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Abstract 

Background  Data sciences and artificial intelligence are becoming encouraging tools in assisted reproduction, 
favored by time-lapse technology incubators. Our objective is to analyze, compare and identify the most predictive 
machine learning algorithm developed using a known implantation database of embryos transferred in our egg 
donation program, including morphokinetic and morphological variables, and recognize the most predictive embryo 
parameters in order to enhance IVF treatments clinical outcomes.

Methods  Multicenter retrospective cohort study carried out in 378 egg donor recipients who performed a fresh 
single embryo transfer during 2021. All treatments were performed by Intracytoplasmic Sperm Injection, using fresh 
or frozen oocytes. The embryos were cultured in Geri® time-lapse incubators until transfer on day 5. The embryonic 
morphokinetic events of 378 blastocysts with known implantation and live birth were analyzed. Classical statistical 
analysis (binary logistic regression) and 10 machine learning algorithms were applied including Multi-Layer Percep-
tron, Support Vector Machines, k-Nearest Neighbor, Cart and C0.5 Classification Trees, Random Forest (RF), AdaBoost 
Classification Trees, Stochastic Gradient boost, Bagged CART and eXtrem Gradient Boosting. These algorithms were 
developed and optimized by maximizing the area under the curve.

Results  The Random Forest emerged as the most predictive algorithm for implantation (area under the curve, 
AUC = 0.725, IC 95% [0.6232–0826]). Overall, implantation and miscarriage rates stood at 56.08% and 18.39%, respec-
tively. Overall live birth rate was 41.26%. Significant disparities were observed regarding time to hatching out of the 
zona pellucida (p = 0.039). The Random Forest algorithm demonstrated good predictive capabilities for live birth 
(AUC = 0.689, IC 95% [0.5821–0.7921]), but the AdaBoost classification trees proved to be the most predictive model 
for live birth (AUC = 0.749, IC 95% [0.6522–0.8452]). Other important variables with substantial predictive weight 
for implantation and live birth were duration of visible pronuclei (DESAPPN-APPN), synchronization of cleavage pat-
terns (T8-T5), duration of compaction (TM-TiCOM), duration of compaction until first sign of cavitation (TiCAV-TM) 
and time to early compaction (TiCOM).

Conclusions  This study highlights Random Forest and AdaBoost as the most effective machine learning models 
in our Known Implantation and Live Birth Database from our egg donation program. Notably, time to blastocyst 
hatching out of the zona pellucida emerged as a highly reliable parameter significantly influencing our implantation 
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machine learning predictive models. Processes involving syngamy, genomic imprinting during embryo cleavage, 
and embryo compaction are also influential and could be crucial for implantation and live birth outcomes.

Keywords  Artificial intelligence, Machine learning, Embryo morphokinetic, Hatching blastocyst, Implantation and 
live birth

Introduction
Selecting the best embryo for transfer is one of the most 
important tasks of every embryologist. Since the begin-
ning of the IVF in the 70´s, visual static assessment of 
embryo quality under microscope led to different embryo 
classifications, according to embryo implantation poten-
tial, such as Gardner and Schoolcraft´s [1] which is 
widely used in the IVF laboratories.

Nowadays, embryo selection has changed and the final 
goal of every IVF cycle is the birth of a healthy baby. Data 
sciences and artificial intelligence (AI) are becoming 
encouraging tools in medicine, also in assisted reproduc-
tion, where the amount of data and images generated in 
the IVF laboratories has dramatically increased, favored 
by time-lapse technology incubators currently intro-
duced in almost every IVF clinic. Static morphological 
quality assessment of the blastocysts is now supported by 
morphokinetic development parameters that have dem-
onstrated statistical connection with embryo implanta-
tion and live birth [2–5].

Based on those morphokinetic parameters, either 
manual or automatically annotated, multiple blasto-
cyst selection algorithms have been developed using 
machine learning (ML) or deep learning (DL) AI tech-
nology in the recent years to predict blastocyst implan-
tation [6–9], blastocyst ploidy [10–15] or even live birth 
[16–20]. Convolutional neural networks (CNNs) are 
currently the most popular DL models employed in 
embryo assessment since they have been trained using 
a large amount of data sets of static images of embryos 
and can accurately predict the developmental potential 
of embryos based on morphokinetic parameters and 
image analysis [21].

AI algorithms have the big advantage of continuously 
improving its selection potential as the input data grows, 
being trained as long as we use them. However, when 
comparing the different currently available algorithms 
they result in different conclusions, even when they were 
trained on the same data, highlighting the importance of 
well-designed randomized control trials (RCT) to prove 
the real usefulness of them [22]. Furthermore, different 
models have not reached the same results among differ-
ent laboratories [23] demonstrating that external factors, 
such as laboratory conditions, embryologist expertise 
or other human factors, influence embryo development 
and quality and also clinical outcomes, and must be taken 

into account when proposing the application of a univer-
sal algorithm [24].

Based on this information, we aim to analyze and com-
pare different ML algorithms developed using a known 
implantation and live birth database (KILBD) of embryos 
transferred in our egg donation program, including mor-
phokinetic and morphological variables. Hence, the aim 
of this investigation was to pinpoint the most prognos-
tic algorithm and the most predictive embryo param-
eters delineated through this algorithm, with the aim 
of enhancing the clinical outcomes of our egg donation 
program.

Material and methods
Study population
This is a retrospective multicenter cohort study that 
included 378 egg donor recipients who performed sin-
gle embryo transfer (SET) during 2021 in four Instituto 
Bernabéu clinics in Spain (Instituto Bernabéu Alicante, 
IBA; Instituto Bernabeu Madrid, IBM; Instituto Ber-
nabeu Albacete, IBAB; and Instituto Bernabeu Palma 
de Mallorca, IBPM). All treatments were performed by 
Intracytoplasmic Sperm Injection (ICSI), using fresh or 
frozen oocytes, and fresh embryo transfers on day 5.

Exclusion criteria for the egg recipients were: uterine 
pathology (myomas, polyps, adenomyosis or any uterine 
malformation), recurrent implantation failure (three or 
more embryos transferred without pregnancy), recurrent 
miscarriage (two or more previous miscarriages on the 
first trimester), and body mass index (BMI) > 40. Semen 
samples < 1 million per milliliter (mill/ml) were also 
excluded.

The study conformed to the Declaration of Helsinki 
for Medical Research about human subjects and Span-
ish Data Protection Act (LO3/2018) and was approved 
by the Institutional Review Board on January 2021 (refer-
ence number BR20/2021). All participants provided writ-
ten informed consent to participate in the study.

Oocyte donors’ ovarian stimulation
Conventional antagonist short protocol was used for egg 
donor controlled ovarian stimulation as described previ-
ously by our team [25]. When three or more follicles of 
18  mm diameter were observed, a bolus of GnRH ana-
logues was administered to trigger ovulation in the fol-
lowing 36 to 38 h.
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Endometrial preparation of recipients
Recipients received hormone replacement therapy for 
endometrial preparation through the administration of 
estrogens via transdermal patches or oral tablets. Vagi-
nal progesterone was administered starting from the 
night of oocyte retrieval and ICSI, and continued until 
the 12th week of gestation. This protocol was previ-
ously described by our group [26].

Oocyte manipulation and embryo culture
After egg retrieval, oocytes were incubated in Global® 
Total® for fertilization medium (LifeGlobal, Coopersur-
gical, Ballerup, Denmark) for 4 h, until ICSIs were car-
ried out, or 3 h post oocyte thawing in frozen oocytes 
cycles. In this case, metaphase II (MII) oocytes were 
denudated and vitrified 1  h post egg retrieval, and 
thawed according to Kitazato® protocol [27, 28].

After ICSI, oocytes were cultured in Global® Total® 
medium (LifeGlobal, Coopersurgical, Ballerup, Den-
mark) in Geri® time-lapse incubators (Genea Biomedx, 
Sydney, Australia) until embryo transfer on day 5. The 
culture conditions were 6% O2, 7% CO2, 37ºC.

Oocyte fertilization, embryo development, and mor-
phokinetics were evaluated utilizing computer software 
(Geri Connect®, Genea Biomedx, Sydney, Australia). In 
this process, all morphological characteristics, meas-
urements, and morphokinetic parameters were metic-
ulously annotated by a single, trained embryologist 
stationed at the study coordination center (IBA).

Blastocyst selection and embryo transfer
Day 5 embryo selection for transfer was based on the 
ASEBIR criteria [29]. Selected blastocysts were trans-
ferred to the uterus 118–122 h post ICSI on day 5, using 
ultrasound guidance and the Rocket catheter (Medical, 
Washington, USA). We employed the same transfer 
technique and the same catheter across all four clinics. 
After transfer, the remaining embryos exhibiting good 
quality (types A and B) were cryopreserved using the 
Kitazato® protocol.

Clinical outcomes
The pregnancy test (β-hCG level) was assessed in blood 
samples taken 13  days post-ICSI. Clinical pregnancies 
were subsequently verified via vaginal ultrasound two 
weeks into gestation. At this stage, the ratio of detected 
sacs to the number of embryos transferred was cal-
culated as the implantation rate. Pregnancy progress 
was monitored via ultrasonography, with first-trimes-
ter miscarriages, defined as intrauterine losses before 
reaching 12  weeks’ gestational size on ultrasound, 

meticulously documented. Finally, the rate of live births 
per embryo transferred was also documented.

Study design and variables
This study was divided into two phases:

Part one: consisting of revision of the embryo devel-
opment videos of the transferred embryos and man-
ual annotation of the morphokinetic parameters 
(in hours post ICSI) of each transferred embryo by 
one senior embryologist, designated to avoid inter-
observer bias. This was done at the study coordina-
tion center. Although to mitigate observation biases 
ideally annotations should have been performed by 
two operators, with a third in case of disagreement, 
this was not feasible as the study was conducted by 
a limited number of embryologists, with the expert 
embryologist responsible for morphokinetic annota-
tions at the central site performing this task.

The classic morphokinetic parameters annotated, 
classic development time intervals and morphological 
parameters included in KILBD are described in Fig.  1. 
The diameter of the blastocyst and the inner cell mass 
(ICM) were measured 110  h after ICSI and included as 
morphological variables in the study.

Part two: consisted of statistical analysis and develop-
ment of predictive models (algorithms) for implanta-
tion and live birth through ML, as explained below.

Data pre‑processing
The database was randomly divided into a training set 
(80% of the database) and a test set (20% of the database). 
The datasets were subjected to the following stages of 
pre-processing before the ML algorithms development:

1.	 Imputation of missing values (less than 0.1% of the 
data). In our case, we perform a multivariate imputa-
tion of missing values, using the Multiple Imputation 
by Chained Equations method (mice) algorithm. We 
chose the imputation using the classification trees 
(cart) among the different options of the algorithm.

2.	 Outlier’s analysis. These potential outliers were iden-
tified through the box-plots. These potential outliers 
were reviewed and checked. Finally, it was decided to 
keep them as they were far from the median but real 
values. No treatment of the outliers was necessary.

3.	 Balance database. Imbalanced datasets (the dispar-
ity in cases between the categories of the response 
variable is significant) pose a common challenge for 
machine learning practitioners in binary classifica-
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tion problems, as this situation can distort the model 
learning process by giving priority to the majority 
class and leading to poor performance in the minor-
ity class. To address this problem, one popular tech-
nique is the Synthetic Minority Oversampling Tech-
nique (SMOTE). SMOTE is specifically designed to 
tackle imbalanced datasets by generating synthetic 
samples for the minority class.

4.	 Selection of features. Given the large number of pre-
dictors, it is necessary to select the most relevant 
ones. This process has been carried out using differ-
ent methods:

4a. Elimination of correlated variables (cut-off point 
0.8). To avoid collinearity, the correlation between 
the different predictors was analysed. In those cases 
where the correlation levels were very high, one of 
the two variables was eliminated. We considered as 
high correlation those cases in which the Pearson 
correlation coefficient was greater in absolute value 
than 0.8 and, therefore, very close to the maximum 
value, which is 1.
4b. Elimination of variables with variance near to 
0. Variables with variances equal to or very close to 
zero are variables with very constant values for all 
embryos in our sample and are therefore poor pre-
dictors.
4c. Selection of predictor variables by applying dif-
ferent methods:

–	 Boruta: It is an extension of the random forest 
algorithm that uses permutation tests to assess 
the importance of each feature and determine 
whether it is relevant or not.

–	 Recursive feature elimination: This algorithm 
creates different training and test sets in which 
it will incorporate different sets of predictors 
and evaluates the reduction of the mean square 
error.

–	 Genetic algorithm: This algorithm is inspired by 
the process of biological evolution for the selec-
tion of the best predictors.

After the selection, ten variables were identified as 
the most important, as they appeared to have the high-
est predictive capacity and were used to train the mod-
els. Therefore, the models were selected to maximize the 
AUC value. It is noteworthy that all models rely on iden-
tical predictor variables. The significance of these vari-
ables is contingent upon the target variable (implantation 
or live birth), dictating their importance within the pre-
dictive framework.

Hyperparameter optimization of classification models
A classical statistical analysis method such as binary 
logistic regression and 10 machine learning algorithms 
(classification) were applied including Multi-Layer Per-
ceptron, Support Vector Machines, k-Nearest Neigh-
bor, Cart and C0.5 Classification Trees, Random Forest 

Fig. 1  Variables included in the ML algorithms: Time of appearance of the two pronuclei (APNN) (A), time of pronuclei fading (DESAPPN) (B), time 
to two cells (T2) (C), time to three cells (D) (T3), time to four cells (T4) (E), time to five cells (T5) (F), time to six cells (T6) (G), time to seven cells (T7) 
(H), time to eight cells (T8) (I), time to early compaction (TiCOM) (J), time to compacted morula formation (TM) (K), time to blastulation first sign 
(TiCAV) (L), time to full blastocyst (TFB) (M), time to expanded blastocyst (TEB) (N) and time to hatching out the zona pellucida (TiH) (O)
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(RF), AdaBoost Classification Trees, Stochastic Gradient 
boost, Bagged CART and eXtrem Gradient Boosting.

The hyperparameters were fitted during the train-
ing process. These hyperparameters directly control the 
structure and function of each of the models. By adjust-
ing them during the training process, model performance 
can be modified to achieve the best results.

To ensure independence between the data, the five-
fold cross-validation technique with adjustment of the 
different hyperparameters was applied. During the opti-
mization process, different performance metrics were 
calculated: AUC (area under the ROC curve), sensitivity, 
specificity, positive predictive value and negative predic-
tive value, Accuracy and the Kappa statistic.

The selection of the best model for implantation and 
live birth rates was based primarily on the AUC, a param-
eter that measures the model’s ability to discriminate 
the dependent variable. The final values of AUC and the 
other metrics were obtained from the test set.

Statistical analysis
The descriptive statistical methods used in this study 
depend on the type of the variable analyzed. In the 
case of qualitative variables, the following descrip-
tive statistics will be obtained: frequency and percent-
age. Continuous variables were presented as number 
of cases, mean and SD or median and interquartile 
range (IQR), as applicable. For the univariate statistical 
analysis of qualitative variables, the Chi-square test or 
Fisher’s exact test will be used. The Shapiro–Wilk tests 
were used to assess whether the continuous variables 
were normally distributed. Depending on whether the 
variable has a normal distribution, the comparison 
between means was carried out using Student’s t test 
or Wilcoxon rank sum test.

The software used to carry out the analysis was SPSS 
(20.0.0, Inc., Chicago, IL, USA) and R (4.0.5). Significance 
was defined as p < 0.05.

Results
Egg recipient’s average age was 41.68 ± 3.98 years (ranged 
26 to 50). From the 378 embryos transferred, 203 blasto-
cysts came from vitrified oocytes (53.7%).

The global average number of donated oocytes was 
10.96 ± 1.68, with an 89.02% rate of mature oocytes and 
an 83.82% fertilization rate. The survival rate of frozen-
thawed oocytes was 89.0%. The fertilization rate in fro-
zen oocytes was slightly lower compared to fresh oocytes 
(82.94% vs. 84.74%, respectively), although this difference 
was not statistically significant (p = 0.124). To further 
investigate the potential effect of oocyte vitrification, an 
in-depth analysis is presented in Supplementary Tables 1, 

2, and 3. These tables illustrate the impact of oocyte 
freezing/thawing by comparing embryos derived from 
vitrified/warmed oocytes with those from fresh oocytes. 
No significant differences were found in any of the 
parameters analyzed.

The inclusion of both fresh and frozen/thawed oocytes 
was due to the logistics of our oocyte donation program. 
At our main site (IBA), treatments with fresh oocytes and 
vitrification for distribution to other sites (IBM, IBAB, 
IBPM) are performed. Out of the 378 embryos evalu-
ated, 168 embryos were transferred in IBA, 159 in IBM, 
12 in IBAB, and 39 in IBPM. There were no differences 
in embryonic yield and clinical outcomes among the sites 
(data not shown).

The implantation rate was 56.08% (212 gestational sacs) 
and the miscarriage rate was 18.39%. The overall live 
birth rate was 41.26% (156 babies).

Statistical description of population baseline char-
acteristics was performed and summarized in Table  1 
for implantation and in Table 2 for live birth. The age of 
the recipient was the only significant variable between 
groups, which was significantly lower in the group with 
positive implantation (Table 1), so it was included as con-
founding factor when comparing the rest of the param-
eters in the study.

Average values of continuous and categorized mor-
phokinetic and morphological parameters, and com-
parison between study groups, are detailed in the 
Supplementary tables  4 and 5 for implantation and 
Supplementary tables  6 and 7 for live birth. Statis-
tical differences were only found for implantation 
analysis between time to hatching out of the zona pel-
lucida (p = 0.039) (Supplementary Table  5). No signifi-
cant differences were found regarding morphokinetic 
parameters between embryos that achieve live birth 
(Supplementary tables 6 and 7).

From the blastocysts population that implanted, 
57.07% (121/212) were initiating hatching, while from 
those embryos that did not, only 43.37% (72/166) began 
the hatching process (p 0.093).

After data pre-processing, ten variables were selected 
and used to develop the algorithms: duration of visible 
pronuclei, synchronization of cell division, synchroni-
zation of cleavage patterns, time to early compaction, 
time to blastulation first sign appearance, duration of 
compaction until first sign of cavitation, duration of 
compactation, time to hatching out the zona pellucida, 
duration of blastocyst expansion until hatching and 
ICM diameter.

Eleven algorithms were developed and optimized 
by maximizing the AUC for the KILBD (Figs.  2 and 
3). The eleven models for both implantation and 
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Table 1  Baseline characteristics for oocyte recipients and donors, and comparison between embryos that implanted vs those that not:

1 Mean (SD); %
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test

Parameters Overall
N = 3781

Non-implanted embryos
N = 1661

Implanted embryos
N = 2121

p-value2

Years of seeking pregnancy 3.84 (3.21) 3.70 (3.11) 3.95 (3.29) 0.576

Previous pregnancies 0.72 (0.97) 0.71 (1.01) 0.72 (0.94) 0.490

Previous miscarriages 0.48 (0.70) 0.49 (0.74) 0.47 (0.68) 0.921

Number of previous cycles 1.61 (1.74) 1.57 (1.78) 1.63 (1.71) 0.607

Number of previously transferred embryos 1.87 (2.35) 1.74 (2.26) 1.95 (2.41) 0.440

Recipient age 41.68 (3.98) 42.38 (3.64) 41.17 (4.15) 0.021

Paternal age 42.56 (5.63) 43.20 (5.08) 42.10 (5.96) 0.064

Egg donor age 25.68 (4.17) 25.65 (4.10) 25.71 (4.23) 0.953

Recipient BMI 23.40 (4.14) 23.48 (3.92) 23.34 (4.30) 0.504

Egg donor BMI 22.49 (2.91) 22.16 (2.78) 22.74 (2.98) 0.073

Sterility cause: Low responder 12.9% 9.9% 15.2% 0.062

Sterility cause: advanced maternal age 79.8% 86.3% 74.8%

Sterility cause: unexplained infertility 3.5% 1.9% 4.8%

Sterility cause: early ovarian failure 3.2% 1.9% 4.3%

Smoking recipient 13.0% 14.8% 11.7% 0.279

Smoking egg donor 37.9% 42.1% 34.8% 0.254

Endometrial thickness 8.52 (1.49) 8.53 (1.50) 8.51 (1.48) 0.671

Vitrified oocyte 53.7% 57.9% 50.5% 0.150

Table 2  Baseline characteristics for oocyte recipients and donors, and comparison between embryos that achieved a live birth vs 
those that not

1 Mean (SD); %
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test

Parameters Overall
N = 3781

Non-Live birth embryos
N = 2221

Live birth embryos
N = 1561

p-value2

Years of seeking pregnancy 3.84 (3.21) 3.90 (3.09) 3.76 (3.39) 0.167

Previous pregnancies 0.72 (0.97) 0.71 (0.99) 0.73 (0.94) 0.541

Previous miscarriages 0.48 (0.70) 0.48 (0.69) 0.49 (0.72)  > 0.999

Number of previous cycles 1.61 (1.74) 1.49 (1.67) 1.78 (1.82) 0.091

Number of previously transferred embryos 1.87 (2.35) 1.75 (2.25) 2.03 (2.47) 0.265

Recipient age 41.68 (3.98) 41.64 (4.23) 41.74 (3.63) 0.950

Paternal age 42.56 (5.63) 42.62 (5.78) 42.49 (5.42) 0.946

Egg donor age 25.68 (4.17) 25.59 (4.28) 25.81 (4.01) 0.536

Recipient BMI 23.40 (4.14) 23.47 (4.21) 23.29 (4.06) 0.831

Egg donor BMI 22.49 (2.91) 10.6%) 16.2%) 0.141

Sterility cause: Low responder 12.9% 83.4% 74.7% 0.145

Sterility cause: advanced maternal age 79.8% 62.8% 4.5%

Sterility cause: unexplained infertility 3.5% 3.2% 3.2%

Sterility cause: early ovarian failure 3.2% 10.6% 16.2%

Smoking recipient 13.0% 13.8% 11.9% 0.906

Smoking egg donor 37.9% 36.8% 39.5% 0.681

Endometrial thickness 8.52 (1.49) 8.54 (1.47) 8.48 (1.51) 0.660

Vitrified oocyte 53.7% 54.5% 52.6% 0.704
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Fig. 2  Receiver operating characteristic curves for implantation prediction and its areas under the curve (AUC) corresponding with the eleven ML 
models developed: Models: Generalized Linear Model (GLM), Multi-Layer Perceptron (MLP), Support Vector Machines (SVM), k-Nearest Neighbor 
(KNN), Cart (CART), C0.5 (C0.5), Random Forest (RF), AdaBoost Classification Trees (ADABOOST), Stochastic Gradient boost (GRADBOOOST), Bagged 
CART (BAGGINS) and eXtrem Gradient Boosting (XGB)

Fig. 3  Receiver operating characteristic curves for prediction of live birth and its areas under the curve (AUC) corresponding with the eleven ML 
models developed: Models: Generalized Linear Model (GLM), Multi-Layer Perceptron (MLP), Support Vector Machines (SVM), k-Nearest Neighbor 
(KNN), Cart (CART), C0.5 (C0.5), Random Forest (RF), AdaBoost Classification Trees (ADABOOST), Stochastic Gradient boost (GRADBOOOST), Bagged 
CART (BAGGINS) and eXtrem Gradient Boosting (XGB)
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live birth prediction, and its statistics, are summa-
rized in Tables  3 and 4, respectively. The most predic-
tive algorithms for implantation were: Random Forest 
(AUC = 0.725, IC 95% [0.6232–0826]), K-nearest Neigh-
bors (AUC = 0.720, IC 95% [0.6319–0.8081]) and Sup-
port Vector Machines with Radial Basis Function Kernel 
(AUC = 0.717, IC 95% [0.6139–08197]) as is described 
in Fig.  4. Regarding live birth, AdaBoost Classification 
Trees (AUC = 0.749, IC 95% [0.6522–0.8452]) was the 
most predictive algorithm, followed by eXtreme Gradi-
ent Boosting (AUC = 0691, IC 95% [0.585–0.7978]) and 
Random Forest (AUC = 0.689, IC 95% [0.5821–0.7921]) 
(Fig. 5). The variables with the highest predictive weight 
in RF for implantation were duration of visible pronuclei 
(DESAPPN-APPN), duration of compaction until the 
first sign of cavitation (TiCAV-TM), and time to early 
compaction (TiCOM) (Fig. 4). Conversely, the variables 
with the highest predictive weight in AdaBoost for live 
birth were duration of compaction (TM-TiCOM), time 
to expanded blastocyst (TEB), and duration of blastula-
tion until hatching (TiH-TiCAV) (Fig. 5).

Discussion
The incorporation of artificial intelligence (AI) into embry-
ology represents a promising advancement for enhancing 
assisted reproduction [21]. Despite its current experimen-
tal phase [19, 24], the burgeoning interest is palpable in the 
scientific literature pertaining to IVF laboratories. Multiple 
algorithms have been introduced and rigorously assessed, 
addressing various aspects of the IVF cycle [21, 22, 30–32].

In this research we have developed easy predictive ML 
algorithms for prediction of implantation and live birth 
in egg donation programs, that are ideal as models to 
perform such kinds of studies, as they have consistent 
population and clinical outcomes. In fact, as in our study, 
important selection models have been developed in egg 
donation cycles.

In our KILBD study, the implantation and live birth 
rates of the donation cycles were 56.08% and 41.26%, 
respectively, consistent with previous publications in our 
egg donation program [26, 33].

Baseline characteristics of our patients were simi-
lar between groups with the exception of the age of the 
recipient, which was significant lower in the group with 
positive implantation (Table  1). However, no significant 
differences were found after statistical analysis consid-
ering the age of the recipient as a confounding factor. 
Moreover, attending to the similar donor age in both 
groups, we could consider that this finding has no impact 
in the clinical results and could be an occasional finding 
of our study population.

Given that 53.7% of the embryos analyzed in our study 
originated from vitrified/warmed oocytes, we aimed to 
investigate the potential impact of the vitrification/warm-
ing process on clinical outcomes. As previously men-
tioned in the results section, the logistics of our donation 
program prevented us from including cycles exclusively 
with either fresh or vitrified oocytes. Our examination, as 
detailed in Supplementary Table 1, revealed that patients 
from both vitrified and fresh oocyte groups exhibited 
comparable baseline characteristics. Furthermore, our 
analysis of morphokinetic and morphological variables, 
as well as the calculated time intervals incorporated into 
our KILBD, demonstrated similar values between fresh 
and frozen oocytes (Supplementary Table  2), ultimately 
yielding consistent clinical outcomes (Supplementary 
Table  3). In a recent publication, Montgomery et  al., 
found a significant delay of 2–3 h across all early cleavage 
divisions (2- through to 8-cell) and time to start of com-
paction in the vitrified oocyte group versus fresh oocyte 
controls [34]. However, they did not find differences in 
the time of reaching the blastocyst stage or in the derived 
clinical outcomes [34], in accordance with our results. 
Murria et  al., found that embryo scores provided by AI 
algorithms were lower for embryos originated from vitri-
fied/warmed oocytes than for those that came from fresh 
oocytes [35]. However, the potential impact on clinical 
outcomes remains to be fully assessed pending evalua-
tion with a larger sample size of analysed embryos.

Our findings highlight the significant impact of natural 
hatching on implantation, with 57.01% of implanted blas-
tocysts initiating hatching compared to 43.37% among 
non-hatching embryos. The statistical analysis revealed 
a significant difference between implanted and non-
implanted embryos regarding the timing of hatching out 
of the zona pellucida (TiH, p = 0.039).

The significance of hatching is essential. At the blasto-
cyst stage, the embryo undergoes two crucial processes: 
hatching and implantation. These processes are essen-
tial for initiating post-implantation development and are 
influenced by cleavage-stage development, ultimately 
determining pregnancy outcomes. Any defects in blasto-
cyst hatching and implantation can result in early embryo 
loss and infertility [36]. More than 30% of embryos are 
estimated to be lost during implantation, with approxi-
mately 55% of blastocysts failing to hatch [36]. In fact, 
in cases of implantation failure during in  vitro fertiliza-
tion procedures, the proportion of unhatched embryos 
ranged from 50 to 70% [37].

However, previous studies have not placed signifi-
cant emphasis on hatching observation in ML models. 
Key predictors in algorithms for predicting blastocyst 
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implantation include time to 5 cells, length of the second 
cell cycle, and second-to-third division synchrony [2, 38, 
39]. Additionally, time to morula and blastocyst forma-
tion have shown high predictive value [2, 40]. A review 
has identified the most critical parameters as the length 

of the second cell cycle, time to five cells, and second syn-
chrony [5].

We considered including blastocyst diameter and 
inner cell mass (ICM) size before transfer (at 110 h post-
injection) as potential variables, given their presumed 

Table 3  Implantation predictive models developed, and its statistics, obtained through machine learning

ML Models AUC​ Accuracy Positive predictive 
value

Negative predictive 
value

95% IC

Random Forest 0.725 0.68 0.661 0.705 0.6232–0826

k-Nearest Neighbors 0.720 0.72 0.696 0.750 0.6319–0.8081

Support Vector Machines with Radial 
Basis Function Kernel

0.717 0.66 0.660 0.660 0.6139–08197

C5.0 0.705 0.66 0.633 0.700 0.6024–0.808

AdaBoost Classification Trees 0.683 0.64 0.635 0.646 0.5752–0.7904

Multi-Layer Perceptron 0.658 0.67 0.649 0.698 0.5517–0.7651

Bagged CART​ 0.626 0.58 0.577 0.583 0.5169–0.7347

eXtreme Gradient Boosting 0.620 0.59 0.585 0.596 0.5084–0.7324

CART​ 0.605 0.57 0.564 0.578 0.493–0.7166

Stochastic Gradient Boosting 0.529 0.51 0.509 0.511 0.4135–06441

Generalized Linear Model 0.492 0.51 0.510 0.510 0.3765–0.6067

Table 4  Live birth predictive models developed, and its statistics, obtained through machine learning

ML Models AUC​ Accuracy Positive predictive 
value

Negative predictive 
value

95% IC

AdaBoost Classification Trees 0.749 0.667 0.654 0.682 0.6522–0.8452

eXtreme Gradient Boosting 0.691 0.646 0.630 0.667 0.585–0.7978

Random Forest 0.689 0.646 0.635 0.659 0.5821–0.7921

Bagged CART​ 0.681 0.615 0.612 0.617 0.5756–0.7869

Stochastic Gradient Boosting 0.670 0.635 0.644 0.627 0.5596–0.7807

C5.0 0.637 0.583 0.574 0.595 0.5239–0.7495

CART​ 0.562 0.562 0.562 0.562 0.4558–0.6692

Support Vector Machines with Radial 
Basis Function Kernel

0.556 0.562 0.560 0.565 0.4386–0.6725

Multi-Layer Perceptron 0.540 0.531 0.531 0.532 0.4238–0.6569

Generalized Linear Model 0.506 0.542 0.540 0.543 0.3881–0.624

k-Nearest Neighbors 0.479 0.521 0.519 0.524 0.379–0.5794

Fig. 4  Receiver operating characteristic curve for prediction of implantation and its AUC of the most predictive models: Random Forest (A), 
K-nearest neighbors (B), and Support Vector Machines with Radial Basis Function Kernel (C), and list of most important parameters in the most 
predictive variables of the algorithms developed: Variables included in the models: Time of appearance of the two pronuclei (APPN), time 
of pronuclei fading (DESAPPN), time to two cells (T2), time to three cells (T3), time to four cells (T4), time to five cells (T5), time to six cells (T6), 
time to seven cells (T7), division time to eight cells (T8), time to early compactation (TiCOM), time to compacted morula formation (TM), time 
to blastulation starting (TiCAV), time to full blastocyst (TFB), time to expanded blastocyst (TEB), time to hatching out the zona pellucida (TiH), 
duration of visible pronuclei (DESAPPN-APPN), duration of the second cell cycle (T4-T2), duration of the third cell cycle (T8-T4), synchronization 
of cells division (T4-T3), synchronization of cleavage patterns (T8-T5), duration of compaction until first sign of cavitation (TiCAV-TM), duration 
of compaction (TM-TiCOM), duration of blastulation until hatching (TiH-TiCAV) and duration of blastocyst expansion until hatching (TiH-TFB), 
diameter of the blastocyst (diametroblasto) and the inner cell mass (diametromasa) before the transfer (at 110 h post-injection). Random Forest (A) 
(AUC = 0.725, IC 95% [0.6232-0826]), K-nearest neighbors (B) (AUC = 0.720, IC 95% [0.6319-0.8081]), and Support Vector Machines with Radial Basis 
Function Kernel (C) (AUC = 0.717, IC 95% [0.6139-08197]).

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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relevance. Euploid blastocysts, associated with higher 
implantation rates, tend to expand earlier than aneuploid 
ones [41]. Both diameters were measured twice, and the 
KILBD analysis utilized their mean values. However, 
these parameters did not exhibit strong predictive capac-
ity in the implantation and live birth models developed. 
The blastocyst diameter of implanting and live birth blas-
tocysts averaged 158.03 µm and 157.88 µm, respectively, 
while non-implanting and non-live birth blastocysts 
averaged 154.67 µm and 155.62 µm, respectively (Supple-
mentary tables 3 and 5). Furthermore, ICM size did not 
emerge as an influential variable in any model. In con-
trast, Almagor et al. [42] reported a correlation between 
blastocyst and ICM diameter and clinical outcomes.

Previous studies, such as that by Bori et al. [13], empha-
sized the importance of maximizing relevant information 
to enhance predictive capability. Bori and colleagues pro-
posed novel markers, including pronuclear kinetics, ICM, 
and blastocyst measurements, for inclusion in AI models 
to predict implantation in egg donation cycles.

In our study, after data preprocessing to identify key 
variables, blastocyst diameter was not selected. Surpris-
ingly, subsequent ML models remained highly predictive. 
This contrasts with the notion that "all characteristics 
together were more predictive than individually" [13]. 
However, we agree with Bori et  al. on the potential for 
improved predictive value through the inclusion of 
patient-related parameters. Recently, H. Liu et al. demon-
strated significant advancements in predictive modeling 
for live birth based on blastocyst evaluation and clini-
cal features, achieving an AUC of 0.77 [20]. In our study, 
utilizing exclusively kinetic and morphological embryo 
parameters, our AdaBoost ML model achieved an AUC 
of 0.749 for live birth prediction, indicating promising 
performance. This raises the question of integrating addi-
tional clinical parameters to potentially surpass an AUC 
of 0.8, a benchmark that has yet to be reached by any 
model.

Another compelling aspect to explore would be eval-
uating the predictive performance of these ML models 

for implantation and live birth outcomes, and juxta-
posing them with the decision-making proficiency of 
expert embryologists in embryo selection. In this con-
text, Fordham and colleagues found that the AUC for 
the deep neural network (DNN) in predicting embryo 
implantation was higher compared to that achieved 
by embryologists overall (0.70 for DNN vs 0.61 for 
embryologists) [43].

Some authors suggest that integrating demographic 
parameters, as proposed by Petersen et al. [39], may pose 
data acquisition challenges. Conversely, Cai et  al. [44] 
argue that demographic characteristics are inherently 
implicit within embryo morphokinetics. Furthermore, 
d´Estaing et  al. [45] caution that excessive parameter 
inclusion during algorithm construction could under-
mine predictive accuracy.

Kovacic et al. [46] emphasized that various confound-
ing factors, including laboratory conditions and manual 
parameter annotation, may undermine the reliability of 
embryo selection algorithms. In fact, one of the limita-
tions of our study is the susceptibility to biases due to 
the manual annotation of morphokinetic parameters. 
Although it was conducted by a single trained embry-
ologist at the study coordination center, ideally, annota-
tions should have been performed by two operators, with 
a third in case of disagreement. While some algorithms 
advocate for manual annotation, its subjectivity could be 
mitigated through automation. However, current auto-
mated methods face challenges in recognizing direct divi-
sions, cell fusions, or abnormal cell nucleus division [22]. 
Nonetheless, recent publications have demonstrated the 
efficacy and reliability of automated annotation [47–49].

Another limitation of our study is its retrospective 
nature. Ideally, algorithms require external validation 
to assess its robustness and accuracy in different condi-
tions from those where it was developed [31]. For that 
purpose, setting interfaces that integrate the algorithms, 
facilitating its use to the embryologists would be highly 
recommendable [30]. Unfortunately, despite our ongoing 
work in this area, we currently lack external validation 

(See figure on next page.)
Fig. 5  Receiver operating characteristic curve for live birth prediction and its AUC of the most predictive models: AdaBoost Classification Trees 
(A), eXtreme Gradient Boosting (B) and Random forest (C), and list of most important parameters in the most predictive. Variables included 
in the models: Time of appearance of the two pronuclei (APPN), time of pronuclei fading (DESAPPN), time to two cells (T2), time to three cells (T3), 
time to four cells (T4), time to five cells (T5), time to six cells (T6), time to seven cells (T7), division time to eight cells (T8), time to early compaction 
(TiCOM), time to compacted morula formation (TM), time to blastulation starting (TiCAV), time to full blastocyst (TFB), time to expanded 
blastocyst (TEB), time to hatching out the zona pellucida (TiH), duration of visible pronuclei (DESAPPN-APPN), duration of the second cell cycle 
(T4-T2), duration of the third cell cycle (T8-T4), synchronization of cells division (T4-T3), synchronization of cleavage patterns (T8-T5), duration 
of compaction until first sign of cavitation (TiCAV-TM), duration of compaction (TM-TiCOM), duration of blastulation until hatching (TiH-TiCAV) 
and duration of blastocyst expansion until hatching (TiH-TFB), diameter of the blastocyst (diametroblasto) and the inner cell mass (diametromasa) 
before the transfer (at 110 h post-injection). AdaBoost Classification Trees (A) (AUC = 0.749, IC 95% [0.6522-0.8452]), eXtreme Gradient Boosting (B) 
(AUC = 0.691, IC 95% [0.585-0.7978]) and Random forest (C) (AUC = 0.689, IC 95% [0.5821-0.7921])
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Fig. 5  (See legend on previous page.)
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data that would be crucial for generalizing the findings. 
The execution of a prospective study is also pending. 
However, it is important to consider the significance of 
the hatching related variables, which we believe should 
be incorporated into other algorithms to enhance their 
predictions.

On the contrary, a key advantage in our study lies in 
the homogeneity of the egg recipient population and 
the multicentric approach, which was mitigated by uni-
form laboratory protocols and procedures, resulting in 
consistent clinical outcomes across centers. Moreover, 
the exclusion of low-quality seminal samples was also 
considered to avoid potential biases they could exert on 
embryo quality/kinetics.

In our study, we have developed ML algorithms based 
on morphological and morphokinetic features, but we 
have made a previous variable selection, with the purpose 
of getting better predictive results [45]. Four of the eleven 
implantation ML models had an AUC > 0.70 (Table  3). 
In general, the kinetic variables related to the blastocyst 
expansion and hatching processes were the most impor-
tant variables associated with implantation and also with 
live birth for AdaBoost algorithm. This led us to regard 
the observation of the hatching process prior to transfer 
as a crucial factor in predicting implantation potential, as 
previously discussed. However, ML models for live birth 
had a different behavior with less predictive power as 
shown in Table 4. This could be due to the contribution 
of unknown maternal clinical features to live birth pre-
diction and endometrium status-related features, such 
as endometrium preparation, thickness and pattern, that 
are also critical factors impacting live birth outcomes 
[20]. It is important to mention that other important 
variables with high predictive weight for implantation 
and live birth were those related to syngamy (duration 
of visible pronuclei, DESAPPN-APPN), embryo cleavage 
during genomic imprinting (synchronization of cleavage 
patterns, T8-T5), as well as embryo compaction (dura-
tion of compaction, TM-TiCOM; duration of compac-
tion until first sign of cavitation, TiCAV-TM; and time 
to early compaction, TiCOM) (Figs.  4 and 5). These 
processes may significantly contribute to achieving suc-
cessful implantation and live birth. Furthermore, RF has 
consistently demonstrated superior performance in both 
implantation and live birth rates. This ML algorithm has 
been used by other authors demonstrating its high per-
formance [50] even to predict the first trimester miscar-
riage [51].

However, available scientific evidence that supports the 
routinely use of these techniques for selecting the best 
embryo that led to a live birth, is still not enough. In fact, 
when comparing different algorithms currently avail-
able, they result in different conclusions, even when they 

were trained on the same data, underlining the essential 
importance of a well-designed mathematical and compu-
tational approach [6, 22]. Furthermore, AI models used 
for the blastocyst selection need expert embryologist 
supervision to validate the results before performing the 
embryo transfer and even some authors state that every 
lab must create its own selection algorithm [52].

Conclusions
To summarize, this is an important embryo sample 
study, with highly predictive ML algorithms developed 
(AUC 0.725 for implantation and 0.749 for live birth) 
and 10 well selected predictive variables. Time to blasto-
cyst hatching out of the zona pellucida appears to have 
a significant impact in our implantation ML predictive 
models.

RF was the best ML model for implantation and Ada-
boost for live birth. Processes related to syngamy, embryo 
cleavage during genomic imprinting, as well as embryo 
compaction also can play a relevant role in achieving 
implantation and live birth. Finally, oocyte vitrification/
warming appears to have no impact on clinical outcomes.

It is undeniable, despite numerous variables influ-
encing IVF outcome (intrinsic and extrinsic to embryo 
development), that AI approaches may improve the 
prioritization of the most viable embryo favoring sin-
gle embryo transfer. Predictive models and automatiza-
tion of the IVF lab is the near future, and it will allow 
the embryologist to accomplish new tasks in the daily 
clinic, delegating routine technique work to the AI 
machines.
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