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Abstract
Background Obesity is a global health issue with detrimental effects on various human organs, including the 
reproductive system. Observational human data and several lines of animal experimental data suggest that maternal 
obesity impairs ovarian function and early embryo development, but the precise pathogenesis remains unclear.

Methods We established a high-fat diet (HFD)-induced obese female mouse model to assess systemic metabolism, 
ovarian morphology, and oocyte function in mice. For the first time, this study employed single-cell RNA sequencing 
to explore the altered transcriptomic landscape of preimplantation embryos at different stages in HFD-induced obese 
mice. Differential gene expression analysis, enrichment analysis and protein-protein interactions network analysis 
were performed.

Results HFD-induced obese female mice exhibited impaired glucolipid metabolism and insulin resistance. The 
ovaries of HFD mice had a reduced total follicle number, an increased proportion of atretic follicles, and irregular 
granulosa cell arrangement. Furthermore, the maturation rate of embryonic development by in vitro fertilization 
of oocytes was significantly decreased in HFD mice. Additionally, the transcriptional landscapes of preimplantation 
embryos at different stages in mice induced by different diets were significantly distinguished. The maternal-
to-zygotic transition was also affected by the failure to remove maternal RNAs and to turn off zygotic genome 
expression.

Conclusions HFD-induced obesity impaired ovarian morphology and oocyte function in female mice and further led 
to alterations in the transcriptional landscape of preimplantation embryos at different stages of HFD mice.
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Introduction
Obesity is one of the causes of female infertility, the inci-
dence of which is increasing worldwide [1]. Reproductive 
dysfunction in obese women primarily manifest as infer-
tility and menstrual disorders, which may be associated 
with metabolic disorders such as polycystic ovary syn-
drome (PCOS), hyperlipidemia, insulin resistance, and 
hyperandrogenemia [2].

Female obesity is evidently associated with multiple 
adverse pregnancy outcomes and may lead to impaired 
fertility. It has been reported that obesity increases the 
risk of implantation failure and recurrent pregnancy 
loss [3]. In addition, an increase in atretic follicles and 
depletion of primordial follicles were observed in obese 
female rats [4]. One study showed that obese women 
undergoing in vitro fertilization had a 45% lower fer-
tilization rate than normal weight women [5]. A meta-
analysis by Sermondade et al. suggested that there is a 
reduced probability of live births in obese women follow-
ing in vitro fertilization [6]. In contrast, a meta-analysis 
by Jungheim et al. showed that there was no difference 
in the chances of pregnancy after in vitro fertilization 
between obese donor oocyte recipients and those in the 
normal BMI range, suggesting that oocyte abnormalities 
may play a more dominant role in adverse pregnancies in 
obese women [7]. Therefore, investigating the underlying 
pathological mechanisms impairing oocyte and embryo 
developmental in obese women is crucial.

Early embryonic status serves as a critical index for pre-
dicting embryonic developmental potential and affect-
ing embryonic implantation outcomes [8]. The oocyte, 
a large germ cell, plays a pivotal role in early embryonic 
development and is directly affected by surrounding 
granulosa cells, which provide the oocyte with essential 
hormones and nutrients to maintain its normal activity 
[9]. While previous studies have focused on the effects of 
obesity on embryonic reprogramming during pregnancy 
[10], its impact on the transcriptional landscape of pre-
implantation embryos remain poorly understood.

Mouse embryonic development closely mirrors that of 
humans, making it a favorable model to investigate pre-
implantation embryonic development in human beings 
[11–15]. In this study, we investigated the effects of obe-
sity on follicular and early embryonic development using 
a high-fat diet (HFD)-induced obese murine model. 
Additionally, we employed single-cell RNA sequencing 
(scRNA-seq) to explore, for the first time, the altered 
transcriptomic landscape of preimplantation embryos 
at different developmental stages in HFD-induced 
obese mice. Our study primarily focuses on the effect of 
maternal obesity but normal paternal weight on preim-
plantation embryo development. Overall, these findings 
advance understanding of the impact of HFD-induced 
maternal obesity on ovarian and preimplantation 

embryonic development, laying the foundation for a 
more in-depth evaluation of its pathological mechanisms.

Materials and methods
Animals, diet, and experimental design
All procedures in this study were approved by the Ethical 
Committee and were conducted in accordance with rele-
vant guidelines and regulations. Mice were maintained in 
specific pathogen-free conditions for 16 weeks, maintain-
ing a 12-hour light/dark cycle, constant temperature, and 
controlled humidity. Three-week-old female C57BL/6 
mice were randomly assigned to two groups: a normal 
diet (ND) group (n = 16) and an HFD group (n = 24). ND 
feed (10% fat Kcal %) and HFD (60% fat Kcal %) feed were 
purchased from Jiangsu Medicience Biomedical Co. All 
mice were housed individually, and feed was available ad 
libitum.

Collection of mouse oocytes and preimplantation embryos
Preimplantation embryos were collected from 19-week-
old C57BL/6 female mice after mating with normal-diet 
male mice. To induce ovulation, female mice were intra-
peritoneally injected with 10 IU of pregnant mare serum 
gonadotropin (PMSG) (Ningbo Sansheng Pharmaceuti-
cal Corporation, Zhejiang, China), followed by 10 IU of 
human chorionic gonadotropin (hCG) (Ningbo Sansh-
eng Pharmaceutical Corporation, Zhejiang, China) 48  h 
after PMSG priming. MII oocytes and embryos at each 
stage of preimplantation development were collected at 
defined time points after hCG administration: 14 h (MII 
oocyte), 46–48  h (late 2-cell), 68–70  h (8-cell), 88–90  h 
(early blastocyst), and 108–116 h (late blastocyst).

In vitro fertilization (IVF) of oocytes
For oocytes obtained as described in Section Collection 
of mouse oocytes and preimplantation embryos, cumu-
lus cells were removed by digestion with hyaluronidase. 
Sperm obtained from the epididymis of normal-diet male 
mice were capacitated in HTF medium. The capacitated 
sperm were then added to the HTF medium contain-
ing cumulus-oocyte complexes for 4–6 h. Subsequently, 
sperm and embryos were cultured in fresh KSOM 
medium (Millipore) at 37  °C in a 5% CO2 atmosphere. 
Two-cell, four-cell, eight-cell, morula, and blastocyst 
stage embryos were collected after 22–26, 48–50, 60–65, 
70–75, and 96–100 h of culture, respectively.

scRNA-seq
scRNA-seq with Smart-seq2 was conducted on 16 pre-
implantation embryos samples fertilized in vivo (com-
prising five two-cell, five eight-cell, and six blastocysts) 
obtained as detailed in Section Collection of mouse 
oocytes and preimplantation embryos at different devel-
opmental stages by Tiangen Biochemical Technology 
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(Beijing) Co. Full-length cDNA and sequencing libraries 
were prepared following the Smart-Seq2 method. Briefly, 
single cells were lysed in a buffer containing free dNTPs 
and oligo (dT)-tailed oligonucleotides with a universal 5′ 
anchor sequence. Reverse transcription was performed 
by adding a few untemplated C-nucleotides to the 3′ 
end of the cDNA. A template switching oligo carrying 
two riboguanosines and an LNA-modified guanosine as 
the last base at the 3′ end hybridized to the untemplated 
C-nucleotide end. cDNA was amplified using KAPA HiFi 
DNA Polymerase in a limited number of cycles after first-
strand synthesis. Sequencing libraries were then rapidly 
and efficiently constructed from the amplified cDNA 
using Tn5.

Serum triglycerides (TG) and total cholesterol (TC) tests
Prior to the experiment, mice in the ND and HFD groups 
were fasted overnight. Blood was collected from the 
orbital venous sinus of the mice the following morn-
ing (8:00–10:00 am) and placed into 1.5-mL EP tubes. 
The blood samples were allowed to stand at room tem-
perature (RT) for 30  min, followed by centrifugation at 
1800 g for 10 min and then at 1300 g for 2 min to collect 
the supernatant. Serum TG and TC levels were analyzed 
using the AU480 fully automated biochemical analyzer 
(Beckman Coulter, USA). Any remaining serum was 
stored at − 80 °C to avoid repeated freeze-thaw cycles.

Serum insulin assay
Serum was separated after blood collection using the 
same method described above, following the manufac-
turer’s instructions (ALPCO, USA). Readings were taken 
at an absorbance of 450  nm using a microplate reader, 
and values were calculated based on the standard curve.

Mouse glucose tolerance test (GTT)
Before the experiment, mice in the ND and HFD groups 
were fasted overnight. A 50% glucose injection solution 
was diluted to a 20% concentration with sterile saline and 
used for intraperitoneal injection at a volume of V = body 
weight (g)/100 (mL) for each mouse. Blood samples 
were taken from the tail vein at 0, 15, 60, and 120  min 
post-injection, discarding the first drop and measur-
ing the second drop using a blood glucose (BG) ana-
lyzer. A GTT curve was plotted, and the area under the 
curve (AUC) was calculated using the following formula: 
AUC = (BG0min + BG30min) × 30/2 + (BG30min + BG60min) × 
30/2+(BG60min + BG90min) × 30/2+(BG90min + BG120min) × 
30/2.

Follicle count
Ovarian was collected, fixed in 4% paraformaldehyde for 
24 h, then embedded in paraffin, followed by serially sec-
tioned at a thickness of 5 μm. Ovarian tissue was stained 

with H&E and counted every five sections (a total of 8–12 
sections per ovary). The histological morphology of the 
ovaries was observed under the microscope. Follicles 
include primordial follicles, primary follicles, secondary 
follicles, antral follicles and atretic follicles. Atretic fol-
licles were characterized by consolidation of granulosa 
cells, disintegration of cumulus cells, abnormal division 
of oocytes and thickening and vitrification of the zona 
pellucida.

Transmission electron microscopy (TEM)
Ovary samples were obtained within 3 min after the mice 
were sacrificed, after which the blood clots were removed 
and the samples were placed in an electron microscope 
fixative. After fixation at RT for 2  h, the samples were 
stored at 4  °C and subsequently imaged by transmission 
electron microscopy (HITACHI, Japan).

Statistical analysis
GraphPad Prism was employed for statistical analysis, 
and data were presented as mean ± standard deviation 
(SD). When the data were normally distributed, dif-
ferences between the two groups were analyzed using 
Student’s t-test. One-way analysis of variance and Stu-
dent-Newman-Keuls multiple comparison tests were 
applied to analyze differences among three or more 
groups. P-value < 0.05 was considered statistically 
significant.

Results
Effects of HFD-induced obesity on systemic metabolism, 
ovarian morphology, and IVF embryo development
Upon exposure to a HFD for 16 weeks, adult female 
mice exhibited a pronounced increase in body weight, 
as evidenced by the obese phenotype (Fig.  1A) and the 
weight gain curve (Fig. 1B). Serum biochemical analysis 
of 19-week-old mice following an 8-hour fast revealed 
significant increases in TG (Fig.  1C), TC (Fig.  1D), and 
insulin (Fig.  1E) levels. Glucose tolerance was assessed 
after an 8-hour fast, with results indicating a signifi-
cantly higher area under the glucose tolerance curve in 
the HFD group than in the ND group (Fig.  1F and G). 
These results suggested impaired glucolipid metabolism 
and insulin resistance in female HFD mice. HE staining 
was used to observe ovarian morphology (Supplemen-
tary Fig. 1A). The results showed that the number of fol-
licles in the ovaries of HFD mice was decreased and the 
proportion of atretic follicles was obviously increased 
compared with the ND mice (Supplementary Fig. 1B and 
C). Transmission electron microscopy further elucidated 
morphological differences between ovarian follicles of 
the two dietary groups. Follicles in the ND group exhib-
ited an oval configuration with granulosa cells (GCs) that 
were uniformly arranged and densely packed, exhibiting 
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Fig. 1 Effects of HFD-induced obesity on metabolism, ovarian morphology, and IVF embryo development were explored. (A) Phenotypes of mice in each 
group. (B) Body weight growth curves of mice in each group treated with ND (n = 16) or HFD (n = 24) for 16 weeks. Levels of serum triglycerides (C), total 
cholesterol (D), and insulin (E) in different groups of mice after 8 h of fasting (n = 3). Change in glucose tolerance curves (F) and area (G) under the curve 
in each group of mice after 8 h of fasting (n = 4). (H) Representative transmission electron microscopy images of mice in the ND and HFD groups (n = 3). 
Scale bar: 5 μm. Morphology (I) of early embryo development in vitro and proportion of embryos at different stages (J and K) of in vitro culture in ND and 
HFD mice (n = 3). Scale bar: 50 μm. Error bars indicate mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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distinct cell boundaries (Fig.  1H). Conversely, follicles 
in the HFD group presented with irregular contours, 
with GCs arranged haphazardly, expanded intercellular 
spaces, and indistinct cell boundaries (Fig. 1H). Addition-
ally, GCs in the HFD group exhibited vacuolated mito-
chondria. We further explored the effect of HFD on the 
developmental maturation rate of IVF embryos in mice. 
The results showed a markedly lower blastocyst rate in 
the HFD group (Fig. 1I-K). These comprehensive findings 
collectively highlight the detrimental impact of a HFD on 
the functional integrity of the mouse ovary and systemic 
metabolism, suggesting a causal relationship between 
HFD consumption and ovarian dysfunction.

Single-cell transcriptome analysis of preimplantation 
embryos from HFD-induced obese mice
To better understand the effects of HFD-induced obe-
sity on preimplantation embryo development, we con-
ducted genome-wide mRNA expression analysis of single 
embryos from the 2-cell stage to the blastocyst stage in 
the HFD and matched ND groups. A total of 16 preim-
plantation embryo samples ranging from the 2-cell stage 
to the blastocyst stage were harvested (Fig. 2A). Principal 
component analysis (PCA) results demonstrated better 
separation of transcription profiles of cells from different 
preimplantation stages (Fig. 2B). Differentially expressed 
genes (DEGs) were identified based on thresholds of 
P-value < 0.05 and absolute fold change > 2. The DEG 
heatmap revealed separate clustering of gene expression 
patterns after unsupervised clustering (Fig. 2C), suggest-
ing significant differences in embryonic transcriptional 
landscapes at different preimplantation stages.

Effects of HFD-induced obesity on the transcriptional 
landscape of the 2-cell stage
Next, we analyzed the impact of HFD-induced obesity 
on the transcriptional landscapes of preimplantation 
embryos at different stages. Further analysis of PCA 
and heatmap of the 2-cell stage revealed notable gene 
expression differences between the ND and HFD groups 
(Fig. 3A and D). A total of 258 DEGs were identified in 
the HFD group, comprising 131 up- and 127 down-
regulated genes, based on thresholds of P-value < 0.05 
and absolute fold change > 2 (Fig. 3B). These DEGs were 
depicted in the volcano plot (Fig.  3C). We performed a 
functional enrichment analysis of all DEGs using Gene 
Ontology biological process (GO-BP), Gene Ontol-
ogy cellular component (GO-CC), and Gene Ontology 
molecular function (GO-MF). GO-BP analysis revealed 
that upregulated DEGs were significantly enriched in 
apoptosis, glycolytic, and cell cycle processes (Fig.  3E), 
whereas downregulated genes were associated with 
cytoplasmic translation, ribosome biogenesis, and mito-
chondrial gene expression (Fig. 3G). Regarding GO-CC, 
upregulated genes in the HFD group were primarily 
found in exocytic vesicles and the perinuclear region of 
the cytoplasm (Fig.  3E), whereas downregulated genes 
were predominantly localized in ribosomes and RNA 
polymerase complexes (Fig. 3G). GO-MF analysis showed 
that these upregulated genes were mainly involved in ion 
channel regulator activity and RNA methyltransferase 
activity (Fig. 3E), whereas key downregulated genes were 
associated with structural constituents of ribosomes and 
transcription factor binding (Fig. 3G).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis indicated that upregulated genes in the 

Fig. 2 Single-cell sequencing (scRNA-seq) was used to detect different stages of preimplantation embryos in HFD-induced obese mice. (A) Number of 
preimplantation embryo samples at different stages used for scRNA-seq. (B) Two-dimensional PCA representation. (C) Heatmap showing hierarchical 
clustering of highly viable genes
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Fig. 3 DEGs of 2-cell stage preimplantation embryos were analyzed. PCA chart (A), pie plot (B), and volcano plot (C) showing 131 up- and 127 downregu-
lated differentially expressed genes (DEGs) (P < 0.05 and absolute fold change > 2) in 2-cell stage preimplantation embryos from the ND (n = 2) and HFD 
groups (n = 3). (D) Heatmap showing hierarchical clustering of highly viable genes. GO analysis for the up- (E) and downregulated (G) DEGs in 2-cell stage 
preimplantation embryos. Major KEGG analysis for the up- (F) and downregulated (H) DEGs in 2-cell stage preimplantation embryos
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HFD group were mainly involved in vitamin absorption 
and aldosterone secretion (Fig.  3F), whereas downregu-
lated genes were enriched in ribosomal and RNA poly-
merase and cytosolic DNA-sensing pathways (Fig.  3H). 
These findings collectively suggest metabolic disor-
ders and abnormal gene transcription in 2-cell embryos 
exposed to HFD.

Effects of HFD-induced obesity on the transcriptional 
landscape of the 8-cell stage
We next focused on the effects of HFD-induced obe-
sity on the transcriptional landscapes of 8-cell stages. 
PCA and heatmap analysis revealed significant differ-
ences in gene expression between the ND and HFD 
groups (Fig. 4A and D). A total of 358 DEGs were iden-
tified in the HFD group, comprising 58 upregulated 
and 300 downregulated genes, based on thresholds of 
P-value < 0.05 and absolute fold change > 2 (Fig.  4B). 
These DEGs were visualized in the volcano plot (Fig. 4C). 
GO-BP analysis indicated that upregulated DEGs were 
enriched in regulating inflammatory responses and pro-
tein catabolic processes (Fig. 4F), whereas downregulated 
genes were associated with fatty acid metabolism, embry-
onic organ development, and cell proliferation (Fig. 4G). 
Regarding GO-CC analysis, upregulated genes in the 
HFD group were predominantly found in coated vesicle 
(Fig. 4F), whereas downregulated genes were localized to 
the cell division site, nuclear matrix, and mitochondrial 
outer membrane (Fig.  4G). GO-MF analysis suggested 
involvement of upregulated genes in molecular function 
inhibitor activity and nuclear receptor binding (Fig. 4F), 
whereas key downregulated genes were associated with 
DNA-binding transcription factor binding and cell adhe-
sion (Fig. 4G).

KEGG pathway analysis revealed that upregulated 
genes were mainly involved in autophagy and mRNA 
surveillance pathways (Fig.  4E), whereas downregulated 
genes were enriched in fatty acid metabolism, glycoly-
sis, and the PI3K-Akt signaling pathway (Fig. 4H). These 
findings indicate potential poor embryonic development 
and metabolic disorders in 8-cell embryos exposed to 
HFD.

Effects of HFD-induced obesity on the transcriptional 
landscape of the blastocyst stage
Our next focus was on the impact of HFD-induced obe-
sity on the transcriptional landscapes of blastocyst stages. 
Significant differences in gene expression were observed 
between the ND and HFD groups, as evidenced by PCA 
and heatmap analysis of the blastocyst stage (Fig.  5A 
and D). A total of 588 DEGs were identified in the HFD 
group, comprising 32 up- and 556 downregulated genes, 
based on thresholds of P-value < 0.05 and absolute fold 
change > 2 (Fig.  5B). Visualization of these DEGs was 

provided through the volcano plot (Fig.  5C). GO-BP 
analysis indicated that upregulated DEGs were associated 
with the regulation of inflammatory responses, organic 
acid biosynthesis, and brain development (Fig.  5E), 
whereas downregulated genes were enriched in autoph-
agy, glycolysis, cell proliferation, and non-coding RNA 
processing (Fig. 5G). Regarding GO-CC analysis, upregu-
lated genes in the HFD group were mainly found in gluta-
matergic synapse (Fig. 5E), whereas downregulated genes 
were predominantly localized in autophagosomes and 
the mitochondrial outer membrane (Fig.  5G). GO-MF 
analysis suggested the involvement of upregulated 
genes in oxidoreductase activity and chromatin binding 
(Fig. 5E), whereas key downregulated genes were associ-
ated with structural constituents of transcription factor 
binding and miRNA binding (Fig. 5G).

KEGG pathway analysis revealed that upregulated 
genes were primarily involved in carbon metabolism, 
whereas downregulated genes were enriched in autoph-
agy, ferroptosis, and thyroid hormone signaling pathways 
(Fig. 5F). These results indicated that blastocyst embryos 
in the HFD group may have disturbed cellular function.

Interference of HFD-induced obesity for 
maternal-to-zygotic transition in embryos
Zygote genome activation (ZGA), the initiation of gene 
expression following fertilization, is a crucial process in 
preimplantation embryo development [16]. The ZGA 
wave in mice occurs predominantly after the 2-cell stage 
and before the 8-cell stage. Therefore, we analyzed DEGs 
at the 8-cell versus the 2-cell stage in the HFD and ND 
groups, respectively, which revealed differences in ZGA. 
Among 1126 DEGs, 460 (40.9%) were not activated in the 
HFD group (Fig.  6A), whereas 1065 DEGs were abnor-
mally upregulated, suggesting that the ZGA process 
may be disturbed after HFD-induced obesity (Fig.  6A). 
Functional enrichment analysis of the 460 DEGs not 
activated in the HFD group using GO analysis revealed 
associations with cell-cell adhesion, cell activation, and 
glutathione metabolic processes (Fig. 6B). KEGG analysis 
indicated that the DEGs were mainly enriched in adhe-
rens junctions, oxidative phosphorylation, and glutathi-
one metabolism (Fig.  6C). Based on the information in 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) database and Molecular Complex Detection 
(MCODE) plug-in in Cytoscape software, the most sig-
nificant cluster 1, containing 17 DEGs, was identified in 
the protein-protein interaction (PPI) network formed by 
460 DEGs (not activated in the HFD group) (Fig. 6E). The 
GO enrichment analysis showed that these genes were 
mainly associated with cell activation, homotypic cell-cell 
adhesion, and response to extracellular stimuli (Fig. 6F), 
showing highly relative response at the 2-cell stage 
after HFD-induced obesity. In addition, we performed 
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enrichment analyses of 1065 DEGs abnormally activated 
after HFD. The results showed that these upregulated 
genes were mainly associated with DNA damage and 
repair, autophagy, cellular stress and ferroptosis, which 

further proved the injury response after HFD (Supple-
mentary Fig. 2A and B).

Another crucial event during the maternal-to-zygotic 
transition (MZT) is the clearance of maternal mRNAs 

Fig. 4 DEGs of 8-cell stage preimplantation embryos were analyzed. PCA chart (A), pie plot (B), and volcano plot (C) showing 58 up- and 300 down-
regulated DEGs (P < 0.05 and absolute fold change > 2) in 8-cell stage preimplantation embryos from the ND (n = 3) and HFD groups (n = 2). (D) Heatmap 
showing hierarchical clustering of highly viable genes. GO analysis for the up- (F) and downregulated (G) DEGs in 8-cell stage preimplantation embryos. 
Major KEGG analysis for the up- (E) and downregulated (H) DEGs in 8-cell stage preimplantation embryos
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[17]. Compared with the ND group, HFD-induced obe-
sity resulted in embryos failing to downregulate 24.1% 
(476/1973) of maternal RNAs at the 8-cell stage and 
having 1026 DEGs abnormally downregulated (Fig. 6D), 

potentially impairing preimplantation embryo develop-
ment. Enrichment analysis revealed that the 476 DEGs 
that failed to be downregulated in HFD mice were 
mainly associated with DNA damage, RNA modification, 

Fig. 5 DEGs of blastocyst stage preimplantation embryos were analyzed. PCA chart (A), pie plot (B), and volcano plot (C) showing 32 up- and 556 
downregulated DEGs (P < 0.05 and absolute fold change > 2) in blastocyst stage preimplantation embryos from the ND (n = 2) and HFD groups (n = 4). (D) 
Heatmap showing hierarchical clustering of highly viable genes. GO analysis for the up- (F) and downregulated (G) DEGs in blastocyst stage preimplanta-
tion embryos. Major KEGG analysis for the up- (E) and downregulated (H) DEGs in blastocyst stage preimplantation embryos

 



Page 10 of 14Zhu et al. Reproductive Biology and Endocrinology          (2024) 22:105 

Fig. 6 Maternal-to-zygotic transition was altered in preimplantation embryos of HFD and ND mice. (A) Venn diagram of upregulated zygote genome ac-
tivation (ZGA) DEGs at the 8-cell stage compared with the 2-cell stage in both ND and HFD mice. (B) GO analysis for 460 ZGA DEGs not upregulated in HFD 
mice. (C) Major KEGG analysis for 460 ZGA DEGs not upregulated in HFD mice. (D) Venn diagram of downregulated DEGs at the 8-cell stage compared 
with the 2-cell stage in both ND and HFD mice. (E) The top cluster 1 was derived from the protein-protein interactions network (PPIs) with the Molecular 
Complex Detection (MCODE) algorithm. (F) GO analysis for 17 DEGs in top cluster 1
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reactive oxygen species metabolism, and adipocytokine 
signaling pathways (Supplementary Fig.  2C and D). In 
contrast, the 1026 DEGs specifically downregulated in 
HFD mice were primarily involved in cell morphogenesis 
and establishment of polarity, embryonic development, 
cell mitosis and metabolic pathways (Supplementary 
Fig. 2E and F). These findings suggest that HFD-induced 
obesity might interfere with MTZ.

Discussion
In this study, we established a female mouse model of 
obesity induced by 16 weeks of HFD. Our findings dem-
onstrated glycolipid metabolism disorder, follicular 
structural abnormalities, and reduced embryonic devel-
opment maturation in the HFD group of mice. Moreover, 
through scRNA-seq of preimplantation embryos at dif-
ferent stages in the ND and HFD groups, we, for the first 
time, revealed disruptions in various biological processes 
such as glycolipid metabolism, cell cycle, apoptosis, 
autophagy, and ferroptosis, along with potential distur-
bances in MTZ. These results provide a preliminary basis 
for an in-depth investigation of the mechanisms underly-
ing HFD-induced obesity’s impact on ovarian oocyte and 
preimplantation embryo development.

Obesity is a global health issue with detrimental effects 
on various human organs, including the reproductive 
system [18]. With rising standards of living, humans are 
gradually inclined to an HFD, which is the main cause of 
increasing obesity rates. Several studies have shown that 
feeding mice with HFD can successfully induce obesity 
[19, 20]. In this study, we induced obesity in female mice 
by HFD for 16 weeks and observed excessive weight gain, 
disrupted glucolipid metabolism, and insulin resistance 
in HFD mice, consistent with a previous report [20]. 
Obese women have been reported to have significantly 
lower ovarian reserve [21, 22]. Our results showed that 
follicles in the HFD group presented with irregular con-
tours, GCs arranged haphazardly with expanded inter-
cellular spaces and containing vacuolated mitochondria, 
and indistinct cell boundaries, consistent with the report 
of Skaznik-Wikiel et al. in which HFD-induced obesity 
reduced the number of primordial follicles and increased 
the number of atretic follicles, suggesting that obesity 
resulted in a poor ovarian microenvironment [23]. The 
rate of embryonic development at different stages after 
IVF of oocytes is a crucial indicator for assessing oocyte 
quality. Previous studies have shown lower fertilization 
rates, poor blastocyst development, and high apoptotic 
index in the blastocysts of HFD-fed mice, suggesting 
impaired in vitro developmental potential of oocytes 
[24]. Luzzo et al. also found that the degradation rate of 
HFD-fed mouse embryos was higher during in vitro cul-
ture [25], consistent with our results demonstrating sig-
nificantly lower developmental maturation rate of in vitro 

fertilized embryos in the HFD group, which suggested 
that HFD may adversely affect oocyte quality in mice.

After fertilization, finely regulated cleavage cellular 
events determine the completion of embryogenesis to 
produce living offspring. Any disruption of these events 
can lead to embryo developmental defects, and the ori-
gin of these developmental problems could be impaired 
oocyte quality [15, 26]. Recent studies have suggested 
that impaired embryonic developmental competence 
may result from three adverse effects primarily associ-
ated with oocytes: (1) mitochondrial dysfunction, (2) 
lipotoxicity, and (3) epigenetic dysregulation [15]. Clini-
cal studies have reported that blastocysts from women 
with a high dietary intake of fat have altered metabolism 
and increased lipid content [27, 28]. Meanwhile, in the 
HFD mouse model, ROS levels were elevated in oocytes, 
indicating oxidative stress and consequent mitochondrial 
dysfunction [8]. Epigenetic dysregulation may be equally 
involved in the adverse effects of the maternal high-fat 
diet on embryonic development. Several previous studies 
have identified altered DNA methylation status of metab-
olism-related and development-related genes [29, 30]. 
These findings revealed complex mechanisms by which 
HFD impaired oocytes and preimplantation embryos. 
Notably, our enrichment analyses of DEGs from preim-
plantation embryos at different stages of HFD similarly 
scanned for alterations in these biological processes.

Recently, scRNA-seq has been widely applied to study 
preimplantation embryonic development [13, 31, 32]. 
Several recent studies using RNA sequencing to study 
HFD-induced maternal obesity mostly evaluated the 
effects of obesity on the transcriptional landscape of the 
murine ovary or placenta but not alterations in the pre-
implantation embryo [33, 34]. Previous studies have 
mostly focused on the effects of male obesity on embry-
onic RNA transcriptional profiles [35]. The results of the 
blastocyst study by Hedegger et al. suggested that the sex-
specific programming effects of parental obesity began 
at the preimplantation stage and revealed an association 
between specific alterations in the sperm miRNA profile 
and the programming effects of paternal obesity [36]. We 
uniquely used scRNA-seq to explore dynamic changes 
in the transcriptional landscape of preimplantation 
embryos from the 2-cell to blastocyst stage in response to 
HFD-induced obesity in maternal mice (paternal weight 
normal). Cluster analysis of transcriptomes from preim-
plantation embryos at almost all stages showed that the 
transcriptome profiles of the embryos were primarily 
segregated according to the embryonic stage, followed 
by clustering into different dietary treatment conditions 
(ND or HFD), which suggested significant differences 
in the embryonic transcriptional landscapes at different 
preimplantation stages.
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Parental obesity has a negative impact on embryo 
development [37, 38]. A previous study revealed mark-
edly reduced number of embryos that developed on time 
to the blastocyst stage in all groups of obese parents 
compared with those of lean parents [39]. Obese moth-
ers produce embryos with reduced developmental com-
petence, consistent with previous findings on obesity in 
animals and humans [25, 40, 41]. Indeed, evidence from 
rodent studies suggests that maternal obesity leads to 
reduced blastocyst rates, downregulation of key meta-
bolic genes, slower embryo development, and adverse 
effects on fetal health [41, 42]. In this study, we found 
significant differences in the transcriptional landscapes 
of preimplantation embryos at the same developmental 
stage in mice with different dietary treatments (ND or 
HFD). Our results indicated that DEGs in the 2-cell stage 
of the HDF group were mainly associated with apoptosis, 
glycolysis, and ribosome function, whereas those in the 
8-cell stage were mainly enriched for negative regulation 
of cell proliferation, fatty acid metabolism, mitochondrial 
function, and autophagy. DEGs in the blastocyst stage of 
the HFD group were mostly associated with autophagy, 
glycolytic processes, cell proliferation, and mitochondria, 
indicating possible metabolic disorders and develop-
mental delays in preimplantation embryos. Notably, our 
KEGG enrichment analysis showed that downregulated 
DEGs from blastocysts of HFD mice were significantly 
enriched for ferroptosis and autophagy, suggesting that 
ferroptosis and autophagy may be involved in the normal 
developmental process of preimplantation embryos.

MZT is the first critical developmental transition in 
mammalian early embryos, when the maternal mRNAs 
are degraded and zygotic genome begins transcription 
[43]. Abnormal MZT may lead to cell cycle arrest, devel-
opmental delay, and apoptosis [44, 45]. We performed 
enrichment analyses of inactivated DEGs in the HFD 
group, constructed PPI networks, and identified the most 
critical cluster. We demonstrated failed activation of 17 
hub genes primarily involved in cell activation, cell adhe-
sion, and response to extracellular stimulus in the HFD 
group. These results together indicated an abnormal 
MZT process after HFD-induced obesity.

Compared with other studies focusing on paternal 
obesity alone or combined parental obesity, our study 
focused on the effects of maternal obesity on the murine 
ovary and on early embryonic development. However, 
our study also had some limitations. Firstly, this study 
focused on an HFD-induced obesity, so our findings 
may not capture the effects of other obesity-inducing 
factors, such as high-sugar diets. In addition, sample 
sizes of preimplantation embryos at different stages for 
scRNA-seq remain small and dysregulated enrichment 
terms of DEGs should be further validated in vitro. 
Future work should expand the sample size and seek to 

comprehensively determine the epigenetic and gene 
expression changes in the oocytes and embryos of the 
offspring caused by maternal obesity. Finally, embryos for 
our scRNA-seq were obtained from in vivo fertilization, 
so the transcriptional landscape of HFD mice embryos 
may be affected by an abnormal oviductal and intrauter-
ine environment.

Conclusions
In conclusion, our results revealed that HFD-induced 
maternal obesity impaired ovarian and oocyte function. 
Through our investigation, we provide novel insights into 
the changes in the transcriptional landscape of preim-
plantation embryos at different stages under the influ-
ence of HFD-induced obesity in maternal mice. These 
findings advance our understanding of the underlying 
mechanisms through which HFD-induced maternal obe-
sity compromises ovarian and preimplantation embryo 
development. Importantly, our findings indicate that pre-
pregnancy maternal weight interventions may benefit 
both mothers and preimplantation embryos.
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