<!DOCTYPE html> <!-- data-theme below is forced to be "light" but should be changed if we use pydata-theme-sphinx in the future --> <!--[if IE 8]><html class="no-js lt-ie9" lang="en" data-content_root="../../" data-theme="light"> <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js" lang="en" data-content_root="../../" data-theme="light"> <!--<![endif]--> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta property="og:title" content="sklearn.preprocessing.LabelBinarizer" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://scikit-learn/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html" /> <meta property="og:site_name" content="scikit-learn" /> <meta property="og:description" content="Examples using sklearn.preprocessing.LabelBinarizer: Multiclass Receiver Operating Characteristic (ROC)" /> <meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_roc_thumb.png" /> <meta property="og:image:alt" content="" /> <meta name="description" content="Examples using sklearn.preprocessing.LabelBinarizer: Multiclass Receiver Operating Characteristic (ROC)" /> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>sklearn.preprocessing.LabelBinarizer — scikit-learn 1.4.0rc1 documentation</title> <link rel="canonical" href="http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html" /> <link rel="shortcut icon" href="../../_static/favicon.ico"/> <link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" /> <link rel="stylesheet" href="../../_static/pygments.css" type="text/css" /> <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" /> <link rel="stylesheet" href="../../_static/copybutton.css" type="text/css" /> <link rel="stylesheet" href="../../_static/plot_directive.css" type="text/css" /> <link rel="stylesheet" href="../../https://fonts.googleapis.com/css?family=Vibur" type="text/css" /> <link rel="stylesheet" href="../../_static/jupyterlite_sphinx.css" type="text/css" /> <link rel="stylesheet" href="../../_static/sg_gallery.css" type="text/css" /> <link rel="stylesheet" href="../../_static/sg_gallery-binder.css" type="text/css" /> <link rel="stylesheet" href="../../_static/sg_gallery-dataframe.css" type="text/css" /> <link rel="stylesheet" href="../../_static/sg_gallery-rendered-html.css" type="text/css" /> <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" /> <script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script> <script src="../../_static/js/vendor/jquery-3.6.3.slim.min.js"></script> <script src="../../_static/js/details-permalink.js"></script> </head> <body> <nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0"> <div class="container-fluid sk-docs-container px-0"> <a class="navbar-brand py-0" href="../../index.html"> <img class="sk-brand-img" src="../../_static/scikit-learn-logo-small.png" alt="logo"/> </a> <button id="sk-navbar-toggler" class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto"> <li class="nav-item"> <a class="sk-nav-link nav-link" href="../../install.html">Install</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link" href="../classes.html">API</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link" href="../../auto_examples/index.html">Examples</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html" >Getting Started</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html" >Tutorial</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../whats_new/v1.4.html" >What's new</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html" >Glossary</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html" >FAQ</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../support.html" >Support</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html" >Related packages</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html" >Roadmap</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../governance.html" >Governance</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html" >About us</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a> </li> <li class="nav-item dropdown nav-more-item-dropdown"> <a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> <div class="dropdown-menu" aria-labelledby="navbarDropdown"> <a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html" >Getting Started</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html" >Tutorial</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../whats_new/v1.4.html" >What's new</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html" >Glossary</a> <a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html" >FAQ</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../support.html" >Support</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html" >Related packages</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html" >Roadmap</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../governance.html" >Governance</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../about.html" >About us</a> <a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a> <a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a> </div> </li> </ul> <div id="searchbox" role="search"> <div class="searchformwrapper"> <form class="search" action="../../search.html" method="get"> <input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" /> <input class="sk-search-text-btn" type="submit" value="Go" /> </form> </div> </div> </div> </div> </nav> <div class="d-flex" id="sk-doc-wrapper"> <input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox"> <label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label> <div id="sk-sidebar-wrapper" class="border-right"> <div class="sk-sidebar-toc-wrapper"> <div class="btn-group w-100 mb-2" role="group" aria-label="rellinks"> <a href="sklearn.preprocessing.KernelCenterer.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.preprocessing.KernelCenterer">Prev</a><a href="../classes.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="API Reference">Up</a> <a href="sklearn.preprocessing.LabelEncoder.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.preprocessing.LabelEncoder">Next</a> </div> <div class="alert alert-danger p-1 mb-2" role="alert"> <p class="text-center mb-0"> <strong>scikit-learn 1.4.0rc1</strong><br/> <a href="http://scikit-learn.org/dev/versions.html">Other versions</a> </p> </div> <div class="alert alert-warning p-1 mb-2" role="alert"> <p class="text-center mb-0"> Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software. </p> </div> <div class="sk-sidebar-toc"> <ul> <li><a class="reference internal" href="#"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.preprocessing</span></code>.LabelBinarizer</a><ul> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer</span></code></a><ul> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.fit"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.fit</span></code></a></li> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.fit_transform"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.fit_transform</span></code></a></li> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.get_metadata_routing"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.get_metadata_routing</span></code></a></li> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.get_params"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.get_params</span></code></a></li> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.inverse_transform"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.inverse_transform</span></code></a></li> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.set_inverse_transform_request"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.set_inverse_transform_request</span></code></a></li> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.set_output"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.set_output</span></code></a></li> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.set_params"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.set_params</span></code></a></li> <li><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.transform"><code class="docutils literal notranslate"><span class="pre">LabelBinarizer.transform</span></code></a></li> </ul> </li> <li><a class="reference internal" href="#examples-using-sklearn-preprocessing-labelbinarizer">Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.preprocessing.LabelBinarizer</span></code></a></li> </ul> </li> </ul> </div> </div> </div> <div id="sk-page-content-wrapper"> <div class="sk-page-content container-fluid body px-md-3" role="main"> <section id="sklearn-preprocessing-labelbinarizer"> <h1><a class="reference internal" href="../classes.html#module-sklearn.preprocessing" title="sklearn.preprocessing"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.preprocessing</span></code></a>.LabelBinarizer<a class="headerlink" href="#sklearn-preprocessing-labelbinarizer" title="Link to this heading">¶</a></h1> <dl class="py class"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer"> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sklearn.preprocessing.</span></span><span class="sig-name descname"><span class="pre">LabelBinarizer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">neg_label</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pos_label</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sparse_output</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/preprocessing/_label.py#L168"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer" title="Link to this definition">¶</a></dt> <dd><p>Binarize labels in a one-vs-all fashion.</p> <p>Several regression and binary classification algorithms are available in scikit-learn. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.</p> <p>At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). <code class="docutils literal notranslate"><span class="pre">LabelBinarizer</span></code> makes this process easy with the transform method.</p> <p>At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. <code class="docutils literal notranslate"><span class="pre">LabelBinarizer</span></code> makes this easy with the <a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.inverse_transform" title="sklearn.preprocessing.LabelBinarizer.inverse_transform"><code class="xref py py-meth docutils literal notranslate"><span class="pre">inverse_transform</span></code></a> method.</p> <p>Read more in the <a class="reference internal" href="../preprocessing_targets.html#preprocessing-targets"><span class="std std-ref">User Guide</span></a>.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>neg_label</strong><span class="classifier">int, default=0</span></dt><dd><p>Value with which negative labels must be encoded.</p> </dd> <dt><strong>pos_label</strong><span class="classifier">int, default=1</span></dt><dd><p>Value with which positive labels must be encoded.</p> </dd> <dt><strong>sparse_output</strong><span class="classifier">bool, default=False</span></dt><dd><p>True if the returned array from transform is desired to be in sparse CSR format.</p> </dd> </dl> </dd> <dt class="field-even">Attributes<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>classes_</strong><span class="classifier">ndarray of shape (n_classes,)</span></dt><dd><p>Holds the label for each class.</p> </dd> <dt><strong>y_type_</strong><span class="classifier">str</span></dt><dd><p>Represents the type of the target data as evaluated by <a class="reference internal" href="sklearn.utils.multiclass.type_of_target.html#sklearn.utils.multiclass.type_of_target" title="sklearn.utils.multiclass.type_of_target"><code class="xref py py-func docutils literal notranslate"><span class="pre">type_of_target</span></code></a>. Possible type are ‘continuous’, ‘continuous-multioutput’, ‘binary’, ‘multiclass’, ‘multiclass-multioutput’, ‘multilabel-indicator’, and ‘unknown’.</p> </dd> <dt><strong>sparse_input_</strong><span class="classifier">bool</span></dt><dd><dl class="simple"> <dt><code class="docutils literal notranslate"><span class="pre">True</span></code> if the input data to transform is given as a sparse matrix,</dt><dd><p><code class="docutils literal notranslate"><span class="pre">False</span></code> otherwise.</p> </dd> </dl> </dd> </dl> </dd> </dl> <div class="admonition seealso"> <p class="admonition-title">See also</p> <dl class="simple"> <dt><a class="reference internal" href="sklearn.preprocessing.label_binarize.html#sklearn.preprocessing.label_binarize" title="sklearn.preprocessing.label_binarize"><code class="xref py py-obj docutils literal notranslate"><span class="pre">label_binarize</span></code></a></dt><dd><p>Function to perform the transform operation of LabelBinarizer with fixed classes.</p> </dd> <dt><a class="reference internal" href="sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder" title="sklearn.preprocessing.OneHotEncoder"><code class="xref py py-obj docutils literal notranslate"><span class="pre">OneHotEncoder</span></code></a></dt><dd><p>Encode categorical features using a one-hot aka one-of-K scheme.</p> </dd> </dl> </div> <p class="rubric">Examples</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="kn">import</span> <span class="n">LabelBinarizer</span> <span class="gp">>>> </span><span class="n">lb</span> <span class="o">=</span> <span class="n">LabelBinarizer</span><span class="p">()</span> <span class="gp">>>> </span><span class="n">lb</span><span class="o">.</span><span class="n">fit</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span> <span class="go">LabelBinarizer()</span> <span class="gp">>>> </span><span class="n">lb</span><span class="o">.</span><span class="n">classes_</span> <span class="go">array([1, 2, 4, 6])</span> <span class="gp">>>> </span><span class="n">lb</span><span class="o">.</span><span class="n">transform</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">6</span><span class="p">])</span> <span class="go">array([[1, 0, 0, 0],</span> <span class="go"> [0, 0, 0, 1]])</span> </pre></div> </div> <p>Binary targets transform to a column vector</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">lb</span> <span class="o">=</span> <span class="n">LabelBinarizer</span><span class="p">()</span> <span class="gp">>>> </span><span class="n">lb</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">([</span><span class="s1">'yes'</span><span class="p">,</span> <span class="s1">'no'</span><span class="p">,</span> <span class="s1">'no'</span><span class="p">,</span> <span class="s1">'yes'</span><span class="p">])</span> <span class="go">array([[1],</span> <span class="go"> [0],</span> <span class="go"> [0],</span> <span class="go"> [1]])</span> </pre></div> </div> <p>Passing a 2D matrix for multilabel classification</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="gp">>>> </span><span class="n">lb</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]]))</span> <span class="go">LabelBinarizer()</span> <span class="gp">>>> </span><span class="n">lb</span><span class="o">.</span><span class="n">classes_</span> <span class="go">array([0, 1, 2])</span> <span class="gp">>>> </span><span class="n">lb</span><span class="o">.</span><span class="n">transform</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span> <span class="go">array([[1, 0, 0],</span> <span class="go"> [0, 1, 0],</span> <span class="go"> [0, 0, 1],</span> <span class="go"> [0, 1, 0]])</span> </pre></div> </div> <p class="rubric">Methods</p> <table class="autosummary longtable docutils align-default"> <tbody> <tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.fit" title="sklearn.preprocessing.LabelBinarizer.fit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fit</span></code></a>(y)</p></td> <td><p>Fit label binarizer.</p></td> </tr> <tr class="row-even"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.fit_transform" title="sklearn.preprocessing.LabelBinarizer.fit_transform"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fit_transform</span></code></a>(y)</p></td> <td><p>Fit label binarizer/transform multi-class labels to binary labels.</p></td> </tr> <tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.get_metadata_routing" title="sklearn.preprocessing.LabelBinarizer.get_metadata_routing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_metadata_routing</span></code></a>()</p></td> <td><p>Get metadata routing of this object.</p></td> </tr> <tr class="row-even"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.get_params" title="sklearn.preprocessing.LabelBinarizer.get_params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_params</span></code></a>([deep])</p></td> <td><p>Get parameters for this estimator.</p></td> </tr> <tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.inverse_transform" title="sklearn.preprocessing.LabelBinarizer.inverse_transform"><code class="xref py py-obj docutils literal notranslate"><span class="pre">inverse_transform</span></code></a>(Y[, threshold])</p></td> <td><p>Transform binary labels back to multi-class labels.</p></td> </tr> <tr class="row-even"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.set_inverse_transform_request" title="sklearn.preprocessing.LabelBinarizer.set_inverse_transform_request"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_inverse_transform_request</span></code></a>(*[, threshold])</p></td> <td><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">inverse_transform</span></code> method.</p></td> </tr> <tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.set_output" title="sklearn.preprocessing.LabelBinarizer.set_output"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_output</span></code></a>(*[, transform])</p></td> <td><p>Set output container.</p></td> </tr> <tr class="row-even"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.set_params" title="sklearn.preprocessing.LabelBinarizer.set_params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_params</span></code></a>(**params)</p></td> <td><p>Set the parameters of this estimator.</p></td> </tr> <tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.transform" title="sklearn.preprocessing.LabelBinarizer.transform"><code class="xref py py-obj docutils literal notranslate"><span class="pre">transform</span></code></a>(y)</p></td> <td><p>Transform multi-class labels to binary labels.</p></td> </tr> </tbody> </table> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.fit"> <span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/preprocessing/_label.py#L268"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.fit" title="Link to this definition">¶</a></dt> <dd><p>Fit label binarizer.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>y</strong><span class="classifier">ndarray of shape (n_samples,) or (n_samples, n_classes)</span></dt><dd><p>Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>Returns the instance itself.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.fit_transform"> <span class="sig-name descname"><span class="pre">fit_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/preprocessing/_label.py#L309"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.fit_transform" title="Link to this definition">¶</a></dt> <dd><p>Fit label binarizer/transform multi-class labels to binary labels.</p> <p>The output of transform is sometimes referred to as the 1-of-K coding scheme.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>y</strong><span class="classifier">{ndarray, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)</span></dt><dd><p>Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>Y</strong><span class="classifier">{ndarray, sparse matrix} of shape (n_samples, n_classes)</span></dt><dd><p>Shape will be (n_samples, 1) for binary problems. Sparse matrix will be of CSR format.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.get_metadata_routing"> <span class="sig-name descname"><span class="pre">get_metadata_routing</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/utils/_metadata_requests.py#L1466"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.get_metadata_routing" title="Link to this definition">¶</a></dt> <dd><p>Get metadata routing of this object.</p> <p>Please check <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing mechanism works.</p> <dl class="field-list simple"> <dt class="field-odd">Returns<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>routing</strong><span class="classifier">MetadataRequest</span></dt><dd><p>A <a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest" title="sklearn.utils.metadata_routing.MetadataRequest"><code class="xref py py-class docutils literal notranslate"><span class="pre">MetadataRequest</span></code></a> encapsulating routing information.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.get_params"> <span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/base.py#L178"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.get_params" title="Link to this definition">¶</a></dt> <dd><p>Get parameters for this estimator.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>deep</strong><span class="classifier">bool, default=True</span></dt><dd><p>If True, will return the parameters for this estimator and contained subobjects that are estimators.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>params</strong><span class="classifier">dict</span></dt><dd><p>Parameter names mapped to their values.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.inverse_transform"> <span class="sig-name descname"><span class="pre">inverse_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">Y</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/preprocessing/_label.py#L365"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.inverse_transform" title="Link to this definition">¶</a></dt> <dd><p>Transform binary labels back to multi-class labels.</p> <dl class="field-list"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl> <dt><strong>Y</strong><span class="classifier">{ndarray, sparse matrix} of shape (n_samples, n_classes)</span></dt><dd><p>Target values. All sparse matrices are converted to CSR before inverse transformation.</p> </dd> <dt><strong>threshold</strong><span class="classifier">float, default=None</span></dt><dd><p>Threshold used in the binary and multi-label cases.</p> <p>Use 0 when <code class="docutils literal notranslate"><span class="pre">Y</span></code> contains the output of <a class="reference internal" href="../../glossary.html#term-decision_function"><span class="xref std std-term">decision_function</span></a> (classifier). Use 0.5 when <code class="docutils literal notranslate"><span class="pre">Y</span></code> contains the output of <a class="reference internal" href="../../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a>.</p> <p>If None, the threshold is assumed to be half way between neg_label and pos_label.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>y</strong><span class="classifier">{ndarray, sparse matrix} of shape (n_samples,)</span></dt><dd><p>Target values. Sparse matrix will be of CSR format.</p> </dd> </dl> </dd> </dl> <p class="rubric">Notes</p> <p>In the case when the binary labels are fractional (probabilistic), <a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.inverse_transform" title="sklearn.preprocessing.LabelBinarizer.inverse_transform"><code class="xref py py-meth docutils literal notranslate"><span class="pre">inverse_transform</span></code></a> chooses the class with the greatest value. Typically, this allows to use the output of a linear model’s <a class="reference internal" href="../../glossary.html#term-decision_function"><span class="xref std std-term">decision_function</span></a> method directly as the input of <a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer.inverse_transform" title="sklearn.preprocessing.LabelBinarizer.inverse_transform"><code class="xref py py-meth docutils literal notranslate"><span class="pre">inverse_transform</span></code></a>.</p> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.set_inverse_transform_request"> <span class="sig-name descname"><span class="pre">set_inverse_transform_request</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'$UNCHANGED$'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sklearn.preprocessing.LabelBinarizer" title="sklearn.preprocessing._label.LabelBinarizer"><span class="pre">LabelBinarizer</span></a></span></span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/utils/_metadata_requests.py#L1235"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.set_inverse_transform_request" title="Link to this definition">¶</a></dt> <dd><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">inverse_transform</span></code> method.</p> <p>Note that this method is only relevant if <code class="docutils literal notranslate"><span class="pre">enable_metadata_routing=True</span></code> (see <a class="reference internal" href="sklearn.set_config.html#sklearn.set_config" title="sklearn.set_config"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.set_config</span></code></a>). Please see <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing mechanism works.</p> <p>The options for each parameter are:</p> <ul class="simple"> <li><p><code class="docutils literal notranslate"><span class="pre">True</span></code>: metadata is requested, and passed to <code class="docutils literal notranslate"><span class="pre">inverse_transform</span></code> if provided. The request is ignored if metadata is not provided.</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">False</span></code>: metadata is not requested and the meta-estimator will not pass it to <code class="docutils literal notranslate"><span class="pre">inverse_transform</span></code>.</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">None</span></code>: metadata is not requested, and the meta-estimator will raise an error if the user provides it.</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">str</span></code>: metadata should be passed to the meta-estimator with this given alias instead of the original name.</p></li> </ul> <p>The default (<code class="docutils literal notranslate"><span class="pre">sklearn.utils.metadata_routing.UNCHANGED</span></code>) retains the existing request. This allows you to change the request for some parameters and not others.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 1.3.</span></p> </div> <div class="admonition note"> <p class="admonition-title">Note</p> <p>This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a <a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>. Otherwise it has no effect.</p> </div> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>threshold</strong><span class="classifier">str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED</span></dt><dd><p>Metadata routing for <code class="docutils literal notranslate"><span class="pre">threshold</span></code> parameter in <code class="docutils literal notranslate"><span class="pre">inverse_transform</span></code>.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>The updated object.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.set_output"> <span class="sig-name descname"><span class="pre">set_output</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">transform</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/utils/_set_output.py#L346"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.set_output" title="Link to this definition">¶</a></dt> <dd><p>Set output container.</p> <p>See <a class="reference internal" href="../../auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py"><span class="std std-ref">Introducing the set_output API</span></a> for an example on how to use the API.</p> <dl class="field-list"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl> <dt><strong>transform</strong><span class="classifier">{“default”, “pandas”}, default=None</span></dt><dd><p>Configure output of <code class="docutils literal notranslate"><span class="pre">transform</span></code> and <code class="docutils literal notranslate"><span class="pre">fit_transform</span></code>.</p> <ul class="simple"> <li><p><code class="docutils literal notranslate"><span class="pre">"default"</span></code>: Default output format of a transformer</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">"pandas"</span></code>: DataFrame output</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">"polars"</span></code>: Polars output</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">None</span></code>: Transform configuration is unchanged</p></li> </ul> <div class="versionadded"> <p><span class="versionmodified added">New in version 1.4: </span><code class="docutils literal notranslate"><span class="pre">"polars"</span></code> option was added.</p> </div> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">estimator instance</span></dt><dd><p>Estimator instance.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.set_params"> <span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/base.py#L202"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.set_params" title="Link to this definition">¶</a></dt> <dd><p>Set the parameters of this estimator.</p> <p>The method works on simple estimators as well as on nested objects (such as <a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>). The latter have parameters of the form <code class="docutils literal notranslate"><span class="pre"><component>__<parameter></span></code> so that it’s possible to update each component of a nested object.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>**params</strong><span class="classifier">dict</span></dt><dd><p>Estimator parameters.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">estimator instance</span></dt><dd><p>Estimator instance.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.preprocessing.LabelBinarizer.transform"> <span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1cb6e2a65/sklearn/preprocessing/_label.py#L331"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.preprocessing.LabelBinarizer.transform" title="Link to this definition">¶</a></dt> <dd><p>Transform multi-class labels to binary labels.</p> <p>The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>y</strong><span class="classifier">{array, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)</span></dt><dd><p>Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>Y</strong><span class="classifier">{ndarray, sparse matrix} of shape (n_samples, n_classes)</span></dt><dd><p>Shape will be (n_samples, 1) for binary problems. Sparse matrix will be of CSR format.</p> </dd> </dl> </dd> </dl> </dd></dl> </dd></dl> <section id="examples-using-sklearn-preprocessing-labelbinarizer"> <h2>Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.preprocessing.LabelBinarizer</span></code><a class="headerlink" href="#examples-using-sklearn-preprocessing-labelbinarizer" title="Link to this heading">¶</a></h2> <div class="sphx-glr-thumbnails"><div class="sphx-glr-thumbcontainer" tooltip="This example describes the use of the Receiver Operating Characteristic (ROC) metric to evaluat..."><img alt="" src="../../_images/sphx_glr_plot_roc_thumb.png" /> <p><a class="reference internal" href="../../auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py"><span class="std std-ref">Multiclass Receiver Operating Characteristic (ROC)</span></a></p> <div class="sphx-glr-thumbnail-title">Multiclass Receiver Operating Characteristic (ROC)</div> </div></div><div class="clearer"></div></section> </section> </div> <div class="container"> <footer class="sk-content-footer"> © 2007 - 2023, scikit-learn developers (BSD License). <a href="../../_sources/modules/generated/sklearn.preprocessing.LabelBinarizer.rst.txt" rel="nofollow">Show this page source</a> </footer> </div> </div> </div> <script src="../../_static/js/vendor/bootstrap.min.js"></script> <script> window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date; ga('create', 'UA-22606712-2', 'auto'); ga('set', 'anonymizeIp', true); ga('send', 'pageview'); </script> <script async src='https://www.google-analytics.com/analytics.js'></script> <script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js"> </script> <script src="../../_static/clipboard.min.js"></script> <script src="../../_static/copybutton.js"></script> <script> $(document).ready(function() { /* Add a [>>>] button on the top-right corner of code samples to hide * the >>> and ... prompts and the output and thus make the code * copyable. */ var div = $('.highlight-python .highlight,' + '.highlight-python3 .highlight,' + '.highlight-pycon .highlight,' + '.highlight-default .highlight') var pre = div.find('pre'); // get the styles from the current theme pre.parent().parent().css('position', 'relative'); // create and add the button to all the code blocks that contain >>> div.each(function(index) { var jthis = $(this); // tracebacks (.gt) contain bare text elements that need to be // wrapped in a span to work with .nextUntil() (see later) jthis.find('pre:has(.gt)').contents().filter(function() { return ((this.nodeType == 3) && (this.data.trim().length > 0)); }).wrap('<span>'); }); /*** Add permalink buttons next to glossary terms ***/ $('dl.glossary > dt[id]').append(function() { return ('<a class="headerlink" href="#' + this.getAttribute('id') + '" title="Permalink to this term">¶</a>'); }); }); </script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script> <script src="https://scikit-learn.org/versionwarning.js"></script> </body> </html>