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Abstract
Purpose  To determine the factors influencing the likelihood of biochemical pregnancy loss (BPL) after transfer of a 
euploid embryo from preimplantation genetic testing for aneuploidy (PGT-A) cycles.

Methods  The study employed an observational, retrospective cohort design, encompassing 6020 embryos from 
2879 PGT-A cycles conducted between February 2013 and September 2021. Trophectoderm biopsies in day 5 (D5) or 
day 6 (D6) blastocysts were analyzed by next generation sequencing (NGS). Only single embryo transfers (SET) were 
considered, totaling 1161 transfers. Of these, 49.9% resulted in positive pregnancy tests, with 18.3% experiencing BPL. 
To establish a predictive model for BPL, both classical statistical methods and five different supervised classification 
machine learning algorithms were used. A total of forty-seven factors were incorporated as predictor variables in the 
machine learning models.

Results  Throughout the optimization process for each model, various performance metrics were computed. 
Random Forest model emerged as the best model, boasting the highest area under the ROC curve (AUC) value of 
0.913, alongside an accuracy of 0.830, positive predictive value of 0.857, and negative predictive value of 0.807. For the 
selected model, SHAP (SHapley Additive exPlanations) values were determined for each of the variables to establish 
which had the best predictive ability. Notably, variables pertaining to embryo biopsy demonstrated the greatest 
predictive capacity, followed by factors associated with ovarian stimulation (COS), maternal age, and paternal age.

Conclusions  The Random Forest model had a higher predictive power for identifying BPL occurrences in PGT-A 
cycles. Specifically, variables associated with the embryo biopsy procedure (biopsy day, number of biopsied embryos, 
and number of biopsied cells) and ovarian stimulation (number of oocytes retrieved and duration of stimulation), 
exhibited the strongest predictive power.
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Background
BPL is an early termination of the pregnancy develop-
ment. In IVF cycles, positive pregnancy test can be 
detected by measuring chorionic gonadotropin (b-hCG) 
levels in blood or urine between day 9 and 10 from the 
embryo transfer day. Implantation is confirmed by visu-
alization of an intrauterine embryo sac by transvaginal 
ultrasound 7 to 15 days after the positive pregnancy test. 
If the embryo sac is absent, a BPL has occurred [1–5]. 
The understanding of BPL in IVF cycles still limited, with 
the existing literature on associated factors often pre-
senting contradictory data. While embryonic aneuploidy 
has been suggested as a potential factor linked to BPL, 
there is a lack of evidence demonstrating genetic aberra-
tions in BPL cases [1]. In addition, it has been observed 
that in PGT-A cycles, where euploid embryos have been 
transferred, the BPL rate is the same as that observed in 
conventional IVF cycles [6, 7]. Furthermore, the transfer 
of mosaic embryos doesn’t seem to alter BPL rates com-
pared to transfers involving euploid embryos [8]. There-
fore, the role of chromosomal alterations in BPL rates is 
questionable [9], suggesting the existence of other con-
tributing factors that warrant further investigation in 
PGT-A cycles.

Very few studies analyzing the factors for BPL predis-
position following euploid embryo transfer after PGT-A 
have been published. Notably, McQueen’s study [10], 
stands out, finding no discernible differences in maternal 
age, body mass index (BMI), number of oocytes retrieved, 
or morphokinetic parameters between the groups of 
embryos resulting in clinical pregnancy and those lead-
ing to BPL. Recently, Muñoz et al. [11] observed no dif-
ference in BPL rates between embryos from own oocytes 
and those from donated oocytes in PGT-A cycles.

Among the most studied factors associated with the 
BPL rate, are all embryo-related factors. Interestingly, 
the developmental stage at which embryo transfer occurs 
doesn’t seem to correlate with BPL rates [6]. In contrast, 
the embryo quality seems to be associated with BPL. 
Studies carried out by Zanetti [12] and Dai et al. [13] 
have concluded that poor quality embryos have higher 
rates of BPL.

On the other hand, the technique used for the oocyte 
fertilization does not seem to be relevant. The same BPL 
rates have been observed whether fertilization was per-
formed with conventional IVF or intracytoplasmic sperm 
injection (ICSI) [14].

Maternal age does not seem to have a significant asso-
ciation with BPL, as multiple studies have discarded its 
involvement [9, 10, 15, 16]. Moreover, ovarian reserve 
does not change BPL rates [17–20]. The exception would 
be women with polycystic ovary disease, in whom a 
higher rate of BPL has been observed (OR = 1.89, 95% CI 

1.48–2.41) although pregnancy and live birth rates per 
cycle were similar to the control group [21].

The endometrium and its thickness have been assessed 
as potential variables that could alter the BPL risk. Vari-
ous studies have proposed different thresholds for endo-
metrial thickness, such as 9  mm [9], 10  mm [22] or 
11 mm [12], below which the risk of BPL increases dra-
matically. Other authors attribute BPL not to endome-
trial thickness but to inadequate endometrial blood flow 
[15]. Additionally, the endometrial preparation protocol 
appears to play a crucial role. BPL rates were notably 
higher in artificial cycles compared to stimulated cycles 
(53.2 vs. 29%, respectively; p = 0.0001) [23]. However, 
endometrial scratching did not demonstrate any signifi-
cant alteration in BPL rates (RR 1.21 (95% CI 0.71–2.07)) 
[24]. Endometritis increases the risk of BPL, even if it has 
been cured with antibiotic treatment [25].

The choice of progesterone administration during 
the luteal phase support may significantly impact the 
risk of BPL. Subjects receiving only vaginal progester-
one showed a doubled risk of BPL compared to those 
administered intramuscular injections (32.3% vs. 15.6%; 
p < 0.001) [26]. Conversely, no significant differences were 
observed in BPL rates (OR 0.79, 95% CI 0.31–1.76) after 
luteal support with intramuscular injection of human 
chorionic gonadotropin. Furthermore, neither BPL nor 
clinical miscarriage has been related to estradiol or LH 
levels on the trigger day [9].

Sperm DNA damage emerges as another significant 
factor elevating the risk of BPL. Borini et al.‘s study sug-
gests that DNA fragmentation could compromise preg-
nancy progression, leading to miscarriage or BPL [27]. A 
later meta-analysis confirmed this point. The meta-anal-
ysis included 11 studies and a total of 1,549 cycles, result-
ing in a pooled OR of 2.48 (95% CI 1.52, 4.04; P < 0.0001) 
[28]. In a more recent study, it was found that men from 
couples who had suffered BPL had higher sperm frag-
mentation rates (comet assay) than fertile couples: 33.3 
vs. 14.9 (p < 0.001) [29]. Moreover, low sperm quality, as 
measured by low sperm count and motility, had also been 
linked to an increased risk of BPL [12].

In a recent study [30], the authors examined the impact 
of antiphospholipid antibody detection on BPL and 
found no increased risk.

To summarize, the literature on the factors affecting 
BPL is rather confusing. Within this context, we have 
decided to apply the latest analytical methods, such as 
artificial intelligence (AI) and, more specifically, machine 
learning, to identify the variables that can modify the risk 
of BPL. AI is increasingly used in medicine to analyze 
clinical data and to make predictions. In a short time, it 
has proven to be an essential tool in many medical spe-
cialties [31–33]. Assisted reproduction techniques are no 
exception to this process and, different machine learning 
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and deep learning models are also being applied in the 
field of human reproduction [34–37]. Numerous exam-
ples in the literature show predictive models for diverse 
aspects including COS [38], embryo developmental 
potential [39], embryo ploidy [40–45], implantation [41, 
46–48], first trimester miscarriage [49], clinical preg-
nancy [50] and live birth [51, 52].

The objective of our study is to establish a BPL predic-
tion model using machine learning algorithms to identify 
the best predictors in PGT-A cycles.

Methods
Study design
The study design is observational and retrospective. 
Clinical outcomes were recorded in a database including 
additional potential factors (n = 47) associated with BPL 
and related to progenitors, embryos and their biopsy, 
ovarian stimulation, and adjuvant treatments (Supple-
mentary Table 1).

The study included 6020 embryos biopsied in 2879 
PGT-A cycles performed in the clinic’s different centers 
from February 2013 to September 2021. The biopsied 
embryos were vitrified and transferred in a subsequent 
cycle. Only single embryo transfers were included in 
the study (n = 1161). The variable to be predicted in the 
machine learning models were the embryos that, after 
a positive pregnancy test, had an early fetal loss and no 
embryo sac was visualized. These embryos were com-
pared in the different models with those in ongoing 
pregnancies.

PGT-A
PGT-A was indicated for several reasons, including 
advanced maternal age, altered karyotype or sperm FISH 
results, history of chromosomal abnormalities in pre-
vious offspring, recurrent early pregnancy losses, and 
recurrent implantation failures. Prior to undergoing the 
PGT-A procedure, all couples received detailed informa-
tion and provided their informed consent.

Mature oocytes were fertilized in the laboratory by 
ICSI following IVF laboratory guidelines. Two or three 
laser shots at a pulse of 0.536 ms were used to breach 
the zona pelluzida on Day 3. Blastocysts graded ≥ 3 [53] 
with herniating cells were biopsied with the same laser 
pulses on days 5 (D5) or 6 (D6) of embryo development. 
A Saturn Active laser from Research Instruments (RI, 
Germany) was used for this purpose. The biopsied cells 
were taken from the trophectoderm region and tubed 
for aneuploidy testing. After lysis of the biopsied cells, 
embryo genome amplification was performed using the 
Picoplex kit (Rubicon Genomics®, Ann Arbor, MI, USA) 
following the manufacturer’s instructions. Chromosome 
analysis of the embryos was carried out by NGS using 
Illumina’s commercial kit Veriseq (San Diego, CA, USA). 

Embryos with a percentage of cells with chromosomal 
aberrations equal to or lower than 25% were considered 
euploid, between 25% and 50% were classified as mosaic 
and, aneuploid if the percentage was higher than 50%.

Descriptive analysis of variables
The descriptive statistical methods employed in this 
study varied depending on the type of variable being 
analyzed. For qualitative variables, descriptive statistics 
included frequency and percentage distributions. In con-
trast, quantitative variables were subjected to descriptive 
analysis using the median and interquartile range.

Data preprocessing
The database was anonymized. Missing values (0.1%) 
were imputed, and outliers were analyzed and elimi-
nated if necessary. Multicollinearity was assessed to avoid 
redundancy among highly correlated variables.

Before training the models, class balancing was per-
formed. The database was then randomly split into a 
training set (80%) and a test set (20%).

Hyperparameter optimization of classification models
Both classical statistical methods like binary logistic 
regression and five machine learning algorithms for clas-
sification were employed, encompassing support vector 
machines, k-nearest neighbors, random forest, multi-
layer neural networks, and eXtreme Gradient Boosting 
(XGBoost).

To ensure data independence and proper model evalu-
ation, we used 5-fold cross-validation, fitting the hyper-
parameters on the training set.

Final predictive model
The best model was selected based on AUC, which 
assesses the model’s ability to discriminate the dependent 
variable, BPL. Final metrics, including AUC, sensitiv-
ity, specificity, predictive values, accuracy, and the kappa 
statistic, were derived from the test set (20% of the total 
database). These results are shown in Fig. 1 and summa-
rized in Table 2.

Important variables: SHAP values
The key predictor variables in the final model were iden-
tified using SHAP values, which explain the outcomes 
of various machine learning models. These values are 
rooted in game theory [54, 55]. Machine learning algo-
rithms calculate a SHAP value for each predictor in every 
prediction case, quantifying the variables’ impact on the 
final prediction.

Statistical and machine learning analysis has been car-
ried out using SPSS (v23.0) and R (v. 4.2.0) statistical 
software.
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Results
A descriptive analysis of the main variables set is shown 
in Table  2. The medians of maternal and paternal age 
were: 34 [IQR: 27 to 39] and 39 years [IQR: 35 to 43] 
respectively. On the other hand, the median of antral fol-
licle count (AFC) was 14 [IQR: 11 to 19]. Notably, 78% 
of patients exhibited normal sperm count according to 
WHO’s 2010 classification, with only 8% of cycles using 
sperm donors. Ovarian stimulation yielded a median of 
11.0 [IQR: 9.0 to 14.0] oocytes, of which 10.0 [IQR: 8.0 to 
12.0] were mature.

Concerning oocyte origin, 39% of cycles involved 
donated oocytes and 17% utilized vitrified ones. Biopsies 
predominantly occurred on day 5 (63%), with 60.1% of 
embryos achieving A quality and 36.4% B quality. Nota-
bly, 11.5% of transferred embryos exhibited chromosomal 
mosaicism. In terms of clinical outcomes, implantation 
and BPL rates were 40.7% and 18.3%, respectively.

A comprehensive examination of 47 variables span-
ning maternal, paternal, couple, embryo, and IVF cycle 

characteristics was conducted to explore factors associ-
ated with BPL (Supplementary Table 1).

To identify factors contributing to increased rates of 
BPL in euploid embryos, we employed a comprehen-
sive approach, using both classical statistical methods 
and machine learning algorithms (as summarized in 
Table  1). Each algorithm was optimized to maximize 
the area under the ROC curve, a widely accepted met-
ric to evaluate a model’s predictive performance. Our 
analysis revealed intriguing results: while the multivari-
ate binary logistic regression model yielded a respect-
able AUC value of 0.781, the machine learning models 
outperformed it. Notably, the support vector machines 
(AUC = 0.909), nearest neighbors (AUC = 0.786), random 
forest (AUC = 0.913), and XGBoost (AUC = 0.871) mod-
els displayed superior predictive abilities. Among them, 
the Random Forest model emerged as the most promis-
ing, boasting the highest AUC value (Fig. 1A). This model 
not only excelled in predictive accuracy but also demon-
strated high positive predictive value (0.857), sensitivity 
(0.792), and specificity (0.868) (Fig.  1B). Furthermore, 
to provide a comprehensive assessment of model per-
formance, we presented the confusion table for the best 
final model, indicating an impressive accuracy of 0.830 
(Fig. 1B). It is important to note that these performance 
metrics were derived from the test database, comprising 
entirely new data that were not used in training the mod-
els. This approach ensures the reliability and generaliz-
ability of our findings, as the models were evaluated on 
data they hadn’t encountered before, minimizing the risk 
of overfitting and bias.

The most important prediction variables of the Ran-
dom Forest model were determined from the SHAP val-
ues (Fig.  2). This SHAP value is a measure of the input 

Table 2  Comparison of the different metrics of the final models
model AUC Accuracy Positive 

predic-
tive value 
(PPV)

Negative 
predic-
tive value 
(PNV)

Binariy Logistic 
Regression

0.781 0.717 0.735 0.702

Multi-Layer Perceptron 0.500 0.500 - 0.500
Support Vector 
Machines

0.909 0.821 0.815 0.827

k-Nearest Neighbors 0.786 0.698 0.733 0.672
Random Forest 0.913 0.830 0.857 0.807
eXtreme Gradient 
Boosting

0.871 0.802 0.833 0.776

Fig. 1  Performance metrics of Random Forest model. (A) ROC curve of Random Forest model. (B) Confusion matrix and different performance metrics 
(sensitivity, specificity, precision, recall, F1, accuracy and kappa) of Random Forest model. All metric parameter values have been obtained from the test 
database (20% of the original dataset)
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features contribution to the model’s final prediction. 
Figure 2A shows an example of prediction (“Local inter-
pretability”), using the Random Forest model, of an indi-
vidual embryo where SHAP values have been calculated 
for each of the features (non-aggregate). As can be seen, 
the probability of BPL (0.23) is the sum of the SHAP val-
ues (some positive and some negative) for each of the 
predictors.

Figure 2B highlights the ten most significant variables 
(“Top influencers”) in the final Random Forest model, 
determined by mean SHAP values. Notably, variables 

associated with embryo biopsy (biopsy day, number of 
embryos biopsied, laser pulses, and biopsied cells) exhib-
ited the greatest predictive power, followed by variables 
related to ovarian response and stimulation (number of 
oocytes retrieved, days of stimulation, total dose, and 
type of gonadotrophins), as well as maternal and paternal 
age.

Figure 2C (“Directionality impact”) visually represents 
how identified factors influence BPL using SHAP values. 
The dot plot illustrates the impact of feature direction-
ality, with the x-axis representing SHAP values and the 
y-axis featuring features, ordered by their influence on 
model prediction. Yellow indicates higher feature values, 
while purple indicates lower values, providing insight into 
feature impact directionality. For complex feature behav-
ior, Supplementary Fig. 1 offers a two-dimensional repre-
sentation of these SHAP values (“Feature dependence”).

From Fig.  2C and Supplementary Fig.  1, several note-
worthy findings emerge:

The variable “biopsy day” exhibited the highest predic-
tive ability, with biopsy at D5 associated with a lower BPL 
risk compared to D6.

The behavior of the “number of embryos biopsied” 
variable differed, based on ovarian response, with lower 
SHAP values for low ovarian responses (< 3 oocytes 
retrieved), and a reversed trend observed for higher 
responses.

An increase in the “number of laser shots” and “num-
ber of biopsied cells” predicted a higher probability of 
BPL.

Maternal and paternal age positively correlated with 
BPL risk, with a stronger effect observed for maternal 
age, though older paternal age (> 40 years) was associated 
with a lower BPL rate.

Variables related to ovarian response and stimula-
tion demonstrated higher BPL risk for low and high 
ovarian responses, with a decrease in risk observed for 
normo-responders.

Our analysis revealed significant associations between 
ovarian stimulation protocols and BPL risk. Slower stim-
ulations correlated with lower SHAP values, suggesting 
reduced BPL risk. Additionally, longer ovarian stimula-
tion and higher doses of gonadotrophins were linked to 
decreased BPL risk. Notably, the Random Forest model 
predicted an increased probability of BPL with the use of 
recombinant gonadotrophins, either alone or in combi-
nation with urinary gonadotrophins (Fig. 2C and Supple-
mentary Fig. 1J and K).

Discussion
Biochemical pregnancy loss (BPL) represents an intrigu-
ing yet poorly understood phenomenon in pregnancy 
development. It occurs when the embryo initially 
implants but ceases developing before being visualized 

Table 1  Descriptive of patients, IVF cycle and PGT-A
Characteristic Overall, N = 1,1611

Female age 34 (27, 39)
AFC 14 (11, 19)
Oocyte origin
Donated 449 (39%)
Own 712 (61%)
Fresh/Vitrified oocyte
Fresh 969 (83%)
Vitrified 192 (17%)
Number oocyte retrieved 11.0 (9.0, 14.0)
Number MII retrieved 10.0 (8.0, 12.0)
Male age 39 (35, 43)
Sperm count
Normal 905 (78%)
Oligozoospermia 213 (18%)
Cryptozoospermia 38 (3.3%)
Azoospermia 5 (0.4%)
Teratozoospermia 174 (15%)
Asthenozoospermia 214 (18%)
Semen origin
Donated 95 (8%)
Own 1066 (92%)
Number embryo biopsied 4.00 (3.00, 5.00)
Number cells biopsied 5.00 (4.00, 6.00)
Number biopsy shots 5.0 (3.0, 9.0)
Biopsy day
D5 736 (63%)
D6 425 (37%)
Embryo quality2

A 698 (60.1%)
B 423 (36.4%)
C 40 (3.4%)
PGT-A results
Euploid 1,028 (89%)
Mosaic 133 (11.5%)
Endometrial thickness (mm) 8.60 (7.70, 10.00)
Positive pregnancy test 579 (49.9%)
Biochemical pregnancy loss 106 (18.3%)3

Implantation 473 (40.7%)
1 Median (IQR); n (%)

2 Gardner’s classification

3 Calculated with respect to positive pregnancy tests
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via ultrasound. Despite extensive research, the factors 
contributing to BPL remain elusive, leading to ongo-
ing controversies regarding variable roles [1]. While 
embryonic chromosomal alterations have been pro-
posed as a potential cause, studies have shown that BPL 
rates remain unaffected even when transferring euploid 
embryos in PGT-A cycles. This discrepancy suggests the 
presence of other contributing factors to this type of mis-
carriage [6, 7, 9].

Surprisingly, there is a dearth of studies specifically 
analyzing BPL in PGT-A cycles, and those that do exist 
predominantly employ classical statistical methods. [10]. 
Notably, only one published study, conducted by Zanetti 
et al., employs non-standard statistical methods such as 
discriminant analysis to analyze factors associated with 
BPL [12].

Our study seeks to fill this gap by conducting a com-
prehensive analysis of factors associated with BPL, using 
innovative AI methods. Unlike previous endeavors pri-
marily focused on predictive modeling, our objective was 
to identify the most influential variables and their impact 

on BPL within PGT-A cycles. By leveraging machine 
learning techniques, we aimed to uncover relationships 
and associations between variables that transcend the 
limitations of classical statistics.

Five distinct machine learning algorithms were 
employed, encompassing a diverse array of methodolo-
gies including neural networks, bagging, boosting, and 
nearest neighbor techniques. These algorithms included 
multi-layer perceptron, support vector machines, k-near-
est neighbors, random forest, and XGBoost, collectively 
offering a broad spectrum of analytical approaches. 
Among these algorithms, Random Forest emerged as 
the most effective, boasting an impressive AUC of 0.913 
alongside other high quality performance metrics.

While machine learning models exhibit remarkable 
accuracy and predictive power, they often function as 
“black boxes,” obscuring the specific roles of input vari-
ables in prediction outcomes. In addressing this limita-
tion, SHAP values have emerged as a valuable tool for 
illuminating the contribution of individual variables 
to model predictions. This enhanced understanding of 

Fig. 2  SHAP plots (A) The “Local Interpretability” graph provides insight into an individual embryo’s prediction using the Random Forest model. In this 
graph, SHAP values have been computed for each feature independently (non-aggregate), allowing for a detailed examination of the contribution of 
each feature to the model’s prediction for that specific embryo. (B) The “Top Influencers” graph presents the ten most influential predictors in the Random 
Forest model. These predictors are determined based on the mean of the absolute SHAP values for each feature. (C) The “Directionality Impact” graph 
illustrates the influence of features on the model prediction (Random Forest), with the x-axis representing the SHAP value and the y-axis displaying fea-
tures ordered by their impact. Each point on the graph corresponds to a SHAP value for a specific prediction and feature. In this graph, yellow indicates 
the highest values of a feature, while purple represents lower values. The distribution of yellow and purple points provides insight into the directionality 
impact of the features
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variable importance is particularly critical in medical 
applications, where identifying key factors influencing 
biological processes is paramount. [54, 55]. By making 
machine learning models more interpretable, SHAP val-
ues help mitigate skepticism among clinicians towards 
AI, thereby facilitating their integration into medical 
decision-making processes [56].

The SHAP value serves as a crucial metric, quantifying 
the contribution, whether positive or negative, of each 
variable to the final prediction of the model. Notably, 
these SHAP values possess an additive property, enabling 
the decomposition of the machine learning model’s pre-
diction into the sum of the individual SHAP values of 
each variable. In various fields, such as medical disci-
plines [57–63], and specifically in reproductive medicine 
[49], SHAP values have been widely used, providing valu-
able insights into model interpretation and the impor-
tance of variables.

Different graphical representations of SHAP values 
provide essential information to explain machine learning 
models. Notably, the “Top Influencers” graph highlights 
the ten most significant predictors for model prediction. 
These are calculated based on the absolute SHAP values 
for each feature. In the context of the Random Forest pre-
dictive model utilized in our study, the top ten variables 
predominantly relate to embryo biopsy, ovarian stimula-
tion, and paternal and maternal age, underscoring their 
importance in predicting outcomes.

This study makes a significant discovery by explain-
ing how embryo biopsy contributes to the occurrence of 
BPL in PGT-A cycles. Specifically, our analysis revealed 
that four of the most influential variables are associated 
with the biopsy process, wherein cells are extracted from 
the trophectoderm to ascertain the chromosomal sta-
tus of the embryo. Remarkably, prior research has not 
explored the impact of embryo biopsy on BPL risk in 
PGT-A cycles, making our findings particularly novel and 
insightful. Our predictive Random Forest model identi-
fied several key factors associated with embryo biopsy 
that greatly influence BPL risk. Foremost among these 
predictors is the biopsy day, indicating that embryos with 
delayed development requiring biopsy on Day 6 are at 
heightened risk of BPL, as predicted by our model.

Furthermore, our analysis unveiled that an increase in 
the number of biopsied cells correlates with a diminished 
likelihood of successful implantation and an elevated risk 
of BPL. Similarly, our machine learning model forecasts 
a heightened BPL risk with an increase in the number of 
laser shots during the biopsy procedure. Given harmful 
impact of excessive laser pulses on the embryo, we rec-
ommend using low laser intensity and a minimal number 
of shots during biopsy to protect the embryo’s integrity 
and improve clinical results [64]. Gentle biopsy proce-
dures are crucial to mitigate negative impacts on embryo 

implantation and BPL risk. Factors such as heat from 
laser shots, embryo stress, and reduction in trophecto-
derm cells may compromise processes essential for estab-
lishing a healthy pregnancy. Fortunately, advancements 
in biopsy technology have significantly reduced these 
impacts [65, 66].

In our Random Forest model, one of the most pivotal 
variables is the number of embryos biopsied, exhibiting 
distinct behaviors in low responders compared to other 
patients. Women with low ovarian response usually 
undergo biopsy on a limited number of embryos, leading 
to reduced chances of IVF success. This subgroup dis-
plays a wide dispersion in SHAP values, indicating con-
siderable variability in BPL risk. Conversely, among other 
patients, a higher number of biopsied embryos correlates 
with lower SHAP values and decreased BPL rates, likely 
attributable to enhanced embryo selection and reduced 
BPL risk.

Interestingly, among existing literature lacks stud-
ies exploring the association between ovarian stimu-
lation and BPL risk. However, our comprehensive 
predictive model identified four variables related to ovar-
ian response and stimulation as significant contribu-
tors. Firstly, the number of oocytes retrieved emerges as 
a crucial factor, with embryos from women exhibiting a 
normo-response demonstrating lower BPL probabilities. 
Conversely, both high and low ovarian responses are 
associated with higher SHAP values and elevated BPL 
risk.

Moreover, longer stimulations needing higher doses 
of gonadotrophins are linked to reduced BPL probabil-
ity. Additionally, the type of gonadotropin administered 
appears to influence BPL risk, with recombinant gonado-
trophins posing an increased risk compared to urinary-
derived counterparts. Notably, stimulations utilizing 
urinary gonadotrophins yield embryos with a lower BPL 
probability, underscoring the significance of gonadotro-
pin type in predicting BPL outcomes.

While existing literature widely agrees on the negligible 
impact of maternal age on BPL risk [9, 10, 15, 16], this 
study’s findings diverge significantly. Despite the small 
sample sizes in previous studies, our model identifies 
maternal age as a significant predictor, elevating the like-
lihood of BPL. Similarly, paternal age exhibits a compara-
ble trend, albeit with a milder effect. Notably, our analysis 
reveals a noteworthy reversal in the risk pattern with 
advanced paternal age, particularly in older age groups. 
This intriguing phenomenon suggests that the increasing 
risk typically associated with older paternal age may be 
mitigated in cases where patients undergo oocyte dona-
tion cycles.

Interestingly, the Random Forest model does not 
assign significant importance to variables associated 
with the male factor, except for paternal age as previously 
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mentioned. Despite extensive research linking male 
factors to BPL risk, particularly sperm DNA damage 
[27–29] our model indicates low predictive capacity 
for this variable, rendering it excluded from the top 10 
most influential variables. Likewise, sperm quality fails 
to emerge as a significant contributor to BPL risk in our 
predictive model, contrary to assertions made by some 
researchers [12].

Interestingly enough, our top-performing machine 
learning model does not identify endometrial thickness 
or the endometrial preparation protocol as significant 
predictors, contradicting findings from previous studies. 
Endometrial thickness has been extensively studied, with 
lower values often associated with increased BPL risk 
For instance, Dickey et al. highlighted the role of endo-
metrial thickness, demonstrating that thickness less than 
9 mm on the hCG administration day correlated with a 
higher BPL incidence, while thickness equal to or greater 
than 9 mm was associated with lower BPL rates [9]. Sub-
sequent research established varying cutoff points, such 
as 10 mm [22] or 11 mm [12], showcasing a substantial 
reduction in BPL rates with thicker endometrium. A lim-
itation of our study concerning the endometrium is that 
we did not include various methods of luteal phase sup-
port among the predictors, which could potentially influ-
ence BPL rates.

Furthermore, adjunctive treatments like scratching [24] 
and others such as filgrastrim, intralipids, heparin, aspi-
rin, or hCG, as published, do not emerge as significant 
variables in predicting BPL risk.

Conclusions
This study explores biochemical pregnancy loss (BPL) 
in IVF cycles, especially those involving PGT-A, an 
area historically underexplored in IVF research despite 
its clinical significance. The study has been limited to 
biochemical pregnancy loss (BPL) and has not been 
extended to other clinical parameters of PGT-A cycles. 
Using advanced machine learning techniques, we identi-
fied key factors influencing BPL rates in PGT-A cycles, 
notably variables related to embryo biopsy and ovarian 
stimulation such as biopsy timing, number of embryos 
and cells biopsied, oocyte count, and stimulation dura-
tion. Understanding these factors is crucial for devel-
oping targeted interventions to reduce BPL rates and 
improve overall IVF success.

While our findings are promising, further validation 
through prospective studies is necessary to enhance reli-
ability and applicability, leading to more effective clinical 
interventions and personalized treatment strategies in 
assisted reproductive technology.

This research aims to advance our understanding of 
BPL mechanisms and risk factors, ultimately improving 

IVF outcomes for individuals and couples seeking fertil-
ity treatment.
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