministic. As a result, the main difference between the
explicit DFA and explicit NFA approaches is that they produce
automata with a different number of states and transition logic.

The symbolic implementation instead encodes the current
state by a bitvector stored in an internal memory, and uses a
single logic circuit to compute the next state as a function of
the current state and inputs. For NFAs, the bitvector includes
one bit for each automaton state, representing whether that
state is active or not. For DFAs, since only one state is
active at a given time, this representation would be inefficient.
Instead, each state is given a binary encoding in a logarithmic
number of bits. Since symbolic automata do not require
separate components for each state, their hardware utilization
is expected to be less than explicit automata. In order to
capture transitions into accepting (or reporting) states, we use
a separate piece of combinational logic to determine if the next
state is accepting and generate a report signal that is set to 1
if the state is accepting and 0 otherwise. Figure 3 shows how
we represent symbolic automata. The steps for implementing
symbolic automata in an FPGA are the following:

1) Remove unreachable states if they exist (since MONA
generates minimal DFAs, this may only happen in NFA
construction),

2) Convert automaton representation given by MONA into
truth tables, one for each state bit and one for the
reporting bit. Each table maps the value of the current
state and the current input to the new value of the state
or reporting bit.

3) Use modified Grapefruit to convert truth tables into
synthesizable HDL.

4) Synthesize and target FPGA.
We extend Grapefruit to generate symbolic DFAs and NFAs.

We do this in two steps. In the first step, we generate an
intermediate Truth Table representation (IR) from the MONA
output. We generate a separate truth table for each of the
state bits. Recall that the number of state bits for NFAs is
linear, while for DFAs it is logarithmic. We found that when
comparing DFAs to NFAs, the DFAs have fewer truth tables,
but these truth tables required deeper logic circuits. Finally,
we generate a separate truth table for the bits reporting the
accepting states. This shallow truth table checks the state bits
of the DFAs and NFAs and generates an output report signal
if any of the accepting states are active.

We then generate Verilog lookup table modules from these
IRs, to be synthesized into logical circuits in the FPGA. For
state transitions, we use sequential logic with case statements.
Each bit in the automaton state maps to its own module with
a case statement mapping inputs and current state bits to next
state bits. For the report truth tables, we use combinational
case statements to map current state bits to a report signal.
We use Grapefruit’s hardware generator to connect all of the
truth table modules to the shared input signals including a
system clock, reset, and input symbol, as well as a unique
output report signal for each accept state in the automata.

IV. EXPERIMENTAL SETUP

A. Generating LTLf Formulas
In order to evaluate the effectiveness of our pipeline and

different approaches for implementing runtime monitors in
hardware, we generate a diverse set of LTLf formulas of
differing complexities. The FPGA synthesis and optimiza-
tion tools optimize circuitry, including removing redundant
hardware, and therefore it is not sufficient to duplicate the
same formulas to evaluate scalability. To that end, we generate
multiple different formulas by taking random combinations of
the 18 LTLf patterns from [23]. Each pattern is a simple
formula with one or two variables. We take conjunctions of
multiple small patterns, merging like variables among them,
in order to generate more complex formulas. This process is
repeated several times to create multiple formulas, which all
draw randomly from a pool of common variables. That way,
different formulas may have shared variables. All formulas
are then converted to automata and implemented on the same
FPGA. The four possible combinations described in the previ-
ous section (deterministic/explicit, non-deterministic/explicit,
deterministic/symbolic, non-deterministic/symbolic) give us
four quadrants for our experimental evaluation. We evaluate
the performance of the formulas we generate for each of these
four quadrants and compare among them.

In more detail, the LTLf formulas used in our evaluation
are generated in the following way:

1) Draw n random formulas from the pool of patterns.
2) For each variable of each pattern, draw an associated

pattern variable from a pool of k shared input variables.
Different variables in the same pattern are mapped
to different shared input variables from the pool, but
variables from different patterns can be mapped to the
same input variable.

3) Take the conjunction of all n formulas, forming a more
complex LTLf formula.

4) Repeat this process m times with the same pool of
shared input variables, producing m complex formulas
with shared variables between them.

Each complex formula is then separately converted to an
automaton and implemented on the FPGA, according to each
of the four quadrants described previously. To evaluate how
the architecture defined by each of the quadrants scales as the
number and complexity of each rule increases, we vary the
three parameters n, k and m above:

41

• Number of formulas (n): Number of separate LTLf

formulas implemented on the FPGA. We vary this pa-
rameter from 10-10,000.

• Number of variables (k): Size of the total pool of
variables to be drawn from by the LTLf formulas. We
select 10 and 100.

• Formula size (m): Number of conjuncts per formula. We
select 1, 3, and 5.

We experimentally determine the range of values for each of
the three parameters. In the case of the number of formulas,
we used AutomataZoo [48] as a reference with number of
states up to approximately one million. We also determined
that explicit automata hardware utilization scales rapidly with
the number of variables, which maps to the number of input
signals; for this reason we ran experiments for 10 and 100
variables. Finally, we tried to keep automata to a few thousand
states, and therefore set a formula size cap to 5. We repeat each
of these experiments three times, each time generating a new
set of formulas, and we report the average of the three runs.

B. Hardware Setup

We target Amazon’s cloud-deployed FPGAs to standardize
on a publicly-available platform. Amazon provides Xilinx
Ultrascale+ FPGAs in their F1 EC2 instances. In order to
synthesize and place-and-route our HDL into a bitstream to
configure the FPGA, we used Amazon’s FPGA developer
Amazon Machine Image (AMI), which provides us the FPGA
software tools. For our experiments, we used Amazon FPGA
Developer AMI version 1.6.0, which includes Vivado 2018.3.
We deployed this AMI on Amazon EC2 c4.8xlarge instances.

V. EXPERIMENTAL RESULTS

A. Comparisons Among Automata Implementations

We report the average results of the three runs in Figures 4, 5
and 6. Although transition density has low variance across
these three runs, the variance in automaton sizes increases with
the size of the formula. We leave a more detailed analysis of
the distribution of automaton sizes to future work and focus
here on a general analysis based on the average results.

Figures 4 and 5 show the number of Flip-Flops (FFs)
and Look-Up Tables (LUTs) utilized by the FPGA for our
randomly-generated formulas, composed of the conjunction of
multiple patterns over random variables drawn from 10 binary
system signals. FFs are used in the explicit implementations
to store the bits indicating whether a state is active, and in
the symbolic implementations to store the bitvector encoding
the current state. LUTs correspond to logic gates and are used
to implement transition and reporting logic. The Xilinx Virtex
UltraScale+ VU9P has a total 1,181,768 LUTs and 2,363,536
Flip-Flops. Our results show that explicit automata, both DFAs
and NFAs, tend to use more LUT hardware resources than
symbolic automata. Our explicit NFAs tend to use fewer Flip-
Flop and LUT resources than their DFA counterparts.

We determined that transforming the MONA-generated au-
tomata to homogeneous automata came at a significant cost
in terms of number of states. For our 10-variable, explicit

automata, we saw an increase in number of states from 2x in
the case of 1-pattern automata to 10x for 5-pattern automata.
This increase in states is due to the increase in edge density as
automata become more complex. We found the homogeneous
state increase to be be a flat multiplier as we scaled our number
of formulas. When comparing to the majority of AutomataZoo
benchmarks, which have edge/node densities below 2, our
conjunctive LTL formula automata had average edge/node
densities of 1.36 edges/node for 1 pattern, 4.53 edges/node
for 3 patterns, and 8.89 edges/node for 5 patterns, with
explicit DFAs and NFAs having approximately the same edge
densities. We repeated this analysis with formulas composed
of disjunctions instead of conjunctions and found edge/node
densities of 1.36 edges/node for 1 pattern, 5.45 edges/node for
3 patterns, and 12.67 edges/node for 5 patterns.

In the case of symbolic automata, we found that symbolic
NFAs tend to use more Flip-Flop resources but fewer LUT
resources than deterministic implementations. This is due to
symbolic NFAs being represented with a lookup-table module
per bit in a linear bit-vector (O(n)) representation of the
automata, while the DFA implementation represented each bit
in a logarithmic bit-vector (O(log n)) representation. While
the implementation does parallelize the bit logic, the DFA
logic depth tended to be deeper than NFA logic, resulting in
higher clock frequency support for symbolic NFAs. Finally,
Vivado was unable to place-and-route 10,000 automata of
formula size 5 for any automata type. Each of these automata
of formula size five were composed of 100s of states, and we
ran out of resources for many of them.

Figure 6 shows the maximum clock frequencies at which
the generated hardware monitors can process input signals.
We implement our automata in out-of-context mode, which
means that our solutions do not include input or output (I/O)
circuitry. We removed I/O complications from our analysis
as those decisions are application dependent, and can vary
significantly in complexity as shown by I/O work by Bo et
al [49] and in Grapefruit [10]. These results show that for
a larger number of automata (100-10000), the explicit au-
tomata maintain a higher clock frequency than their symbolic
counterparts. In the case of very small formulas or for very
complex formulas, the explicit automata get larger faster and
the symbolic implementations can be run at higher frequencies.

Our results are summarized in Figure 7. We find that if
hardware utilization is a primary concern, symbolic automata
tend to use less hardware than explicit automata. If minimizing
Flip-Flip usage, symbolic DFAs are the best option, except in
the case of smaller formulas. We see this behavior, because
our NFA implementation uses a logic circuit per state in the
automaton, while our DFA representation only needs a number
of circuits that is the log of the number of states. This larger
number of state bits results in a higher FF usage. If minimizing
LUT usage, symbolic NFAs are the best option. Symbolic
NFAs have more logic circuits, but each of these logic circuits
are shallower than the DFA circuits, resulting in a reduced
LUT usage. For our experiments, we found that the difference
between architectures can result in up to a 5x increase in

42

Fig. 4. Flip-Flop usage for for each automata type.

Fig. 5. LUT usage for for each automata type.

Fig. 6. Maximum clock frequency for each automata type.

Fig. 7. Comparing explicit vs. symbolic and deterministic vs. non-
determinstic automata implemented in hardware.

LUT and FF usage. If max clock frequency (throughput) is
the primary concern, explicit NFAs maintain higher clock
frequencies than symbolic automata for a larger number of
automata. In the case of very small formulas or very complex
formulas, symbolic implementations tend to run at higher

frequencies likely due to the clock delay imposed by edges
between explicit nodes. Across all of our experiments, we find
that symbolic NFAs tend to perform best of all of our evaluated
options, and that the difference between architectures can
result in up to a 63% reduction in throughput. Similar results
were obtained when we repeated the experiments replacing the
conjunctions with disjunctions, and the same general conclu-
sions apply. The most significant difference was that, likely
due to the steeper scaling of edge/node density, disjunctions
failed for 10,000 automata even with only 10 shared variables
(k) and a formula size (m) of 3.

B. The Importance of NFA Minimization

Grapefruit includes a series of heuristic minimization tech-
niques that allow us to significantly decrease the number

43

of states in our explicit NFAs. FPGA optimization tools
are also applied by Vivado during the synthesis and place-
and-route phases. We wanted to determine the effect of
higher-level automata optimization on hardware utilization
and performance, and synthesized and place-and-routed 3-
pattern automata with and without Grapefruit optimizations.
We observed that our generated explicit DFAs have fewer
states than our generated explicit NFAs across most of our
formulas, even post-minimization. We find that during the
Cross Boundary and Area Optimization steps of synthesis
that the NFA states were merged much more than the DFAs,
resulting in a net result of less hardware utilization than DFAs.
Although we did use Grapefruit’s minimization functionality,
the resulting automata are not necessarily minimal. We found
that Grapefruit heuristics reduced our state count by between
4.5% and 11.0%, with LUT reductions from 4.3% to 8.2% as
we scaled the number of automata from 10 to 10,000.

C. Wide Input Signals

One limitation of our explicit automata implementations is
the required distribution of input signals to all of the states that
make up the automata. FPGA optimization tools only route
signals required by the transition logic for each state, but as
formula complexity increases, more signals need to be routed
to each state, resulting in significant hardware utilization.

We repeated our experiment with 100 input signals and
found that even with simple single-pattern formulas, we were
able to synthesize 10,000 symbolic automata formula, but
only 1000 explicit automata. When moving complexity up
to 3 patterns, we could still support over 10,000 symbolic
automata, but fewer than 100 explicit automata. With 5 pattern
complexity, we could only support 1000 symbolic automata,
and could not synthesize even 10 explicit automata.

Wide input signals require serialization on the input, and
handling report identification requires serialization on the
output. Our analysis does not investigate I/O because it is
implementation dependent. When monitors are monitoring an
implementation on the FPGA, there may not be a need to
transfer signals off the chip. Also, in the case of output signals,
there are many approaches to handling monitoring solutions.
If the application and monitoring resolution implementation is
on chip, there may not be a need to remove report information
off the chip. If this information does need to leave the chip, it
might be sufficient to send off a single bit of information, as
opposed to the entire report bit vector, as demonstrated with
other FPGA-based automata implementations.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we introduce a framework for generating
FPGA-deployed runtime monitors based on LTLf formulas
with four different architectures: explicit DFA, explicit NFA,
symbolic DFA, symbolic NFA. We use our framework to
determine performance tradeoffs among these. Our results
show that there is no single best hardware representation
for automata-based runtime verification, and that there are
trade-offs between hardware utilization and the maximum

clock frequency for automata transitions. Across all of our
experiments, we find that symbolic automata tend to use less
hardware (FFs and LUTs) than explicit automata, that explicit
automata tend to run at higher frequencies (except in the case
of very small or very complex formulas), and that symbolic
NFAs tend to perform best of all of our evaluated architectures
across the widest range of scenarios. Our experiments also
showed us that differences between architectures can result in
up to a 5x increase in LUT and FF usage, as well as result in
up to a 63% reduction in runtime verification throughput.

We extended Grapefruit to also generate symbolic hardware
automata. Although Grapefruit includes many other features
including targeting Block RAM, full-stack support with I/O,
and support for variable symbol width and striding, we did
not use these functions in our experiments. Application-side
research could further investigate concerns related to I/O
and moving signal data to the automata as well as handling
reporting data communication.

We targeted Amazon’s F1, cloud-deployed FPGAs to stan-
dardize on one FPGA platform. Application-side research
could utilize our work for integrating runtime monitors into
high performance cloud-deployed applications, including ma-
chine learning and bioinformatics workloads. Our framework
generates HDL that can target smaller and lower power
FPGAs for other applications, including embedded systems.
Because our explicit automata use the standard ANML format,
automata engines built for other architectures can also be used.

We chose to keep the width of input signals constant across
our experiments to determine the performance of our solution
when all input signals are processed simultaneously. With
flexibility in timing, or with slower sampling, future work
could utilize Grapefruit’s variable symbol-width functionality
to handle many more input signals, albeit at a slower rate,
thus making it possible to handle formulas with a much
larger number of propositional variables. This would also
significantly reduce hardware utilization.

In the future, it would also be interesting to compare with
existing frameworks for implementing monitors in FPGA, such
as [34], [39]. Since these works use different specification
languages (e.g. PSL for [34] and STL and TRE for [39]), this
would require establishing a unified set of benchmarks for
these different formalisms and separating in the experimental
evaluation the impact of the differences between specification
languages from the performance of the FPGA framework.

During our analysis, we found that the average automata
edges/node density scaled differently for conjunctions vs.
disjunctions of patterns. We found that edge density for
disjunctions tended to scale with a steeper slope than con-
junctions. Future work could explore this relationship between
compositions of LTL formulas and automata parameters.

ACKNOWLEDGMENTS

Work funded by the NSF XPS and CRISP, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) pro-
gram, NSF grants IIS-1527668, CCF-1704883, IIS-1830549,
and an award from the Maryland Procurement Office.

44

REFERENCES

[1] K. Havelund, “Runtime verification of C programs,” in Testing of Soft-
ware and Communicating Systems, 20th IFIP TC 6/WG 6.1 International
Conference, TestCom 2008, 8th International Workshop, FATES 2008,
Tokyo, Japan, June 10-13, 2008, Proceedings, ser. Lecture Notes in
Computer Science, K. Suzuki, T. Higashino, A. Ulrich, and T. Hasegawa,
Eds., vol. 5047. Springer, 2008, pp. 7–22.

[2] D. Tabakov, K. Y. Rozier, and M. Y. Vardi, “Optimized temporal
monitors for systemc,” Formal Methods in System Design, vol. 41, no. 3,
pp. 236–268, 2012.

[3] T. Reinbacher, K. Y. Rozier, and J. Schumann, “Temporal-logic based
runtime observer pairs for system health management of real-time
systems,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2014, pp. 357–372.

[4] J. Schumann, P. Moosbrugger, and K. Y. Rozier, “R2u2: monitoring and
diagnosis of security threats for unmanned aerial systems,” in Runtime
Verification. Springer, 2015, pp. 233–249.

[5] J. Dean, D. Patterson, and C. Young, “A new golden age in computer ar-
chitecture: Empowering the machine-learning revolution,” IEEE Micro,
vol. 38, no. 2, pp. 21–29, 2018.

[6] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, p. 48–60, Jan. 2019.
[Online]. Available: https://doi.org/10.1145/3282307

[7] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 12, pp. 3088–3098, 2014.

[8] K. Wang, K. Angstadt, C. Bo, N. Brunelle, E. Sadredini, T. T. II,
J. Wadden, M. R. Stan, and K. Skadron, “An overview of micron’s
automata processor,” in Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis, CODES 2016, Pittsburgh, Pennsylvania, USA, October 1-7,
2016, 2016, pp. 14:1–14:3.

[9] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan, “Reapr: Recon-
figurable engine for automata processing,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2017, pp. 1–8.

[10] R. Rahimi, E. Sadredini, M. Stan, and K. Skadron, “Grapefruit: An open-
source, full-stack, and customizable automata processing on fpgas.”

[11] C. Bo, V. Dang, E. Sadredini, and K. Skadron, “Searching for potential
grna off-target sites for crispr/cas9 using automata processing across
different platforms,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018, pp. 737–
748.

[12] I. Roy and S. Aluru, “Discovering motifs in biological sequences using
the micron automata processor,” IEEE/ACM transactions on computa-
tional biology and bioinformatics, vol. 13, no. 1, pp. 99–111, 2015.

[13] T. Tracy, Y. Fu, I. Roy, E. Jonas, and P. Glendenning, “Towards machine
learning on the automata processor,” in International Conference on
High Performance Computing. Springer, 2016, pp. 200–218.

[14] M. Putic, A. Varshneya, and M. R. Stan, “Hierarchical temporal memory
on the automata processor,” IEEE Micro, vol. 37, no. 1, pp. 52–59, 2017.

[15] E. Sadredini, D. Guo, C. Bo, R. Rahimi, K. Skadron, and H. Wang,
“A scalable solution for rule-based part-of-speech tagging on novel
hardware accelerators,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2018, pp. 665–674.

[16] A. Bauer, M. Leucker, and C. Schallhart, “Comparing ltl semantics for
runtime verification,” J. Log. Comput., vol. 20, no. 3, pp. 651–674, 2010.

[17] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, pp. 1–64, 2011.

[18] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm, “Mona: Monadic second-order logic in
practice,” in Tools and Algorithms for Construction and Analysis of
Systems, First International Workshop, TACAS ’95, Proceedings, 1995,
pp. 89–110.

[19] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu, “Spot 2.0 — A Framework for LTL and ω-automata
Manipulation,” in ATVA, 2016.

[20] E. Sadredini, R. Rahimi, M. Lenjani, M. Stan, and K. Skadron,
“Flexamata: A universal and efficient adaption of applications to spatial
automata processing accelerators,” in Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 219–234.

[21] H. Gruber and M. Holzer, “Computational complexity of nfa minimiza-
tion for finite and unary languages.” LATA, vol. 8, pp. 261–272, 2007.

[22] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, 2013, pp. 854–860.

[23] G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning on LTL on
Finite Traces: Insensitivity to Infiniteness,” in Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014, pp. 1027–1033.

[24] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi, “Symbolic
ltlf synthesis,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, 2017, pp. 1362–1369.

[25] S. Zhu, G. Pu, and M. Y. Vardi, “First-order vs. second-order encodings
for ltlf-to-automata translation,” in Theory and Applications of Models
of Computation - 15th Annual Conference, TAMC 2019, Kitakyushu,
Japan, April 13-16, 2019, Proceedings, 2019, pp. 684–705.

[26] O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory of the past,” in
Logics of Programs, ser. Lecture Notes in Computer Science, vol. 193.
Springer, 1985, pp. 196–218.

[27] M. d’Amorim and G. Rosu, “Efficient monitoring of omega-languages,”
in Proc, 17th Int’l Conf. on Computer Aided Verification, ser. Lecture
Notes in Computer Science, vol. 3576. Springer, 2005, pp. 364–378.

[28] H. Björklund and W. Martens, “The Tractability Frontier for NFA
Minimization,” in Automata, Languages and Programming, 35th In-
ternational Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory
of Programming & Track C: Security and Cryptography Foundations,
2008, pp. 27–38.

[29] V. M. Glushkov, “The Abstract Theory of Automata,” Russian Math.
Surveys, vol. 16, pp. 1–53, 1961.

[30] R. McNaughton and H. Yamada, “Regular expressions and state graphs
for automata,” IRE Trans. Electronic Computers, vol. 9, no. 1, pp. 39–47,
1960.

[31] T. Tracy II, J. Wadden, T. Xie, K. Skadron, and M. Stan, “Accelerating
design convergence of automata processing designs with a tiled hierar-
chy,” in FSP Workshop 2019; Sixth International Workshop on FPGAs
for Software Programmers. VDE, 2019, pp. 1–8.

[32] D. Drusinsky, “The temporal rover and the atg rover,” in International
SPIN Workshop on Model Checking of Software. Springer, 2000, pp.
323–330.

[33] L. Pike, N. Wegmann, S. Niller, and A. Goodloe, “Copilot: monitoring
embedded systems,” Innovations in Systems and Software Engineering,
vol. 9, no. 4, pp. 235–255, 2013.

[34] M. Boulé and Z. Zilic, “Automata-based assertion-checker synthesis of
psl properties,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 13, no. 1, pp. 1–21, 2008.

[35] J. Geist, K. Y. Rozier, and J. Schumann, “Runtime observer pairs and
bayesian network reasoners on-board fpgas: flight-certifiable system
health management for embedded systems,” in International Conference
on Runtime Verification. Springer, 2014, pp. 215–230.

[36] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview
of the mop runtime verification framework,” International Journal on
Software Tools for Technology Transfer, vol. 14, no. 3, pp. 249–289,
2012.

[37] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu, “Hardware
runtime monitoring for dependable cots-based real-time embedded sys-
tems,” in 2008 Real-Time Systems Symposium. IEEE, 2008, pp. 481–
491.

[38] S. Jaksvic, E. Bartocci, R. Grosu, R. Kloibhofer, T. Nguyen, and
D. Ničkovié, “From signal temporal logic to fpga monitors,” in 2015
ACM/IEEE International Conference on Formal Methods and Models
for Codesign (MEMOCODE). IEEE, 2015, pp. 218–227.

[39] K. Selyunin, S. Jaksic, T. Nguyen, C. Reidl, U. Hafner, E. Bartocci,
D. Nickovic, and R. Grosu, “Runtime monitoring with recovery of the
sent communication protocol,” in International Conference on Computer
Aided Verification. Springer, 2017, pp. 336–355.

[40] K. Selyunin, T. Nguyen, E. Bartocci, and R. Grosu, “Applying runtime
monitoring for automotive electronic development,” in International
Conference on Runtime Verification. Springer, 2016, pp. 462–469.

45

https://doi.org/10.1145/3282307

[41] J. Baumeister, B. Finkbeiner, M. Schwenger, and H. Torfah, “Fpga
stream-monitoring of real-time properties,” ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–24, 2019.

[42] L. Convent, S. Hungerecker, T. Scheffel, M. Schmitz, D. Thoma, and
A. Weiss, “Hardware-based runtime verification with embedded tracing
units and stream processing,” in International Conference on Runtime
Verification. Springer, 2018, pp. 43–63.

[43] T. Tracy II and L. Tabajara, “Ltlfautomata,” https://github.com/tjt7a/
LTLfAutomata, 2020.

[44] S. Bansal, Y. Li, L. M. Tabajara, and M. Y. Vardi, “Hybrid compositional
reasoning for reactive synthesis from finite-horizon specifications,” in
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020. AAAI Press, 2020, pp. 9766–9774.

[45] M. Sipser, Introduction to the theory of computation. PWS Publishing
Company, 1997.

[46] S. Zhu, L. M. Tabajara, G. Pu, and M. Y. Vardi, “On the Power of
Automata Minimization in Temporal Synthesis,” CoRR, 2020, [Online].

[47] A. Chandra, D. Kozen, and L. Stockmeyer, “Alternation,” J. ACM,
vol. 28, no. 1, pp. 114–133, 1981.

[48] J. Wadden, T. Tracy, E. Sadredini, L. Wu, C. Bo, J. Du, Y. Wei,
J. Udall, M. Wallace, M. Stan et al., “Automatazoo: A modern automata
processing benchmark suite,” in 2018 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 2018, pp. 13–24.

[49] C. Bo, V. Dang, T. Xie, J. Wadden, M. Stan, and K. Skadron, “Au-
tomata processing in reconfigurable architectures: In-the-cloud deploy-
ment, cross-platform evaluation, and fast symbol-only reconfiguration,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 12, no. 2, pp. 1–25, 2019.

46

https://github.com/tjt7a/LTLfAutomata
https://github.com/tjt7a/LTLfAutomata

	Introduction
	Background
	Linear Temporal Logic
	Finite State Automata
	Automata Acceleration with FPGAs
	Runtime Monitors

	Implementing LTLf Monitors in Hardware
	Generating Finite Automata from LTLf Formulas
	Implementing Monitors in FPGA

	Experimental Setup
	Generating LTLf Formulas
	Hardware Setup

	Experimental Results
	Comparisons Among Automata Implementations
	The Importance of NFA Minimization
	Wide Input Signals

	Conclusions and Future Work
	References

