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Abstract
Background Infertility affects one in six couples worldwide, with advanced maternal age (AMA) posing unique 
challenges due to diminished ovarian reserve and reduced oocyte quality. Single vitrified-warmed blastocyst transfer 
(SVBT) has shown promise in assisted reproductive technology (ART), but success rates in AMA patients remain 
suboptimal. This study aimed to identify and refine predictive factors for live birth following SVBT in AMA patients, 
with the goal of enhancing clinical decision-making and enabling personalized treatment strategies.

Methods This retrospective cohort study analyzed 1,168 SVBT cycles conducted between June 2016 and December 
2022 at the First Affiliated Hospital of Guangxi Medical University and Nanning Maternity and Child Health Hospital. 
Nineteen machine-learning models were applied to identify key predictive factors for live birth. Feature selection and 
10-fold cross-validation were employed to validate the models.

Results The most significant predictors of live birth included inner cell mass quality, trophectoderm quality, number 
of oocytes retrieved, endometrial thickness, and the presence of 8-cell blastomeres on day 3. The stacking model 
demonstrated the best predictive performance (AUC: 0.791), followed by Extra Trees (AUC: 0.784) and Random Forest 
(AUC: 0.768). These models outperformed traditional methods, achieving superior accuracy, sensitivity, and specificity.

Conclusion Leveraging advanced machine-learning models and identifying critical predictive factors can improve 
the accuracy of live birth outcome predictions for AMA patients undergoing SVBT. These findings offer valuable 
insights for enhancing clinical decision-making and managing patient expectations. Further research is needed to 
validate these results in larger, multi-center cohorts and to explore additional factors, including fresh embryo transfers, 
to broaden the applicability of these models in clinical practice.
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Introduction
Infertility is a significant global health issue, affecting 
approximately one in six couples worldwide [1]. Assisted 
reproductive technology (ART) offers hope, and recent 
advancements in prolonged embryo culture and vitrifi-
cation have significantly improved cumulative live birth 
rates (cLBR) [2]. Extending embryo development to 5–6 
days via blastocyst culture enhances embryo selection 
and uterine synchronization, which boosts implantation 
rates [3]. Vitrification, a rapid cryopreservation method, 
prevents ice crystal formation, resulting in higher success 
rates for frozen embryo transfers (FET) [4]. These inno-
vations have led to the development of segmented IVF 
cycles, an approach where ovarian stimulation and egg 
retrieval are conducted in one cycle, but embryo transfer 
is delayed to a later cycle. In this method, embryos are 
vitrified (frozen) and transferred when the patient’s hor-
monal conditions are more optimal, improving implan-
tation and pregnancy outcomes. When combined with 
single vitrified-warmed blastocyst transfer (SVBT), where 
only one embryo is transferred at a time, this approach 
further reduces the risk of multiple pregnancies and 
enhances overall ART success [5, 6].

However, women of advanced maternal age (AMA), 
defined as 35 years and older, face unique reproductive 
challenges. Their lower ovarian reserve, reduced oocyte 
quality, and increased risk of chromosomal abnormali-
ties result in lower ART success rates [6]. Despite progress 
in SVBT, AMA patients still have suboptimal outcomes 
compared to younger women, which highlights the 
need for optimized protocols [7]. Given the financial and 
emotional burden of IVF, understanding the factors that 
influence live birth rates in AMA patients is critical for 
counseling and managing expectations [8].

Traditionally, IVF predictions were based on clinicians’ 
subjective assessments, relying primarily on patient age 
and success rates of fertility centers [9]. While useful, this 
method struggles with the complexity of individual cases 
[10]. Machine learning (ML) offers a solution, automating 
predictions by analyzing large datasets to identify pat-
terns that traditional methods might miss [11, 12].

ML techniques such as support vector machines (SVM), 
decision trees (DT), random forests (RF), and extra trees 
are commonly used for IVF outcome predictions [13]. 
These models help identify critical factors influencing IVF 
success by analyzing patient records, offering insights 
that manual assessments may overlook [12]. These mod-
els help identify critical factors influencing IVF success 
by analyzing patient records, offering insights that man-
ual assessments may overlook [12, 13]. Several studies 

have used ML to predict IVF outcomes based on clinical 
variables. Assessing live birth rate using these param-
eters, available before the IVF cycle, could improve ART 
efficiency and reduce resource wastage (Li et al., 2023; 
Qiu et al., 2019; Wang et al., 2022). A 2023 study by Liu 
et al. developed and validated a model to predict live 
birth rates based on embryo morphology and vitrifica-
tion day in SVBT cycles. The results indicated that female 
age, embryo quality, and vitrification day are closely 
linked to live birth rates. However, the study did not pro-
vide detailed age stratification, potentially affecting the 
model’s practical accuracy. Additionally, the single-center 
nature of the research limits the generalizability of the 
findings, and the model’s predictive ability remains mod-
erately accurate, with AUC values of 0.66 (training) and 
0.65 (validation) [9].

Despite the growing body of research, there is still a 
lack of predictive models specifically tailored for AMA 
patients undergoing SVBT. An automated model that 
analyzes clinical and laboratory data could help clinicians 
make informed decisions and personalize treatment 
plans for these patients, potentially improving success 
rates and reducing the emotional and financial burdens 
associated with IVF [14].

Therefore, this study aims to identify and evaluate key 
predictive factors for live birth rate in AMA patients fol-
lowing SVBT. By employing advanced machine learning 
models, this research seeks to optimize these predictive 
features to improve ART success rates for AMA patients, 
ultimately providing more effective treatment strategies 
for clinicians.

Methods
Study design and participants
This retrospective cohort study was performed at two 
reproductive medicine centers: the First Affiliated Hospi-
tal of Guangxi Medical University and the Nanning Mater-
nity and Child Health Hospital. It analyzed 1,168 single 
frozen-thawed blastocyst transfer cycles between June 
2016 and December 2022. ART treatments were recorded 
in the ART database following the Technical Standard for 
Human-Assisted Reproduction by the Chinese Ministry of 
Health. The study included infertile women aged 35 years 
or older who underwent single frozen-thawed blastocyst 
transfers, with no preimplantation genetic testing.

Ethical approval and compliance
The study protocol obtained ethical approval from the 
Institutional Review Boards of the participating hospitals, 
specifically the First Affiliated Hospital of Guangxi Medical 
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University Medical Ethics Committee (Approval Num-
ber: 2024-E445-01) and the Nanning Maternity and Child 
Health Hospital Medical Ethics Committee (Approval 
Number: YX20240627-1). Informed consent was secured 
from all participants.The authors confirm that the guide-
lines approved by the local institution were followed.

Ovarian stimulation and oocyte insemination
Ovarian stimulation protocols were not restricted, allow-
ing for individualization based on the patient’s character-
istics. The initial dose of recombinant follicle-stimulating 
hormone (rFSH, Gonal-F, Merck or Puregon, Organon) 
was determined by age, BMI, baseline FSH levels, and 
antral follicle counts [15]. Human chorionic gonadotropin 
(HCG, Ovitrelle, Merck) was administered when at least 
one follicle reached 18 mm or larger. Oocyte retrieval was 
performed 36  h post-HCG administration via transvagi-
nal ultrasound-guided aspiration. Fertilization was car-
ried out using either conventional IVF or intracytoplasmic 
sperm injection (ICSI) based on semen quality, following 
routine center protocols.

Embryo culture and blastocyst scoring
Embryos were cultured in G-TL media (Vitrolife) from fer-
tilization to the blastocyst stage. The embryos were incu-
bated at 37  °C in an atmosphere containing 5% O₂, 6% 
CO₂, and nitrogen as the balance gas, under oil. Blastocyst 
assessment was based on the Gardner grading system 
[16], evaluating expansion, inner cell mass, and trophec-
toderm quality.

Blastocyst vitrification and thawing procedures
Fully expanded blastocysts were artificially collapsed 
using a laser prior to cryopreservation. Vitrification was 
performed using Cryotop Safety Kits (KITAZATO), with 
embryos loaded onto cryotops on day 6 post-insemi-
nation and stored in liquid nitrogen. For warming, Blas-
tocyst Warming Kits (KITAZATO) were used once the 
endometrium reached the required thickness for transfer. 
Blastocyst survival was assessed based on re-expansion 
two hours post-warming.

Endometrial Preparation and blastocyst transfer
Endometrial preparation for frozen embryo transfer (FET) 
was conducted using various protocols, including modi-
fied natural cycles, mild stimulation cycles, and hormone 
replacement therapy (HRT) cycles, with or without GnRH 
agonist pretreatment, as detailed below:

Modified natural cycle protocol
Follicular development was monitored via ultrasound 
starting on days 10–12 of the menstrual cycle. Once 
the dominant follicle reached a size of ≥ 18  mm, ovula-
tion was triggered using recombinant human chorionic 

gonadotropin (Ovitrelle, Merck). Luteal support com-
menced after confirming ovulation, with a regimen of 
oral dydrogesterone (Duphaston, Abbott) 20  mg daily 
and vaginal progesterone gel (Crinone, Merck) 90  mg 
daily, facilitating the transition of the endometrium from 
the proliferative to the secretory phase. Blastocyst trans-
fer was performed five days after ovulation.

Mild stimulation cycle protocal
In this protocol, if the dominant follicle mea-
sured < 12  mm by days 10–12, intramuscular human 
menopausal gonadotropin (LeBaode, Livzon) was admin-
istered to promote follicular growth. Ovulation was trig-
gered with recombinant human chorionic gonadotropin 
(Ovitrelle, Merck) once the follicle reached ≥ 18  mm. 
Luteal support was initiated using the same regimen as 
in the modified natural cycle, with blastocyst transfer per-
formed five days post-ovulation.

Hormone replacement therapy (HRT) protocol
HRT was initiated on days 3–5 of the menstrual cycle or 
after withdrawal bleeding, with estradiol valerate (Progy-
nova, Bayer) administered at 2  mg three times daily. To 
reduce the risk of thrombosis, oral aspirin (50–100  mg 
daily) was prescribed, provided no contraindications were 
present. After 12–15 days, ultrasound was used to assess 
endometrial thickness, alongside serum estradiol (E2) 
and progesterone levels. Two options for progesterone 
support were available: (1) intramuscular progesterone 
(60 mg/day) combined with oral dydrogesterone (30 mg/
day), or (2) vaginal progesterone gel (Crinone, Merck) 
(90 mg/day) combined with oral dydrogesterone (30 mg/
day). The choice of regimen was based on patient prefer-
ence. Blastocyst transfer was performed on the sixth day 
after initiating progesterone.

GnRH agonist combined with HRT protocol
This protocol involved downregulation with subcutane-
ous administration of triptorelin acetate (Diphereline, 
Ipsen) at 3.75 mg on days 2–5 of menstruation. Hormonal 
and endometrial parameters were monitored between 
days 28–35. Downregulation was confirmed when E2 lev-
els were < 50 pg/mL, FSH < 5 IU/L, LH < 5 IU/L, and endo-
metrial thickness < 5  mm. Once these criteria were met, 
estradiol valerate was administered, and the remaining 
steps followed the HRT protocol.

Clinical outcomes
The primary outcome measured was live birth, defined as 
the delivery of any viable infant at 28 weeks of gestation 
or later. Twins delivered by one mother were considered a 
single live birth.
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Data Collection and candidate predictors
The original dataset included over 40 variables. Based on 
clinical expert recommendations, 19 variables relevant to 
live birth were selected: Maternal age at FET, Paternal age 
at FET, Maternal BMI, Basal FSH, Basal LH, Infertility dura-
tion, E2 on trigger day, Total gonadotropin dose, Number 
of oocytes retrieved, Endometrial thickness, Blastulation 
time, Blastocyst stage, Inner cell mass, Trophectoderm, 
Fragmentation on day 3, 8 blastomere on day 3, Infertility 
type, Fertilization method, and Endometrial preparation.

Data pre-processing and balancing
The study included 1,168 cycles, comprising 352 live birth 
cycles and 816 non-live birth cycles, with no missing val-
ues. Numerical data were standardized using z-score nor-
malization for both training and validation sets to ensure 
comparability across features. Categorical variables were 
label-encoded for compatibility with machine learning 
models.Class imbalance was identified, with the live birth 
cycles representing approximately 30% of the total data-
set. To address this, the Synthetic Minority Over-sampling 
Technique (SMOTE) was applied specifically to the live 
birth outcome variable in the training set to balance the 
data. The risk of potential oversampling and its implica-
tions, such as overfitting, were considered, and appropri-
ate precautions were taken, as discussed in Alkhawaldeh 
et al. (2023). The balanced dataset was then split into 
training and validation sets at a ratio of 0.75 to 0.25.

The study included 1,168 cycles, comprising 352 live 
birth cycles and 816 non-live birth cycles, with no miss-
ing values. Numerical data were standardized for both 
training and validation sets. Categorical variables were 
label-encoded for compatibility with machine-learning 
models. Given the class imbalance, the Synthetic Minority 
Over-sampling Technique (SMOTE) was used to balance 
the data. The balanced data were divided into training 
and validation sets at a ratio of 0.75 to 0.25.

Feature selection
Feature selection aimed to enhance model predictability, 
interpretability, and performance by reducing dataset 
dimensionality and training time. Four classifiers—ran-
dom forest, extreme gradient boosting (XGBoost), lasso 
regression, and extremely randomized trees (Extra 
Trees)—were applied to identify key predictors for live 
birth rate. The top four variables from each classifier were 
combined into a single feature subset, improving the 
model’s generalization on unknown data and ensuring 
coverage of all critical features.

Machine-learning Approach and evaluation
Various machine-learning models were employed to 
predict live birth rate, including XGBoost, logistic regres-
sion, support vector machine (SVM), random forest, 

multilayer perceptron (MLP), K-nearest neighbors (KNN), 
Extra Trees, light gradient boosting machine (LightGBM), 
gradient boosting, AdaBoost, Bagging, Gaussian Naive 
Bayes (Gaussian NB), Bernoulli Naive Bayes (Bernoulli 
NB), decision tree, quadratic discriminant analysis (QDA), 
ridge classifier, passive aggressive classifier, and CatBoost. 
The two best-performing models were combined into an 
ensemble model called Stacked Generalization (stacking) 
to enhance prediction performance and generalization.

A 10-fold cross-validation method, repeated three 
times, was used to create training and validation sets. 
The dataset was initially divided into 10 subsets. In each 
iteration, one subset served as the validation set while 
the remaining subsets were used for training. This pro-
cess was repeated three times with different dataset 
partitions. Final results were obtained by averaging the 
outcomes from all rounds, ensuring stability and reliabil-
ity.Predictive performance was evaluated using receiver 
operating characteristic (ROC) curves, area under the 
curve (AUC), accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV) 
with 95% confidence intervals (CI).

Statistical analysis
Statistical analysis was performed using Python software 
(version 3.12). Participant characteristics were summa-
rized with means and standard deviations for continuous 
variables, and frequencies and percentages for categori-
cal variables. T-tests were used to compare continuous 
variables, and chi-square tests or Fisher’s exact tests were 
used for categorical variables. A p-value of less than 0.05 
was considered statistically significant.

Results
Baseline characteristics of SVBT cycles stratified by live 
birth rate
This study analyzed a total of 1,168 SVBT cycles involv-
ing AMA patients. Among the patients, 30.1% (352/1,168) 
had a live birth, while 69.9% (816/1,168) did not. Based 
on clinical expert’s opinions, we initially identified 19 
variables for live birth rate. Table  1 presents the base-
line characteristics of 1,168 SVBT cycles, stratified by live 
birth. The key findings are as follows: live birth was asso-
ciated with younger maternal (p = 0.000) and paternal 
age (p = 0.001), a lower gonadotropin dose (p = 0.032), a 
higher number of oocytes retrieved (p = 0.003), greater 
endometrial thickness (p = 0.015), and better blastocyst 
quality (inner cell mass (p = 0.000) and trophectoderm 
(p = 0.000)). Modified natural cycles were more common 
in the live birth group, while HRT was more frequent in 
those without live births (p = 0.030). Blastocyst stage also 
differed significantly between groups (p = 0.043). Other 
variables showed no significant associations with live 
birth outcomes.
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Screening predictive factors
A total of 1,168 SVBT cycles were divided into training 
(0.75) and validation (0.25) sets. We used four statistical 
methods—Random Forest, Lasso Regression, XGBoost, 
and Extra Trees—to identify predictive factors for live 
birth rate. Figure 1 ranks the importance of each variable 
based on its contribution to the model’s performance. 

The top predictive factors included maternal age at 
FET, inner cell mass (ICM), trophectoderm quality, total 
gonadotropin dose, 8 blastomeres on day 3 (indicating 
embryo quality), endometrial preparation, paternal age 
at FET, number of oocytes retrieved, endometrial thick-
ness, infertility duration, and blastocyst stage. These ten 

Table 1 Baseline characteristics of 1168 SVBT cycles stratified by live birth outcome
Variable Live birth (n = 352) No live birth (n = 816) p value
Maternal age at FET 37.40 ± 2.28 38.20 ± 2.73 0.000***

Paternal age at FET 38.51 ± 4.34 39.41 ± 4.29 0.001**

Maternal BMI 22.13 ± 2.78 22.19 ± 2.64 0.729

Basal FSH 6.51 ± 1.50 6.69 ± 1.67 0.068

Basal LH 5.65 ± 2.56 5.60 ± 2.78 0.772

Infertility duration 5.39 ± 3.91 5.26 ± 4.07 0.627

E2 on trigger day 4426.04 ± 2335.40 4154.40 ± 2353.84 0.070

Total gonadotropin dose 2458.60 ± 860.21 2575.60 ± 854.31 0.032*

Number of oocyte retrieved 18.90 ± 7.43 17.39 ± 8.00 0.003**

Endometrial thickness 9.75 ± 1.53 9.49 ± 1.72 0.015*

Blastulation time

Day 5 209 (59.38%) 437 (53.56%) 0.076

Day 6 143 (40.63%) 379 (46.45%)

Blastocyst stage 0.043*

3 64 (18.18%) 211 (25.86%)

4 217 61.65%) 461 (56.50%)

5 65 (18.47%) 131 (16.05%)

6 6 (1.70%) 13 (1.59%)

Inner cell mass 0.000***

A 124 (35.23%) 212 (25.98%)

B 192 (54.55%) 440 (53.92%)

C 36 (10.23%) 164 (20.10%)

Trophectoderm 0.000***

A 134 (38.07%) 211 (25.86%)

B 188 (53.41%) 451 (55.27%)

C 30 (8.52%) 154 (18.87%)

Fragmentation on day 3

≤ 10% 162 (46.02%) 368 (45.10%) 0.634

11-25% 173 (49.15%) 397 (48.65%)

26-50% 17 (4.83%) 51 (6.25%)

8 blastomere on day 3

YES 146 (41.48%) 294 (36.03%) 0.090

NO 206 (58.52%) 522 (63.97%)

Infertility type

PI 94 (26.70%) 216 (26.47%) 0.991

SI 258 (73.30%) 600 (73.53%)

Fertilization method

IVF 279 (79.26%) 158 (80.64%) 0.644

ICSI 73 (20.74%) 658 (19.36%)

Endometrial preparation 0.030*

modified natural cycles 144 (40.91%) 267 (32.72%)

mild stimulation 17 (4.83%) 31 (3.80%)

HRT 121 (34.38%) 338 (41.42%)

GnRHa_HRT 70 (19.89%) 180 (22.06%)
Note: Asterisks indicate levels of statistical significance: * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001
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factors were selected for further validation and model 
evaluation.

Comparison of AUC on the Training Set
We compared the AUC values of different machine learn-
ing models using ROC curves to evaluate model per-
formance on the training set. A higher AUC indicates 
better generalization ability. Figure  2 shows the mean 
AUC values from ten-fold cross-validation for 19 models. 
The top-performing models were the stacking model 

(AUC: 0.853 ± 0.034), Extra Trees (AUC: 0.849 ± 0.035), and 
Random Forest (AUC: 0.832 ± 0.030). Other notable mod-
els included XGBoost (AUC: 0.789 ± 0.045) and Gradient 
Boosting (AUC: 0.801 ± 0.042). The stacking model out-
performed all other models.

Performance comparison of various machine-learning 
models on the Validation Set
Table  2 summarizes the performance of 19 machine-
learning models using 10-fold cross-validation on the 

Fig. 1 Ranking of variable importance for four classifiers on the training set: (A) Random Forest; (B) XGBoost; (C) Lasso Regression; (D) Extra Tree
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validation set, evaluating metrics such as accuracy, sen-
sitivity, specificity, precision, NPV, F1 score, and AUC. The 
Stacking model (AUC: 0.791), Extra Trees (AUC: 0.784), and 
Random Forest (AUC: 0.768) were the top performers. 
Other notable models included CatBoost (AUC: 0.768), 
Gradient Boosting (AUC: 0.732), and XGBoost (AUC: 
0.730). Lower-performing models were Passive Aggres-
sive (AUC: 0.561), Bernoulli NB (AUC: 0.554), and Logistic 
Regression (AUC: 0.583). In summary, the Stacking, Extra 
Trees, and Random Forest models demonstrated the best 
predictive performance.

Ranking of feature importance in Predicting Live Birth Rate
Figure 3 ranks the feature importance for predicting live 
birth rate in AMA patients, using the Mean Decrease 
Accuracy (MDA) metric from the Extra Trees model. The 
most important features were inner cell mass (MDA: 

0.0569), trophectoderm (MDA: 0.0474), number of 
oocytes retrieved, and endometrial thickness (both 
MDA: 0.0466), followed by 8-blastomere on day 3 (MDA: 
0.0436). Other moderately important features included 
basal LH, paternal and maternal age at FET, and total 
gonadotropin dose. Infertility type had the lowest impor-
tance (MDA: 0.0209). The top predictors were inner cell 
mass, trophectoderm, number of oocytes retrieved, 
endometrial thickness, and 8-blastomere on day 3.

Discussion
Recent advances in machine learning for IVF outcomes
In the last five years, machine learning (ML) has revolu-
tionized various aspects of Assisted Reproductive Tech-
nology (ART), including embryo selection, IVF outcome 
prediction, and genetic screening. Deep learning models 
have significantly enhanced the accuracy and consistency 

Fig. 2 Comparision of the AUC performance of 19 machine learning models with 10-fold cross-validation on the training set: (A) XGBoost model; (B) 
Logistic Regression model; (C) SVM model; (D) Random Forest model; (E) MLP model; (F) KNN model; (G) Extra Tree model; (H) LightGBM model; (I) Gradi-
ent Boosting model; (J) AdaBoost model; (K) Bagging model; (L) Gaussian NB model; (M) Bernoulli NB model; (N) Decision Tree model; (O) QDA model; 
(P) Ridge model; (Q) Passive Aggressive model; (R) CatBoost model; (S) Stacking model
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of embryo scoring by analyzing time-lapse imaging and 
morphological data, leading to improved implantation 
success rates. These models integrate multiple factors 
such as patient age, hormone levels, ovarian response, 
and embryo quality, allowing for highly personalized 
pregnancy predictions and enabling clinicians to opti-
mize treatment plans and medication dosages. In 2019, 
Blank et al. utilized random forest models to improve 
blastocyst implantation predictions, achieving enhanced 
accuracy by incorporating patient data [17]. Griesinger et 
al. (2020) applied non-invasive deep learning methods to 
predict embryo ploidy using time-lapse imaging, further 
advancing embryo selection strategies [18]. Similarly, 

Drakeley et al. (2021) developed the ERICA algorithm, 
a deep learning tool that ranks embryos based on their 
genetic health (ploidy status) and likelihood of implanta-
tion, providing a non-invasive alternative to traditional 
biopsy methods [19]. More recent studies have dem-
onstrated the power of deep learning in predicting live 
birth outcomes. Huang et al. (2022) analyzed over 10,000 
embryo samples, achieving an impressive AUC of 0.968 
for live birth predictions using time-lapse data, thereby 
automating the process of embryo evaluation and rank-
ing [20]. Sawada et al. (2021) similarly developed an AI 
system that used the Attention Branch Network to ana-
lyze over 140,000 embryo images, successfully predicting 

Table 2 Performance comparison of various machine-learning models on the Validation Set
Machine 
Learning 
Model

AUC Accuracy Sensitivity Specificity Precision NPV F1

XGBoost 0.730 (0.687–0.774) 0.728 (0.684–0.770) 0.706 (0.644–0.768) 0.753 (0.695–0.819) 0.766 
(0.705–0.826)

0.691 
(0.628–0.753)

0.735 
(0.683–0.782)

Logistic 
Regression

0.583 (0.534–0.630) 0.583 (0.534–0.627) 0.587 (0.517–0.652) 0.579 (0.511–0.648) 0.615 
(0.548–0.682)

0.550 
(0.483–0.618)

0.601 
(0.542–0.654)

SVM 0.664 (0.621–0.710) 0.669 (0.625–0.713) 0.734 (0.678–0.793) 0.595 (0.524–0.659) 0.675 
(0.616–0.733)

0.661 
(0.587–0.729)

0.703 
(0.654–0.752)

Random 
Forest

0.768 (0.726–0.806) 0.765 (0.723–0.806) 0.720 (0.662–0.771) 0.816 (0.755–0.871) 0.818 
(0.761–0.872)

0.718 
(0.659–0.776)

0.766 
(0.715–0.808)

MLP 0.677 (0.628–0.720) 0.679 (0.632–0.723) 0.711 (0.652–0.770) 0.642 (0.571–0.708) 0.695 
(0.631–0.752)

0.659 
(0.587–0.726)

0.703 
(0.651–0.749)

KNN 0.663 (0.615–0.708) 0.669 (0.620–0.713) 0.757 (0.697–0.810) 0.568 (0.497–0.640) 0.668 
(0.608–0.730)

0.671 
(0.602–0.748)

0.710 
(0.658–0.756)

Extra Trees 0.784 (0.742–0.818) 0.782 (0.740–0.821) 0.757 (0.698–0.816) 0.811 (0.755–0.865) 0.821 
(0.764–0.872)

0.744 
(0.689–0.801)

0.788 
(0.743–0.829)

Light GBM 0.726 (0.685–0.765) 0.723 (0.679–0.762) 0.683 (0.623–0.750) 0.768 (0.705–0.827) 0.772 
(0.713–0.830)

0.679 
(0.619–0.737)

0.725 
(0.675–0.771)

Gradient 
Boosting

0.732 (0.688–0.775) 0.730 (0.689–0.777) 0.711 (0.646–0.768) 0.753 (0.695–0.810) 0.767 
(0.708–0.824)

0.694 
(0.629–0.755)

0.738 
(0.694–0.784)

AdaBoost 0.700 (0.652–0.742) 0.701 (0.657–0.748) 0.716 (0.654–0.771) 0.684 (0.620–0.747) 0.722 
(0.660–0.784)

0.677 
(0.609–0.741)

0.719 
(0.667–0.762)

Bagging 0.740 (0.699–0.781) 0.733 (0.689–0.775) 0.638 (0.571–0.702) 0.842 (0.788–0.893) 0.822 
(0.761–0.879)

0.669 
(0.610–0.724)

0.718 
(0.667–0.766)

Gaussian 
NB

0.617 (0.572–0.665) 0.623 (0.574–0.669) 0.697 (0.638–0.756) 0.537 (0.467–0.608) 0.633 
(0.575–0.692)

0.607 
(0.532–0.676)

0.664 
(0.610–0.706)

Bernoulli 
NB

0.554 (0.506–0.602) 0.554 (0.505-0.600) 0.550 (0.481–0.616) 0.558 (0.489–0.625) 0.588 
(0.517–0.656)

0.520 
(0.451–0.587)

0.569 
(0.513–0.624)

Decision 
Tree

0.640 (0.592–0.691) 0.642 (0.598–0.686) 0.665 (0.597–0.724) 0.616 (0.543–0.685) 0.665 
(0.602–0.726)

0.616 
(0.547–0.687)

0.665 
(0.615–0.718)

QDA 0.648 (0.603–0.694) 0.652 (0.608–0.699) 0.706 (0.648–0.763) 0.589 (0.514–0.663) 0.664 
(0.602–0.725)

0.636 
(0.566–0.714)

0.684 
(0.635–0.730)

Ridge 0.588 (0.540–0.634) 0.588 (0.542–0.640) 0.596 (0.534–0.659) 0.579 (0.510–0.644) 0.619 
(0.550–0.684)

0.556 
(0.483–0.624)

0.607 
(0.556–0.661)

Passive 
Aggressive

0.561 (0.520–0.600) 0.542 (0.495–0.591) 0.284 (0.219–0.346) 0.837 (0.781–0.885) 0.667 
(0.573–0.764)

0.505 
(0.452–0.564)

0.399 
(0.333–0.467)

CatBoost 0.768 (0.726–0.808) 0.765 (0.723–0.806) 0.716 (0.657–0.779) 0.821 (0.764–0.869) 0.821 
(0.768–0.872)

0.716 
(0.657–0.776)

0.765 
(0.718–0.810)

Stacking 0.791 (0.752–0.831) 0.789 (0.748–0.826) 0.761 (0.701–0.815) 0.821 (0.761–0.872) 0.830 
(0.776–0.879)

0.750 
(0.687–0.806)

0.794 
(0.751–0.835)

XG Boost: Extreme Gradient Boosting; SVM, Support Vector Machine; MLP: Multilayer Perceptron; KNN: K-Nearest neighbors; Extra Trees: extremely randomized 
trees; SVC: support Vector Classifier; light GBM: light gradient boosting machine; GaussianNB: Gaussian Naive Bayes; Bernoulli NB: Bernoulli Naive Bayes; QDA: 
quadratic discriminant analysis; stacking: stacked generalization
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live birth probabilities based on a confidence score 
threshold [21]. Additionally, Hassan et al. (2020) intro-
duced a machine learning model that combined feature 
selection with several ML techniques, including random 
forests and support vector machines, identifying key IVF-
related factors such as maternal age and embryo trans-
fer day. This model demonstrated a significantly higher 
accuracy in predicting IVF pregnancy success compared 
to traditional methods [12]. These advancements under-
score the transformative role of ML in ART, offering clini-
cians more precise tools for improving IVF success rates, 
although further validation in clinical settings is needed 
to ensure reliability and explainability.

Principal findings
His study successfully identified key factors influencing 
live birth rate following single vitrified-warmed blasto-
cyst transfer (SVBT) in women of advanced maternal age 
(AMA). By employing 19 machine learning algorithms 
and comprehensive data processing methods, signifi-
cant predictive factors were determined, including inner 
cell mass quality, trophectoderm quality, number of 
oocytes retrieved, endometrial thickness, and blastocyst 
derived from 8 blastomeres on day 3. The top three mod-
els, Stacking Classifier, Extra Trees Classifier, and Random 

Forest Classifier, demonstrated superior predictive per-
formance compared to traditional statistical methods, 
achieving higher Area Under the Curve (AUC) values and 
balanced sensitivity and specificity.

Results in the context of what is known
The identified significant predictive factors align with 
existing literature. Inner cell mass quality and trophec-
toderm quality have been consistently highlighted as 
critical components for embryo implantation and devel-
opment [22]. High-quality inner cell mass embryos are 
more likely to implant successfully and develop into 
healthy fetuses, underscoring the importance of inner 
cell mass quality in IVF treatments [9, 23]. Similarly, high-
quality trophectoderm is essential for successful embryo 
implantation and early development. It facilitates attach-
ment to the endometrium and improves pregnancy rates, 
emphasizing the significance of embryo health before 
transfer [23, 24]. Additionally, blastocysts derived from 
8 blastomeres on day 3 are considered well-developed 
and have high implantation potential. This finding is con-
sistent with previous studies on embryo developmental 
potential, indicating the embryo’s health and develop-
mental potential during the early stages, which are vital 
for predicting pregnancy outcomes [25]. The number of 

Fig. 3 Ranking of feature importance using Mean Decrease Accuracy with the extra trees model
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oocytes retrieved is known to reflect ovarian response. 
A higher number of oocytes increases the chances of 
selecting high-quality embryos, thereby enhancing the 
likelihood of pregnancy [26]. This variable is significant as 
it affects both the quantity and quality of embryos avail-
able for transfer [27]. Optimal endometrial thickness is 
necessary for embryo implantation, as both excessively 
thin and thick endometria can lead to implantation fail-
ure or early miscarriage. An optimal thickness (usually 
between 8 and 14  mm) provides a conducive environ-
ment for the embryo to implant and develop, making this 
an important predictive factor [9, 28].

Identifying these significant predictive factors not only 
enhances our understanding of the critical elements for 
SVBT success but also provides valuable insights for clini-
cians to optimize treatment protocols and improve live 
birth rate.

Clinical implications
The findings of this study provide valuable insights 
for clinicians in optimizing IVF treatment protocols for 
advanced maternal age patients. High-quality inner cell 
mass and trophectoderm are crucial for improving the 
success rate of SVBT, indicating that greater attention 
should be paid to embryo quality assessment in clini-
cal practice. Additionally, when selecting blastocysts for 
transfer, the condition of the blastocyst during the cleav-
age stage should be fully considered. Priority should be 
given to blastocysts derived from 8 blastomeres due to 
their better developmental potential. A higher number 
of oocytes retrieved and appropriate endometrial thick-
ness are also important factors for success. By focusing on 
these identified predictive factors, clinicians can improve 
live birth rate following SVBT cycles.

Research implications
The superior performance of machine learning mod-
els over traditional methods suggests that integrating 
advanced analytical techniques into clinical practice can 
enhance predictive accuracy and support more person-
alized patient care. However, these findings need to be 
validated in larger, multi-center studies to ensure their 
confident application in clinical settings.Future research 
should incorporate more variables and utilize larger, 
multi-center datasets to further improve the predictive 
accuracy and generalizability of the models. Further stud-
ies should also explore the application of machine learn-
ing models in other aspects of IVF treatments to enhance 
overall treatment efficacy and patient outcomes. Finally, 
research should focus on the integration of real-time data 
analysis and predictive modeling into clinical workflows 
to provide timely and actionable insights for patient 
management.

Strengths and limitations
The strengths of this study include the use of multiple 
machine learning algorithms and rigorous data process-
ing methods, leading to robust and unbiased predictive 
models. Notably, this study focuses on SVBT outcomes 
in advanced maternal age (AMA) patients, addressing 
a gap in the literature and providing valuable insights 
for optimizing clinical treatment protocols. Our models 
demonstrated high predictive accuracy, with the Stack-
ing Classifier, Extra Trees Classifier, and Random For-
est Classifier achieving AUCs of 0.791, 0.784, and 0.768, 
respectively, highlighting their strong performance and 
feasibility for clinical application.

However, several limitations must be acknowledged. 
First, to address class imbalance, we employed feature 
selection and ensemble learning methods to minimize 
the risks of overfitting and misclassification often associ-
ated with oversampling techniques such as SMOTE. It is 
important to note that synthetic samples may not always 
accurately represent the minority class [29]. Second, while 
the models showed high predictive accuracy, their per-
formance needs further validation in larger, multi-center 
datasets to ensure broader applicability. Third, the analy-
sis focused solely on vitrified-thawed blastocyst transfers, 
excluding fresh transfers, which are crucial when con-
sidering cumulative live birth rates (cLBR). The omission 
of fresh transfers, a significant aspect of ART outcomes, 
should be recognized. Fourth, some patients contrib-
uted multiple cycles, which may introduce bias as certain 
individuals were included more than once. Although the 
study was cycle-focused rather than patient-centered, 
this could impact data independence. Lastly, the study 
did not account for all possible factors affecting SVBT 
outcomes, such as genetic and environmental influences, 
which may limit the comprehensiveness of the models.

Future research should enhance the generalizability of 
the findings by incorporating larger, multi-center datasets 
that represent diverse populations and regions. Addition-
ally, analyzing both vitrified-thawed and fresh blastocyst 
transfers will offer a more comprehensive understanding 
of ART outcomes, including cumulative live birth rates. 
Furthermore, future models should consider a wider 
range of factors, including genetic predispositions, life-
style influences, and environmental factors, to improve 
predictive power and model comprehensiveness.

Conclusions
This study identified key predictive factors for live birth 
rates following single vitrified-warmed blastocyst trans-
fer (SVBT) in women of advanced maternal age (AMA), 
including inner cell mass quality, trophectoderm qual-
ity, number of oocytes retrieved, endometrial thickness, 
and blastocysts from 8-cell stage embryos on day 3. 
The Stacking, Extra Trees, and Random Forest classifiers 
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demonstrated the highest predictive accuracy, outper-
forming traditional models. These findings can aid in 
managing patient expectations and enhance clinical 
decision-making. Future studies should validate these 
results across multi-center cohorts and explore additional 
factors, such as fresh embryo transfers.
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