<!DOCTYPE html> <html lang="en" data-content_root="../../" > <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" /> <meta property="og:title" content="BallTree" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://scikit-learn/stable/modules/generated/sklearn.neighbors.BallTree.html" /> <meta property="og:site_name" content="scikit-learn" /> <meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" /> <meta property="og:image:alt" content="scikit-learn" /> <title>BallTree — scikit-learn 1.6.dev0 documentation</title> <script data-cfasync="false"> document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; document.documentElement.dataset.theme = localStorage.getItem("theme") || ""; </script> <!-- Loaded before other Sphinx assets --> <link href="../../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" /> <link href="../../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" /> <link href="../../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" /> <link href="../../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" /> <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" /> <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" /> <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" /> <link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=a746c00c" /> <link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" /> <link rel="stylesheet" type="text/css" href="../../_static/plot_directive.css" /> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" /> <link rel="stylesheet" type="text/css" href="../../_static/jupyterlite_sphinx.css?v=ca70e7f1" /> <link rel="stylesheet" type="text/css" href="../../_static/sg_gallery.css?v=d2d258e8" /> <link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-binder.css?v=f4aeca0c" /> <link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-dataframe.css?v=2082cf3c" /> <link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-rendered-html.css?v=1277b6f3" /> <link rel="stylesheet" type="text/css" href="../../_static/sphinx-design.min.css?v=95c83b7e" /> <link rel="stylesheet" type="text/css" href="../../_static/styles/api.css?v=b0444f25" /> <link rel="stylesheet" type="text/css" href="../../_static/styles/colors.css?v=cc94ab7d" /> <link rel="stylesheet" type="text/css" href="../../_static/styles/custom.css?v=e340c087" /> <!-- Pre-loaded scripts that we'll load fully later --> <link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" /> <link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" /> <script src="../../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script> <script src="../../_static/documentation_options.js?v=d875d36e"></script> <script src="../../_static/doctools.js?v=9a2dae69"></script> <script src="../../_static/sphinx_highlight.js?v=dc90522c"></script> <script src="../../_static/clipboard.min.js?v=a7894cd8"></script> <script src="../../_static/copybutton.js?v=97f0b27d"></script> <script src="../../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script> <script src="../../_static/design-tabs.js?v=f930bc37"></script> <script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script> <script>DOCUMENTATION_OPTIONS.pagename = 'modules/generated/sklearn.neighbors.BallTree';</script> <script> DOCUMENTATION_OPTIONS.theme_version = '0.15.4'; DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json'; DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.6.dev0'; DOCUMENTATION_OPTIONS.show_version_warning_banner = true; </script> <script src="../../_static/scripts/dropdown.js?v=e2048168"></script> <script src="../../_static/scripts/version-switcher.js?v=a6dd8357"></script> <link rel="icon" href="../../_static/favicon.ico"/> <link rel="author" title="About these documents" href="../../about.html" /> <link rel="search" title="Search" href="../../search.html" /> <link rel="next" title="KDTree" href="sklearn.neighbors.KDTree.html" /> <link rel="prev" title="sklearn.neighbors" href="../../api/sklearn.neighbors.html" /> <meta name="viewport" content="width=device-width, initial-scale=1"/> <meta name="docsearch:language" content="en"/> </head> <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> <div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div> <div id="pst-scroll-pixel-helper"></div> <button type="button" class="btn rounded-pill" id="pst-back-to-top"> <i class="fa-solid fa-arrow-up"></i>Back to top</button> <input type="checkbox" class="sidebar-toggle" id="pst-primary-sidebar-checkbox"/> <label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label> <input type="checkbox" class="sidebar-toggle" id="pst-secondary-sidebar-checkbox"/> <label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label> <div class="search-button__wrapper"> <div class="search-button__overlay"></div> <div class="search-button__search-container"> <form class="bd-search d-flex align-items-center" action="../../search.html" method="get"> <i class="fa-solid fa-magnifying-glass"></i> <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/> <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> </form></div> </div> <div class="pst-async-banner-revealer d-none"> <aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside> </div> <header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none"> <div class="bd-header__inner bd-page-width"> <button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation"> <span class="fa-solid fa-bars"></span> </button> <div class=" navbar-header-items__start"> <div class="navbar-item"> <a class="navbar-brand logo" href="../../index.html"> <img src="../../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/> <script>document.write(`<img src="../../_static/scikit-learn-logo-small.png" class="logo__image only-dark" alt="scikit-learn homepage"/>`);</script> </a></div> </div> <div class=" navbar-header-items"> <div class="me-auto navbar-header-items__center"> <div class="navbar-item"> <nav> <ul class="bd-navbar-elements navbar-nav"> <li class="nav-item "> <a class="nav-link nav-internal" href="../../install.html"> Install </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../user_guide.html"> User Guide </a> </li> <li class="nav-item current active"> <a class="nav-link nav-internal" href="../../api/index.html"> API </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../auto_examples/index.html"> Examples </a> </li> <li class="nav-item "> <a class="nav-link nav-external" href="https://blog.scikit-learn.org/"> Community </a> </li> <li class="nav-item dropdown"> <button class="btn dropdown-toggle nav-item" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-controls="pst-nav-more-links"> More </button> <ul id="pst-nav-more-links" class="dropdown-menu"> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../getting_started.html"> Getting Started </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../whats_new.html"> Release History </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../glossary.html"> Glossary </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../developers/index.html"> Development </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../faq.html"> FAQ </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../support.html"> Support </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../related_projects.html"> Related Projects </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../roadmap.html"> Roadmap </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../governance.html"> Governance </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../about.html"> About us </a> </li> </ul> </li> </ul> </nav></div> </div> <div class="navbar-header-items__end"> <div class="navbar-item navbar-persistent--container"> <script> document.write(` <button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> <i class="fa-solid fa-magnifying-glass fa-lg"></i> </button> `); </script> </div> <div class="navbar-item"> <script> document.write(` <button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> <i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i> <i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i> <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i> </button> `); </script></div> <div class="navbar-item"><ul class="navbar-icon-links" aria-label="Icon Links"> <li class="nav-item"> <a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i> <span class="sr-only">GitHub</span></a> </li> </ul></div> <div class="navbar-item"> <script> document.write(` <div class="version-switcher__container dropdown"> <button id="pst-version-switcher-button-2" type="button" class="version-switcher__button btn btn-sm dropdown-toggle" data-bs-toggle="dropdown" aria-haspopup="listbox" aria-controls="pst-version-switcher-list-2" aria-label="Version switcher list" > Choose version <!-- this text may get changed later by javascript --> <span class="caret"></span> </button> <div id="pst-version-switcher-list-2" class="version-switcher__menu dropdown-menu list-group-flush py-0" role="listbox" aria-labelledby="pst-version-switcher-button-2"> <!-- dropdown will be populated by javascript on page load --> </div> </div> `); </script></div> </div> </div> <div class="navbar-persistent--mobile"> <script> document.write(` <button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> <i class="fa-solid fa-magnifying-glass fa-lg"></i> </button> `); </script> </div> <button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page"> <span class="fa-solid fa-outdent"></span> </button> </div> </header> <div class="bd-container"> <div class="bd-container__inner bd-page-width"> <div class="bd-sidebar-primary bd-sidebar"> <div class="sidebar-header-items sidebar-primary__section"> <div class="sidebar-header-items__center"> <div class="navbar-item"> <nav> <ul class="bd-navbar-elements navbar-nav"> <li class="nav-item "> <a class="nav-link nav-internal" href="../../install.html"> Install </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../user_guide.html"> User Guide </a> </li> <li class="nav-item current active"> <a class="nav-link nav-internal" href="../../api/index.html"> API </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../auto_examples/index.html"> Examples </a> </li> <li class="nav-item "> <a class="nav-link nav-external" href="https://blog.scikit-learn.org/"> Community </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../getting_started.html"> Getting Started </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../whats_new.html"> Release History </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../glossary.html"> Glossary </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../developers/index.html"> Development </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../faq.html"> FAQ </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../support.html"> Support </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../related_projects.html"> Related Projects </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../roadmap.html"> Roadmap </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../governance.html"> Governance </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../about.html"> About us </a> </li> </ul> </nav></div> </div> <div class="sidebar-header-items__end"> <div class="navbar-item"> <script> document.write(` <button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> <i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i> <i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i> <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i> </button> `); </script></div> <div class="navbar-item"><ul class="navbar-icon-links" aria-label="Icon Links"> <li class="nav-item"> <a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i> <span class="sr-only">GitHub</span></a> </li> </ul></div> <div class="navbar-item"> <script> document.write(` <div class="version-switcher__container dropdown"> <button id="pst-version-switcher-button-3" type="button" class="version-switcher__button btn btn-sm dropdown-toggle" data-bs-toggle="dropdown" aria-haspopup="listbox" aria-controls="pst-version-switcher-list-3" aria-label="Version switcher list" > Choose version <!-- this text may get changed later by javascript --> <span class="caret"></span> </button> <div id="pst-version-switcher-list-3" class="version-switcher__menu dropdown-menu list-group-flush py-0" role="listbox" aria-labelledby="pst-version-switcher-button-3"> <!-- dropdown will be populated by javascript on page load --> </div> </div> `); </script></div> </div> </div> <div class="sidebar-primary-items__start sidebar-primary__section"> <div class="sidebar-primary-item"> <nav class="bd-docs-nav bd-links" aria-label="Section Navigation"> <p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p> <div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav"> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.html">sklearn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.config_context.html">config_context</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.get_config.html">get_config</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.set_config.html">set_config</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.show_versions.html">show_versions</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.base.html">sklearn.base</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.BaseEstimator.html">BaseEstimator</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.BiclusterMixin.html">BiclusterMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.ClassNamePrefixFeaturesOutMixin.html">ClassNamePrefixFeaturesOutMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.ClassifierMixin.html">ClassifierMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.ClusterMixin.html">ClusterMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.DensityMixin.html">DensityMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.MetaEstimatorMixin.html">MetaEstimatorMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.OneToOneFeatureMixin.html">OneToOneFeatureMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.OutlierMixin.html">OutlierMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.RegressorMixin.html">RegressorMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.TransformerMixin.html">TransformerMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.clone.html">clone</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.is_classifier.html">is_classifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.is_clusterer.html">is_clusterer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.is_regressor.html">is_regressor</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.calibration.html">sklearn.calibration</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.calibration.CalibratedClassifierCV.html">CalibratedClassifierCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.calibration.calibration_curve.html">calibration_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.calibration.CalibrationDisplay.html">CalibrationDisplay</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.cluster.html">sklearn.cluster</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.AffinityPropagation.html">AffinityPropagation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.AgglomerativeClustering.html">AgglomerativeClustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.Birch.html">Birch</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.BisectingKMeans.html">BisectingKMeans</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.DBSCAN.html">DBSCAN</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.FeatureAgglomeration.html">FeatureAgglomeration</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.HDBSCAN.html">HDBSCAN</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.KMeans.html">KMeans</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.MeanShift.html">MeanShift</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.MiniBatchKMeans.html">MiniBatchKMeans</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.OPTICS.html">OPTICS</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.SpectralBiclustering.html">SpectralBiclustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.SpectralClustering.html">SpectralClustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.SpectralCoclustering.html">SpectralCoclustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.affinity_propagation.html">affinity_propagation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.cluster_optics_dbscan.html">cluster_optics_dbscan</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.cluster_optics_xi.html">cluster_optics_xi</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.compute_optics_graph.html">compute_optics_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="dbscan-function.html">dbscan</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.estimate_bandwidth.html">estimate_bandwidth</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.k_means.html">k_means</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.kmeans_plusplus.html">kmeans_plusplus</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.mean_shift.html">mean_shift</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.spectral_clustering.html">spectral_clustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.ward_tree.html">ward_tree</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.compose.html">sklearn.compose</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.compose.ColumnTransformer.html">ColumnTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.compose.TransformedTargetRegressor.html">TransformedTargetRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.compose.make_column_selector.html">make_column_selector</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.compose.make_column_transformer.html">make_column_transformer</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.covariance.html">sklearn.covariance</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.EllipticEnvelope.html">EllipticEnvelope</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.EmpiricalCovariance.html">EmpiricalCovariance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.GraphicalLasso.html">GraphicalLasso</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.GraphicalLassoCV.html">GraphicalLassoCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.LedoitWolf.html">LedoitWolf</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.MinCovDet.html">MinCovDet</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.OAS.html">OAS</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.ShrunkCovariance.html">ShrunkCovariance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.empirical_covariance.html">empirical_covariance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.graphical_lasso.html">graphical_lasso</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.ledoit_wolf.html">ledoit_wolf</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.ledoit_wolf_shrinkage.html">ledoit_wolf_shrinkage</a></li> <li class="toctree-l2"><a class="reference internal" href="oas-function.html">oas</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.shrunk_covariance.html">shrunk_covariance</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.cross_decomposition.html">sklearn.cross_decomposition</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.cross_decomposition.CCA.html">CCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cross_decomposition.PLSCanonical.html">PLSCanonical</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cross_decomposition.PLSRegression.html">PLSRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cross_decomposition.PLSSVD.html">PLSSVD</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.datasets.html">sklearn.datasets</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.clear_data_home.html">clear_data_home</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.dump_svmlight_file.html">dump_svmlight_file</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_20newsgroups.html">fetch_20newsgroups</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_20newsgroups_vectorized.html">fetch_20newsgroups_vectorized</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_california_housing.html">fetch_california_housing</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_covtype.html">fetch_covtype</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_file.html">fetch_file</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_kddcup99.html">fetch_kddcup99</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_lfw_pairs.html">fetch_lfw_pairs</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_lfw_people.html">fetch_lfw_people</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_olivetti_faces.html">fetch_olivetti_faces</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_openml.html">fetch_openml</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_rcv1.html">fetch_rcv1</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_species_distributions.html">fetch_species_distributions</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.get_data_home.html">get_data_home</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_breast_cancer.html">load_breast_cancer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_diabetes.html">load_diabetes</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_digits.html">load_digits</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_files.html">load_files</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_iris.html">load_iris</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_linnerud.html">load_linnerud</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_sample_image.html">load_sample_image</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_sample_images.html">load_sample_images</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_svmlight_file.html">load_svmlight_file</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_svmlight_files.html">load_svmlight_files</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_wine.html">load_wine</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_biclusters.html">make_biclusters</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_blobs.html">make_blobs</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_checkerboard.html">make_checkerboard</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_circles.html">make_circles</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_classification.html">make_classification</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_friedman1.html">make_friedman1</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_friedman2.html">make_friedman2</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_friedman3.html">make_friedman3</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_gaussian_quantiles.html">make_gaussian_quantiles</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_hastie_10_2.html">make_hastie_10_2</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_low_rank_matrix.html">make_low_rank_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_moons.html">make_moons</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_multilabel_classification.html">make_multilabel_classification</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_regression.html">make_regression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_s_curve.html">make_s_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_sparse_coded_signal.html">make_sparse_coded_signal</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_sparse_spd_matrix.html">make_sparse_spd_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_sparse_uncorrelated.html">make_sparse_uncorrelated</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_spd_matrix.html">make_spd_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_swiss_roll.html">make_swiss_roll</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.decomposition.html">sklearn.decomposition</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.DictionaryLearning.html">DictionaryLearning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.FactorAnalysis.html">FactorAnalysis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.FastICA.html">FastICA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.IncrementalPCA.html">IncrementalPCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.KernelPCA.html">KernelPCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.LatentDirichletAllocation.html">LatentDirichletAllocation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.MiniBatchDictionaryLearning.html">MiniBatchDictionaryLearning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.MiniBatchNMF.html">MiniBatchNMF</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.MiniBatchSparsePCA.html">MiniBatchSparsePCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.NMF.html">NMF</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.PCA.html">PCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.SparseCoder.html">SparseCoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.SparsePCA.html">SparsePCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.TruncatedSVD.html">TruncatedSVD</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.dict_learning.html">dict_learning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.dict_learning_online.html">dict_learning_online</a></li> <li class="toctree-l2"><a class="reference internal" href="fastica-function.html">fastica</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.non_negative_factorization.html">non_negative_factorization</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.sparse_encode.html">sparse_encode</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.discriminant_analysis.html">sklearn.discriminant_analysis</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html">LinearDiscriminantAnalysis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html">QuadraticDiscriminantAnalysis</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.dummy.html">sklearn.dummy</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.dummy.DummyClassifier.html">DummyClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.dummy.DummyRegressor.html">DummyRegressor</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.ensemble.html">sklearn.ensemble</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.AdaBoostClassifier.html">AdaBoostClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.AdaBoostRegressor.html">AdaBoostRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.BaggingClassifier.html">BaggingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.BaggingRegressor.html">BaggingRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.ExtraTreesClassifier.html">ExtraTreesClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.ExtraTreesRegressor.html">ExtraTreesRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.GradientBoostingClassifier.html">GradientBoostingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.GradientBoostingRegressor.html">GradientBoostingRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.HistGradientBoostingClassifier.html">HistGradientBoostingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.HistGradientBoostingRegressor.html">HistGradientBoostingRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.IsolationForest.html">IsolationForest</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.RandomForestClassifier.html">RandomForestClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.RandomForestRegressor.html">RandomForestRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.RandomTreesEmbedding.html">RandomTreesEmbedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.StackingClassifier.html">StackingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.StackingRegressor.html">StackingRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.VotingClassifier.html">VotingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.VotingRegressor.html">VotingRegressor</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.exceptions.html">sklearn.exceptions</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.ConvergenceWarning.html">ConvergenceWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.DataConversionWarning.html">DataConversionWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.DataDimensionalityWarning.html">DataDimensionalityWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.EfficiencyWarning.html">EfficiencyWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.FitFailedWarning.html">FitFailedWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.InconsistentVersionWarning.html">InconsistentVersionWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.NotFittedError.html">NotFittedError</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.UndefinedMetricWarning.html">UndefinedMetricWarning</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.experimental.html">sklearn.experimental</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.experimental.enable_halving_search_cv.html">enable_halving_search_cv</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.experimental.enable_iterative_imputer.html">enable_iterative_imputer</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.feature_extraction.html">sklearn.feature_extraction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.DictVectorizer.html">DictVectorizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.FeatureHasher.html">FeatureHasher</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.PatchExtractor.html">PatchExtractor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.extract_patches_2d.html">extract_patches_2d</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.grid_to_graph.html">grid_to_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.img_to_graph.html">img_to_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.reconstruct_from_patches_2d.html">reconstruct_from_patches_2d</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.text.CountVectorizer.html">CountVectorizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.text.HashingVectorizer.html">HashingVectorizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.text.TfidfTransformer.html">TfidfTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.text.TfidfVectorizer.html">TfidfVectorizer</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.feature_selection.html">sklearn.feature_selection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.GenericUnivariateSelect.html">GenericUnivariateSelect</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.RFE.html">RFE</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.RFECV.html">RFECV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectFdr.html">SelectFdr</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectFpr.html">SelectFpr</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectFromModel.html">SelectFromModel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectFwe.html">SelectFwe</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectKBest.html">SelectKBest</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectPercentile.html">SelectPercentile</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectorMixin.html">SelectorMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SequentialFeatureSelector.html">SequentialFeatureSelector</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.VarianceThreshold.html">VarianceThreshold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.chi2.html">chi2</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.f_classif.html">f_classif</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.f_regression.html">f_regression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.mutual_info_classif.html">mutual_info_classif</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.mutual_info_regression.html">mutual_info_regression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.r_regression.html">r_regression</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.frozen.html">sklearn.frozen</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.frozen.FrozenEstimator.html">FrozenEstimator</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.gaussian_process.html">sklearn.gaussian_process</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.GaussianProcessClassifier.html">GaussianProcessClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.GaussianProcessRegressor.html">GaussianProcessRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.CompoundKernel.html">CompoundKernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.ConstantKernel.html">ConstantKernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.DotProduct.html">DotProduct</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.ExpSineSquared.html">ExpSineSquared</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Exponentiation.html">Exponentiation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Hyperparameter.html">Hyperparameter</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Kernel.html">Kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Matern.html">Matern</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.PairwiseKernel.html">PairwiseKernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Product.html">Product</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.RBF.html">RBF</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.RationalQuadratic.html">RationalQuadratic</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Sum.html">Sum</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.WhiteKernel.html">WhiteKernel</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.impute.html">sklearn.impute</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.impute.IterativeImputer.html">IterativeImputer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.impute.KNNImputer.html">KNNImputer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.impute.MissingIndicator.html">MissingIndicator</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.impute.SimpleImputer.html">SimpleImputer</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.inspection.html">sklearn.inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.inspection.partial_dependence.html">partial_dependence</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.inspection.permutation_importance.html">permutation_importance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.inspection.DecisionBoundaryDisplay.html">DecisionBoundaryDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.inspection.PartialDependenceDisplay.html">PartialDependenceDisplay</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.isotonic.html">sklearn.isotonic</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.isotonic.IsotonicRegression.html">IsotonicRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.isotonic.check_increasing.html">check_increasing</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.isotonic.isotonic_regression.html">isotonic_regression</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.kernel_approximation.html">sklearn.kernel_approximation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.AdditiveChi2Sampler.html">AdditiveChi2Sampler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.Nystroem.html">Nystroem</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.PolynomialCountSketch.html">PolynomialCountSketch</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.RBFSampler.html">RBFSampler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.SkewedChi2Sampler.html">SkewedChi2Sampler</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.kernel_ridge.html">sklearn.kernel_ridge</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_ridge.KernelRidge.html">KernelRidge</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.linear_model.html">sklearn.linear_model</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LogisticRegression.html">LogisticRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LogisticRegressionCV.html">LogisticRegressionCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.PassiveAggressiveClassifier.html">PassiveAggressiveClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.Perceptron.html">Perceptron</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.RidgeClassifier.html">RidgeClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.RidgeClassifierCV.html">RidgeClassifierCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.SGDClassifier.html">SGDClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.SGDOneClassSVM.html">SGDOneClassSVM</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LinearRegression.html">LinearRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.Ridge.html">Ridge</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.RidgeCV.html">RidgeCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.SGDRegressor.html">SGDRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.ElasticNet.html">ElasticNet</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.ElasticNetCV.html">ElasticNetCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.Lars.html">Lars</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LarsCV.html">LarsCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.Lasso.html">Lasso</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LassoCV.html">LassoCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LassoLars.html">LassoLars</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LassoLarsCV.html">LassoLarsCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LassoLarsIC.html">LassoLarsIC</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.OrthogonalMatchingPursuit.html">OrthogonalMatchingPursuit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.OrthogonalMatchingPursuitCV.html">OrthogonalMatchingPursuitCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.ARDRegression.html">ARDRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.BayesianRidge.html">BayesianRidge</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.MultiTaskElasticNet.html">MultiTaskElasticNet</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.MultiTaskElasticNetCV.html">MultiTaskElasticNetCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.MultiTaskLasso.html">MultiTaskLasso</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.MultiTaskLassoCV.html">MultiTaskLassoCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.HuberRegressor.html">HuberRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.QuantileRegressor.html">QuantileRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.RANSACRegressor.html">RANSACRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.TheilSenRegressor.html">TheilSenRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.GammaRegressor.html">GammaRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.PoissonRegressor.html">PoissonRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.TweedieRegressor.html">TweedieRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.PassiveAggressiveRegressor.html">PassiveAggressiveRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.enet_path.html">enet_path</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.lars_path.html">lars_path</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.lars_path_gram.html">lars_path_gram</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.lasso_path.html">lasso_path</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.orthogonal_mp.html">orthogonal_mp</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.orthogonal_mp_gram.html">orthogonal_mp_gram</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.ridge_regression.html">ridge_regression</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.manifold.html">sklearn.manifold</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.Isomap.html">Isomap</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.LocallyLinearEmbedding.html">LocallyLinearEmbedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.MDS.html">MDS</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.SpectralEmbedding.html">SpectralEmbedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.TSNE.html">TSNE</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.locally_linear_embedding.html">locally_linear_embedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.smacof.html">smacof</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.spectral_embedding.html">spectral_embedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.trustworthiness.html">trustworthiness</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.metrics.html">sklearn.metrics</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.check_scoring.html">check_scoring</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.get_scorer.html">get_scorer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.get_scorer_names.html">get_scorer_names</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.make_scorer.html">make_scorer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.accuracy_score.html">accuracy_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.auc.html">auc</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.average_precision_score.html">average_precision_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.balanced_accuracy_score.html">balanced_accuracy_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.brier_score_loss.html">brier_score_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.class_likelihood_ratios.html">class_likelihood_ratios</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.classification_report.html">classification_report</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.cohen_kappa_score.html">cohen_kappa_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.confusion_matrix.html">confusion_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.d2_log_loss_score.html">d2_log_loss_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.dcg_score.html">dcg_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.det_curve.html">det_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.f1_score.html">f1_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.fbeta_score.html">fbeta_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.hamming_loss.html">hamming_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.hinge_loss.html">hinge_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.jaccard_score.html">jaccard_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.log_loss.html">log_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.matthews_corrcoef.html">matthews_corrcoef</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.multilabel_confusion_matrix.html">multilabel_confusion_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.ndcg_score.html">ndcg_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.precision_recall_curve.html">precision_recall_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.precision_recall_fscore_support.html">precision_recall_fscore_support</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.precision_score.html">precision_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.recall_score.html">recall_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.roc_auc_score.html">roc_auc_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.roc_curve.html">roc_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.top_k_accuracy_score.html">top_k_accuracy_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.zero_one_loss.html">zero_one_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.d2_absolute_error_score.html">d2_absolute_error_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.d2_pinball_score.html">d2_pinball_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.d2_tweedie_score.html">d2_tweedie_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.explained_variance_score.html">explained_variance_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.max_error.html">max_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_absolute_error.html">mean_absolute_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_absolute_percentage_error.html">mean_absolute_percentage_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_gamma_deviance.html">mean_gamma_deviance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_pinball_loss.html">mean_pinball_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_poisson_deviance.html">mean_poisson_deviance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_squared_error.html">mean_squared_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_squared_log_error.html">mean_squared_log_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_tweedie_deviance.html">mean_tweedie_deviance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.median_absolute_error.html">median_absolute_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.r2_score.html">r2_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.root_mean_squared_error.html">root_mean_squared_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.root_mean_squared_log_error.html">root_mean_squared_log_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.coverage_error.html">coverage_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.label_ranking_average_precision_score.html">label_ranking_average_precision_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.label_ranking_loss.html">label_ranking_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.adjusted_mutual_info_score.html">adjusted_mutual_info_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.adjusted_rand_score.html">adjusted_rand_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.calinski_harabasz_score.html">calinski_harabasz_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.cluster.contingency_matrix.html">contingency_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.cluster.pair_confusion_matrix.html">pair_confusion_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.completeness_score.html">completeness_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.davies_bouldin_score.html">davies_bouldin_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.fowlkes_mallows_score.html">fowlkes_mallows_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.homogeneity_completeness_v_measure.html">homogeneity_completeness_v_measure</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.homogeneity_score.html">homogeneity_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mutual_info_score.html">mutual_info_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.normalized_mutual_info_score.html">normalized_mutual_info_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.rand_score.html">rand_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.silhouette_samples.html">silhouette_samples</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.silhouette_score.html">silhouette_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.v_measure_score.html">v_measure_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.consensus_score.html">consensus_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.DistanceMetric.html">DistanceMetric</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.additive_chi2_kernel.html">additive_chi2_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.chi2_kernel.html">chi2_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.cosine_distances.html">cosine_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.cosine_similarity.html">cosine_similarity</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.distance_metrics.html">distance_metrics</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.euclidean_distances.html">euclidean_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.haversine_distances.html">haversine_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.kernel_metrics.html">kernel_metrics</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.laplacian_kernel.html">laplacian_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.linear_kernel.html">linear_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.manhattan_distances.html">manhattan_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.nan_euclidean_distances.html">nan_euclidean_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.paired_cosine_distances.html">paired_cosine_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.paired_distances.html">paired_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.paired_euclidean_distances.html">paired_euclidean_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.paired_manhattan_distances.html">paired_manhattan_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.pairwise_kernels.html">pairwise_kernels</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.polynomial_kernel.html">polynomial_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.rbf_kernel.html">rbf_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.sigmoid_kernel.html">sigmoid_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise_distances.html">pairwise_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise_distances_argmin.html">pairwise_distances_argmin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise_distances_argmin_min.html">pairwise_distances_argmin_min</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise_distances_chunked.html">pairwise_distances_chunked</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.ConfusionMatrixDisplay.html">ConfusionMatrixDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.DetCurveDisplay.html">DetCurveDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.PrecisionRecallDisplay.html">PrecisionRecallDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.PredictionErrorDisplay.html">PredictionErrorDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.RocCurveDisplay.html">RocCurveDisplay</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.mixture.html">sklearn.mixture</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.mixture.BayesianGaussianMixture.html">BayesianGaussianMixture</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.mixture.GaussianMixture.html">GaussianMixture</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.model_selection.html">sklearn.model_selection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.GroupKFold.html">GroupKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.GroupShuffleSplit.html">GroupShuffleSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.KFold.html">KFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LeaveOneGroupOut.html">LeaveOneGroupOut</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LeaveOneOut.html">LeaveOneOut</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LeavePGroupsOut.html">LeavePGroupsOut</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LeavePOut.html">LeavePOut</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.PredefinedSplit.html">PredefinedSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.RepeatedKFold.html">RepeatedKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.RepeatedStratifiedKFold.html">RepeatedStratifiedKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.ShuffleSplit.html">ShuffleSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.StratifiedGroupKFold.html">StratifiedGroupKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.StratifiedKFold.html">StratifiedKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.StratifiedShuffleSplit.html">StratifiedShuffleSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.TimeSeriesSplit.html">TimeSeriesSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.check_cv.html">check_cv</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.train_test_split.html">train_test_split</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.GridSearchCV.html">GridSearchCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.HalvingGridSearchCV.html">HalvingGridSearchCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.HalvingRandomSearchCV.html">HalvingRandomSearchCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.ParameterGrid.html">ParameterGrid</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.ParameterSampler.html">ParameterSampler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.RandomizedSearchCV.html">RandomizedSearchCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.FixedThresholdClassifier.html">FixedThresholdClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.TunedThresholdClassifierCV.html">TunedThresholdClassifierCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.cross_val_predict.html">cross_val_predict</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.cross_val_score.html">cross_val_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.cross_validate.html">cross_validate</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.learning_curve.html">learning_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.permutation_test_score.html">permutation_test_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.validation_curve.html">validation_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LearningCurveDisplay.html">LearningCurveDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.ValidationCurveDisplay.html">ValidationCurveDisplay</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.multiclass.html">sklearn.multiclass</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.multiclass.OneVsOneClassifier.html">OneVsOneClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multiclass.OneVsRestClassifier.html">OneVsRestClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multiclass.OutputCodeClassifier.html">OutputCodeClassifier</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.multioutput.html">sklearn.multioutput</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.multioutput.ClassifierChain.html">ClassifierChain</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multioutput.MultiOutputClassifier.html">MultiOutputClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multioutput.MultiOutputRegressor.html">MultiOutputRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multioutput.RegressorChain.html">RegressorChain</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.naive_bayes.html">sklearn.naive_bayes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.BernoulliNB.html">BernoulliNB</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.CategoricalNB.html">CategoricalNB</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.ComplementNB.html">ComplementNB</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.GaussianNB.html">GaussianNB</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.MultinomialNB.html">MultinomialNB</a></li> </ul> </details></li> <li class="toctree-l1 current active has-children"><a class="reference internal" href="../../api/sklearn.neighbors.html">sklearn.neighbors</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current"> <li class="toctree-l2 current active"><a class="current reference internal" href="#">BallTree</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KDTree.html">KDTree</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KNeighborsClassifier.html">KNeighborsClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KNeighborsRegressor.html">KNeighborsRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KNeighborsTransformer.html">KNeighborsTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KernelDensity.html">KernelDensity</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.LocalOutlierFactor.html">LocalOutlierFactor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.NearestCentroid.html">NearestCentroid</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.NearestNeighbors.html">NearestNeighbors</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.NeighborhoodComponentsAnalysis.html">NeighborhoodComponentsAnalysis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.RadiusNeighborsClassifier.html">RadiusNeighborsClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.RadiusNeighborsRegressor.html">RadiusNeighborsRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.RadiusNeighborsTransformer.html">RadiusNeighborsTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.kneighbors_graph.html">kneighbors_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.radius_neighbors_graph.html">radius_neighbors_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.sort_graph_by_row_values.html">sort_graph_by_row_values</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.neural_network.html">sklearn.neural_network</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.neural_network.BernoulliRBM.html">BernoulliRBM</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neural_network.MLPClassifier.html">MLPClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neural_network.MLPRegressor.html">MLPRegressor</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.pipeline.html">sklearn.pipeline</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.pipeline.FeatureUnion.html">FeatureUnion</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.pipeline.Pipeline.html">Pipeline</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.pipeline.make_pipeline.html">make_pipeline</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.pipeline.make_union.html">make_union</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.preprocessing.html">sklearn.preprocessing</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.Binarizer.html">Binarizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.FunctionTransformer.html">FunctionTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.KBinsDiscretizer.html">KBinsDiscretizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.KernelCenterer.html">KernelCenterer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.LabelBinarizer.html">LabelBinarizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.LabelEncoder.html">LabelEncoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.MaxAbsScaler.html">MaxAbsScaler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.MinMaxScaler.html">MinMaxScaler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.MultiLabelBinarizer.html">MultiLabelBinarizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.Normalizer.html">Normalizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.OneHotEncoder.html">OneHotEncoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.OrdinalEncoder.html">OrdinalEncoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.PolynomialFeatures.html">PolynomialFeatures</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.PowerTransformer.html">PowerTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.QuantileTransformer.html">QuantileTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.RobustScaler.html">RobustScaler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.SplineTransformer.html">SplineTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.StandardScaler.html">StandardScaler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.TargetEncoder.html">TargetEncoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.add_dummy_feature.html">add_dummy_feature</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.binarize.html">binarize</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.label_binarize.html">label_binarize</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.maxabs_scale.html">maxabs_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.minmax_scale.html">minmax_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.normalize.html">normalize</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.power_transform.html">power_transform</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.quantile_transform.html">quantile_transform</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.robust_scale.html">robust_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.scale.html">scale</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.random_projection.html">sklearn.random_projection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.random_projection.GaussianRandomProjection.html">GaussianRandomProjection</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.random_projection.SparseRandomProjection.html">SparseRandomProjection</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.random_projection.johnson_lindenstrauss_min_dim.html">johnson_lindenstrauss_min_dim</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.semi_supervised.html">sklearn.semi_supervised</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.semi_supervised.LabelPropagation.html">LabelPropagation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.semi_supervised.LabelSpreading.html">LabelSpreading</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.semi_supervised.SelfTrainingClassifier.html">SelfTrainingClassifier</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.svm.html">sklearn.svm</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.LinearSVC.html">LinearSVC</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.LinearSVR.html">LinearSVR</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.NuSVC.html">NuSVC</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.NuSVR.html">NuSVR</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.OneClassSVM.html">OneClassSVM</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.SVC.html">SVC</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.SVR.html">SVR</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.l1_min_c.html">l1_min_c</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.tree.html">sklearn.tree</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.DecisionTreeClassifier.html">DecisionTreeClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.DecisionTreeRegressor.html">DecisionTreeRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.ExtraTreeClassifier.html">ExtraTreeClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.ExtraTreeRegressor.html">ExtraTreeRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.export_graphviz.html">export_graphviz</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.export_text.html">export_text</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.plot_tree.html">plot_tree</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.utils.html">sklearn.utils</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.Bunch.html">Bunch</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils._safe_indexing.html">_safe_indexing</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.as_float_array.html">as_float_array</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.assert_all_finite.html">assert_all_finite</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.deprecated.html">deprecated</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.estimator_html_repr.html">estimator_html_repr</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.gen_batches.html">gen_batches</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.gen_even_slices.html">gen_even_slices</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.indexable.html">indexable</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.murmurhash3_32.html">murmurhash3_32</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.resample.html">resample</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.safe_mask.html">safe_mask</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.safe_sqr.html">safe_sqr</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.shuffle.html">shuffle</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.Tags.html">Tags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.InputTags.html">InputTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.TargetTags.html">TargetTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.ClassifierTags.html">ClassifierTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.RegressorTags.html">RegressorTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.TransformerTags.html">TransformerTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.default_tags.html">default_tags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.get_tags.html">get_tags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_X_y.html">check_X_y</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_array.html">check_array</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_consistent_length.html">check_consistent_length</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_random_state.html">check_random_state</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_scalar.html">check_scalar</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.check_is_fitted.html">check_is_fitted</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.check_memory.html">check_memory</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.check_symmetric.html">check_symmetric</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.column_or_1d.html">column_or_1d</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.has_fit_parameter.html">has_fit_parameter</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.validate_data.html">validate_data</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metaestimators.available_if.html">available_if</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.class_weight.compute_class_weight.html">compute_class_weight</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.class_weight.compute_sample_weight.html">compute_sample_weight</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.multiclass.is_multilabel.html">is_multilabel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.multiclass.type_of_target.html">type_of_target</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.multiclass.unique_labels.html">unique_labels</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.density.html">density</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.fast_logdet.html">fast_logdet</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.randomized_range_finder.html">randomized_range_finder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.randomized_svd.html">randomized_svd</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.safe_sparse_dot.html">safe_sparse_dot</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.weighted_mode.html">weighted_mode</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.incr_mean_variance_axis.html">incr_mean_variance_axis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_column_scale.html">inplace_column_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_csr_column_scale.html">inplace_csr_column_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_row_scale.html">inplace_row_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_swap_column.html">inplace_swap_column</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_swap_row.html">inplace_swap_row</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.mean_variance_axis.html">mean_variance_axis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l1.html">inplace_csr_row_normalize_l1</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2.html">inplace_csr_row_normalize_l2</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.graph.single_source_shortest_path_length.html">single_source_shortest_path_length</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.random.sample_without_replacement.html">sample_without_replacement</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.arrayfuncs.min_pos.html">min_pos</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRequest.html">MetadataRequest</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRouter.html">MetadataRouter</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.MethodMapping.html">MethodMapping</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.get_routing_for_object.html">get_routing_for_object</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.process_routing.html">process_routing</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.discovery.all_displays.html">all_displays</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.discovery.all_estimators.html">all_estimators</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.discovery.all_functions.html">all_functions</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.estimator_checks.check_estimator.html">check_estimator</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.estimator_checks.parametrize_with_checks.html">parametrize_with_checks</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.parallel.Parallel.html">Parallel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.parallel.delayed.html">delayed</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/deprecated.html">Recently Deprecated</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.parallel_backend.html">parallel_backend</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.register_parallel_backend.html">register_parallel_backend</a></li> </ul> </details></li> </ul> </div> </nav></div> </div> <div class="sidebar-primary-items__end sidebar-primary__section"> </div> <div id="rtd-footer-container"></div> </div> <main id="main-content" class="bd-main" role="main"> <div class="bd-content"> <div class="bd-article-container"> <div class="bd-header-article d-print-none"> <div class="header-article-items header-article__inner"> <div class="header-article-items__start"> <div class="header-article-item"> <nav aria-label="Breadcrumb" class="d-print-none"> <ul class="bd-breadcrumbs"> <li class="breadcrumb-item breadcrumb-home"> <a href="../../index.html" class="nav-link" aria-label="Home"> <i class="fa-solid fa-home"></i> </a> </li> <li class="breadcrumb-item"><a href="../../api/index.html" class="nav-link">API Reference</a></li> <li class="breadcrumb-item"><a href="../../api/sklearn.neighbors.html" class="nav-link">sklearn.neighbors</a></li> <li class="breadcrumb-item active" aria-current="page">BallTree</li> </ul> </nav> </div> </div> </div> </div> <div id="searchbox"></div> <article class="bd-article"> <section id="balltree"> <h1>BallTree<a class="headerlink" href="#balltree" title="Link to this heading">#</a></h1> <dl class="py class"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree"> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sklearn.neighbors.</span></span><span class="sig-name descname"><span class="pre">BallTree</span></span><a class="headerlink" href="#sklearn.neighbors.BallTree" title="Link to this definition">#</a></dt> <dd><p>BallTree for fast generalized N-point problems</p> <p>Read more in the <a class="reference internal" href="../neighbors.html#unsupervised-neighbors"><span class="std std-ref">User Guide</span></a>.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>n_samples is the number of points in the data set, and n_features is the dimension of the parameter space. Note: if X is a C-contiguous array of doubles then data will not be copied. Otherwise, an internal copy will be made.</p> </dd> <dt><strong>leaf_size</strong><span class="classifier">positive int, default=40</span></dt><dd><p>Number of points at which to switch to brute-force. Changing leaf_size will not affect the results of a query, but can significantly impact the speed of a query and the memory required to store the constructed tree. The amount of memory needed to store the tree scales as approximately n_samples / leaf_size. For a specified <code class="docutils literal notranslate"><span class="pre">leaf_size</span></code>, a leaf node is guaranteed to satisfy <code class="docutils literal notranslate"><span class="pre">leaf_size</span> <span class="pre"><=</span> <span class="pre">n_points</span> <span class="pre"><=</span> <span class="pre">2</span> <span class="pre">*</span> <span class="pre">leaf_size</span></code>, except in the case that <code class="docutils literal notranslate"><span class="pre">n_samples</span> <span class="pre"><</span> <span class="pre">leaf_size</span></code>.</p> </dd> <dt><strong>metric</strong><span class="classifier">str or DistanceMetric64 object, default=’minkowski’</span></dt><dd><p>Metric to use for distance computation. Default is “minkowski”, which results in the standard Euclidean distance when p = 2. A list of valid metrics for BallTree is given by the attribute <code class="docutils literal notranslate"><span class="pre">valid_metrics</span></code>. See the documentation of <a class="reference external" href="https://docs.scipy.org/doc/scipy/reference/spatial.distance.html">scipy.spatial.distance</a> and the metrics listed in <a class="reference internal" href="sklearn.metrics.pairwise.distance_metrics.html#sklearn.metrics.pairwise.distance_metrics" title="sklearn.metrics.pairwise.distance_metrics"><code class="xref py py-class docutils literal notranslate"><span class="pre">distance_metrics</span></code></a> for more information on any distance metric.</p> </dd> <dt><strong>Additional keywords are passed to the distance metric class.</strong></dt><dd></dd> <dt><strong>Note: Callable functions in the metric parameter are NOT supported for KDTree</strong></dt><dd></dd> <dt><strong>and Ball Tree. Function call overhead will result in very poor performance.</strong></dt><dd></dd> </dl> </dd> <dt class="field-even">Attributes<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>data</strong><span class="classifier">memory view</span></dt><dd><p>The training data</p> </dd> <dt><strong>valid_metrics: list of str</strong></dt><dd><p>List of valid distance metrics.</p> </dd> </dl> </dd> </dl> <p class="rubric">Examples</p> <p>Query for k-nearest neighbors</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="kn">import</span> <span class="n">BallTree</span> <span class="gp">>>> </span><span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">random_sample</span><span class="p">((</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="c1"># 10 points in 3 dimensions</span> <span class="gp">>>> </span><span class="n">tree</span> <span class="o">=</span> <span class="n">BallTree</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">leaf_size</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">dist</span><span class="p">,</span> <span class="n">ind</span> <span class="o">=</span> <span class="n">tree</span><span class="o">.</span><span class="n">query</span><span class="p">(</span><span class="n">X</span><span class="p">[:</span><span class="mi">1</span><span class="p">],</span> <span class="n">k</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span> <span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">ind</span><span class="p">)</span> <span class="c1"># indices of 3 closest neighbors</span> <span class="go">[0 3 1]</span> <span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">dist</span><span class="p">)</span> <span class="c1"># distances to 3 closest neighbors</span> <span class="go">[ 0. 0.19662693 0.29473397]</span> </pre></div> </div> <p>Pickle and Unpickle a tree. Note that the state of the tree is saved in the pickle operation: the tree needs not be rebuilt upon unpickling.</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">pickle</span> <span class="gp">>>> </span><span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">random_sample</span><span class="p">((</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="c1"># 10 points in 3 dimensions</span> <span class="gp">>>> </span><span class="n">tree</span> <span class="o">=</span> <span class="n">BallTree</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">leaf_size</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">s</span> <span class="o">=</span> <span class="n">pickle</span><span class="o">.</span><span class="n">dumps</span><span class="p">(</span><span class="n">tree</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">tree_copy</span> <span class="o">=</span> <span class="n">pickle</span><span class="o">.</span><span class="n">loads</span><span class="p">(</span><span class="n">s</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">dist</span><span class="p">,</span> <span class="n">ind</span> <span class="o">=</span> <span class="n">tree_copy</span><span class="o">.</span><span class="n">query</span><span class="p">(</span><span class="n">X</span><span class="p">[:</span><span class="mi">1</span><span class="p">],</span> <span class="n">k</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span> <span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">ind</span><span class="p">)</span> <span class="c1"># indices of 3 closest neighbors</span> <span class="go">[0 3 1]</span> <span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">dist</span><span class="p">)</span> <span class="c1"># distances to 3 closest neighbors</span> <span class="go">[ 0. 0.19662693 0.29473397]</span> </pre></div> </div> <p>Query for neighbors within a given radius</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="gp">>>> </span><span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">random_sample</span><span class="p">((</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="c1"># 10 points in 3 dimensions</span> <span class="gp">>>> </span><span class="n">tree</span> <span class="o">=</span> <span class="n">BallTree</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">leaf_size</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> <span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">tree</span><span class="o">.</span><span class="n">query_radius</span><span class="p">(</span><span class="n">X</span><span class="p">[:</span><span class="mi">1</span><span class="p">],</span> <span class="n">r</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">count_only</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span> <span class="go">3</span> <span class="gp">>>> </span><span class="n">ind</span> <span class="o">=</span> <span class="n">tree</span><span class="o">.</span><span class="n">query_radius</span><span class="p">(</span><span class="n">X</span><span class="p">[:</span><span class="mi">1</span><span class="p">],</span> <span class="n">r</span><span class="o">=</span><span class="mf">0.3</span><span class="p">)</span> <span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">ind</span><span class="p">)</span> <span class="c1"># indices of neighbors within distance 0.3</span> <span class="go">[3 0 1]</span> </pre></div> </div> <p>Compute a gaussian kernel density estimate:</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="gp">>>> </span><span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">42</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">random_sample</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="gp">>>> </span><span class="n">tree</span> <span class="o">=</span> <span class="n">BallTree</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">tree</span><span class="o">.</span><span class="n">kernel_density</span><span class="p">(</span><span class="n">X</span><span class="p">[:</span><span class="mi">3</span><span class="p">],</span> <span class="n">h</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">kernel</span><span class="o">=</span><span class="s1">'gaussian'</span><span class="p">)</span> <span class="go">array([ 6.94114649, 7.83281226, 7.2071716 ])</span> </pre></div> </div> <p>Compute a two-point auto-correlation function</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="gp">>>> </span><span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">random_sample</span><span class="p">((</span><span class="mi">30</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="gp">>>> </span><span class="n">r</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">tree</span> <span class="o">=</span> <span class="n">BallTree</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">tree</span><span class="o">.</span><span class="n">two_point_correlation</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">r</span><span class="p">)</span> <span class="go">array([ 30, 62, 278, 580, 820])</span> </pre></div> </div> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree.get_arrays"> <span class="sig-name descname"><span class="pre">get_arrays</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#sklearn.neighbors.BallTree.get_arrays" title="Link to this definition">#</a></dt> <dd><p>Get data and node arrays.</p> <dl class="field-list simple"> <dt class="field-odd">Returns<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt>arrays: tuple of array</dt><dd><p>Arrays for storing tree data, index, node data and node bounds.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree.get_n_calls"> <span class="sig-name descname"><span class="pre">get_n_calls</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#sklearn.neighbors.BallTree.get_n_calls" title="Link to this definition">#</a></dt> <dd><p>Get number of calls.</p> <dl class="field-list simple"> <dt class="field-odd">Returns<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt>n_calls: int</dt><dd><p>number of distance computation calls</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree.get_tree_stats"> <span class="sig-name descname"><span class="pre">get_tree_stats</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#sklearn.neighbors.BallTree.get_tree_stats" title="Link to this definition">#</a></dt> <dd><p>Get tree status.</p> <dl class="field-list simple"> <dt class="field-odd">Returns<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt>tree_stats: tuple of int</dt><dd><p>(number of trims, number of leaves, number of splits)</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree.kernel_density"> <span class="sig-name descname"><span class="pre">kernel_density</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">h</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kernel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'gaussian'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">atol</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">rtol</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1E-8</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">breadth_first</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_log</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#sklearn.neighbors.BallTree.kernel_density" title="Link to this definition">#</a></dt> <dd><p>Compute the kernel density estimate at points X with the given kernel, using the distance metric specified at tree creation.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>An array of points to query. Last dimension should match dimension of training data.</p> </dd> <dt><strong>h</strong><span class="classifier">float</span></dt><dd><p>the bandwidth of the kernel</p> </dd> <dt><strong>kernel</strong><span class="classifier">str, default=”gaussian”</span></dt><dd><p>specify the kernel to use. Options are - ‘gaussian’ - ‘tophat’ - ‘epanechnikov’ - ‘exponential’ - ‘linear’ - ‘cosine’ Default is kernel = ‘gaussian’</p> </dd> <dt><strong>atol</strong><span class="classifier">float, default=0</span></dt><dd><p>Specify the desired absolute tolerance of the result. If the true result is <code class="docutils literal notranslate"><span class="pre">K_true</span></code>, then the returned result <code class="docutils literal notranslate"><span class="pre">K_ret</span></code> satisfies <code class="docutils literal notranslate"><span class="pre">abs(K_true</span> <span class="pre">-</span> <span class="pre">K_ret)</span> <span class="pre"><</span> <span class="pre">atol</span> <span class="pre">+</span> <span class="pre">rtol</span> <span class="pre">*</span> <span class="pre">K_ret</span></code> The default is zero (i.e. machine precision).</p> </dd> <dt><strong>rtol</strong><span class="classifier">float, default=1e-8</span></dt><dd><p>Specify the desired relative tolerance of the result. If the true result is <code class="docutils literal notranslate"><span class="pre">K_true</span></code>, then the returned result <code class="docutils literal notranslate"><span class="pre">K_ret</span></code> satisfies <code class="docutils literal notranslate"><span class="pre">abs(K_true</span> <span class="pre">-</span> <span class="pre">K_ret)</span> <span class="pre"><</span> <span class="pre">atol</span> <span class="pre">+</span> <span class="pre">rtol</span> <span class="pre">*</span> <span class="pre">K_ret</span></code> The default is <code class="docutils literal notranslate"><span class="pre">1e-8</span></code> (i.e. machine precision).</p> </dd> <dt><strong>breadth_first</strong><span class="classifier">bool, default=False</span></dt><dd><p>If True, use a breadth-first search. If False (default) use a depth-first search. Breadth-first is generally faster for compact kernels and/or high tolerances.</p> </dd> <dt><strong>return_log</strong><span class="classifier">bool, default=False</span></dt><dd><p>Return the logarithm of the result. This can be more accurate than returning the result itself for narrow kernels.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>density</strong><span class="classifier">ndarray of shape X.shape[:-1]</span></dt><dd><p>The array of (log)-density evaluations</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree.query"> <span class="sig-name descname"><span class="pre">query</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_distance</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dualtree</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">breadth_first</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#sklearn.neighbors.BallTree.query" title="Link to this definition">#</a></dt> <dd><p>query the tree for the k nearest neighbors</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>An array of points to query</p> </dd> <dt><strong>k</strong><span class="classifier">int, default=1</span></dt><dd><p>The number of nearest neighbors to return</p> </dd> <dt><strong>return_distance</strong><span class="classifier">bool, default=True</span></dt><dd><p>if True, return a tuple (d, i) of distances and indices if False, return array i</p> </dd> <dt><strong>dualtree</strong><span class="classifier">bool, default=False</span></dt><dd><p>if True, use the dual tree formalism for the query: a tree is built for the query points, and the pair of trees is used to efficiently search this space. This can lead to better performance as the number of points grows large.</p> </dd> <dt><strong>breadth_first</strong><span class="classifier">bool, default=False</span></dt><dd><p>if True, then query the nodes in a breadth-first manner. Otherwise, query the nodes in a depth-first manner.</p> </dd> <dt><strong>sort_results</strong><span class="classifier">bool, default=True</span></dt><dd><p>if True, then distances and indices of each point are sorted on return, so that the first column contains the closest points. Otherwise, neighbors are returned in an arbitrary order.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>i</strong><span class="classifier">if return_distance == False</span></dt><dd></dd> <dt><strong>(d,i)</strong><span class="classifier">if return_distance == True</span></dt><dd></dd> <dt><strong>d</strong><span class="classifier">ndarray of shape X.shape[:-1] + (k,), dtype=double</span></dt><dd><p>Each entry gives the list of distances to the neighbors of the corresponding point.</p> </dd> <dt><strong>i</strong><span class="classifier">ndarray of shape X.shape[:-1] + (k,), dtype=int</span></dt><dd><p>Each entry gives the list of indices of neighbors of the corresponding point.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree.query_radius"> <span class="sig-name descname"><span class="pre">query_radius</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">r</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_distance</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">count_only</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sort_results</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#sklearn.neighbors.BallTree.query_radius" title="Link to this definition">#</a></dt> <dd><p>query the tree for neighbors within a radius r</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>An array of points to query</p> </dd> <dt><strong>r</strong><span class="classifier">distance within which neighbors are returned</span></dt><dd><p>r can be a single value, or an array of values of shape x.shape[:-1] if different radii are desired for each point.</p> </dd> <dt><strong>return_distance</strong><span class="classifier">bool, default=False</span></dt><dd><p>if True, return distances to neighbors of each point if False, return only neighbors Note that unlike the query() method, setting return_distance=True here adds to the computation time. Not all distances need to be calculated explicitly for return_distance=False. Results are not sorted by default: see <code class="docutils literal notranslate"><span class="pre">sort_results</span></code> keyword.</p> </dd> <dt><strong>count_only</strong><span class="classifier">bool, default=False</span></dt><dd><p>if True, return only the count of points within distance r if False, return the indices of all points within distance r If return_distance==True, setting count_only=True will result in an error.</p> </dd> <dt><strong>sort_results</strong><span class="classifier">bool, default=False</span></dt><dd><p>if True, the distances and indices will be sorted before being returned. If False, the results will not be sorted. If return_distance == False, setting sort_results = True will result in an error.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>count</strong><span class="classifier">if count_only == True</span></dt><dd></dd> <dt><strong>ind</strong><span class="classifier">if count_only == False and return_distance == False</span></dt><dd></dd> <dt><strong>(ind, dist)</strong><span class="classifier">if count_only == False and return_distance == True</span></dt><dd></dd> <dt><strong>count</strong><span class="classifier">ndarray of shape X.shape[:-1], dtype=int</span></dt><dd><p>Each entry gives the number of neighbors within a distance r of the corresponding point.</p> </dd> <dt><strong>ind</strong><span class="classifier">ndarray of shape X.shape[:-1], dtype=object</span></dt><dd><p>Each element is a numpy integer array listing the indices of neighbors of the corresponding point. Note that unlike the results of a k-neighbors query, the returned neighbors are not sorted by distance by default.</p> </dd> <dt><strong>dist</strong><span class="classifier">ndarray of shape X.shape[:-1], dtype=object</span></dt><dd><p>Each element is a numpy double array listing the distances corresponding to indices in i.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree.reset_n_calls"> <span class="sig-name descname"><span class="pre">reset_n_calls</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#sklearn.neighbors.BallTree.reset_n_calls" title="Link to this definition">#</a></dt> <dd><p>Reset number of calls to 0.</p> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.neighbors.BallTree.two_point_correlation"> <span class="sig-name descname"><span class="pre">two_point_correlation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">r</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dualtree</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#sklearn.neighbors.BallTree.two_point_correlation" title="Link to this definition">#</a></dt> <dd><p>Compute the two-point correlation function</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>An array of points to query. Last dimension should match dimension of training data.</p> </dd> <dt><strong>r</strong><span class="classifier">array-like</span></dt><dd><p>A one-dimensional array of distances</p> </dd> <dt><strong>dualtree</strong><span class="classifier">bool, default=False</span></dt><dd><p>If True, use a dualtree algorithm. Otherwise, use a single-tree algorithm. Dual tree algorithms can have better scaling for large N.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>counts</strong><span class="classifier">ndarray</span></dt><dd><p>counts[i] contains the number of pairs of points with distance less than or equal to r[i]</p> </dd> </dl> </dd> </dl> </dd></dl> </dd></dl> </section> </article> <footer class="bd-footer-article"> <div class="footer-article-items footer-article__inner"> <div class="footer-article-item"> <div class="prev-next-area"> <a class="left-prev" href="../../api/sklearn.neighbors.html" title="previous page"> <i class="fa-solid fa-angle-left"></i> <div class="prev-next-info"> <p class="prev-next-subtitle">previous</p> <p class="prev-next-title">sklearn.neighbors</p> </div> </a> <a class="right-next" href="sklearn.neighbors.KDTree.html" title="next page"> <div class="prev-next-info"> <p class="prev-next-subtitle">next</p> <p class="prev-next-title">KDTree</p> </div> <i class="fa-solid fa-angle-right"></i> </a> </div></div> </div> </footer> </div> <div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner"> <div class="sidebar-secondary-item"> <div id="pst-page-navigation-heading-2" class="page-toc tocsection onthispage"> <i class="fa-solid fa-list"></i> On this page </div> <nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2"> <ul class="visible nav section-nav flex-column"> <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree"><code class="docutils literal notranslate"><span class="pre">BallTree</span></code></a><ul class="nav section-nav flex-column visible"> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree.get_arrays"><code class="docutils literal notranslate"><span class="pre">get_arrays</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree.get_n_calls"><code class="docutils literal notranslate"><span class="pre">get_n_calls</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree.get_tree_stats"><code class="docutils literal notranslate"><span class="pre">get_tree_stats</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree.kernel_density"><code class="docutils literal notranslate"><span class="pre">kernel_density</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree.query"><code class="docutils literal notranslate"><span class="pre">query</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree.query_radius"><code class="docutils literal notranslate"><span class="pre">query_radius</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree.reset_n_calls"><code class="docutils literal notranslate"><span class="pre">reset_n_calls</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.neighbors.BallTree.two_point_correlation"><code class="docutils literal notranslate"><span class="pre">two_point_correlation</span></code></a></li> </ul> </li> </ul> </nav></div> <div class="sidebar-secondary-item"> <div class="tocsection sourcelink"> <a href="../../_sources/modules/generated/sklearn.neighbors.BallTree.rst.txt"> <i class="fa-solid fa-file-lines"></i> Show Source </a> </div> </div> </div></div> </div> <footer class="bd-footer-content"> </footer> </main> </div> </div> <!-- Scripts loaded after <body> so the DOM is not blocked --> <script src="../../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b"></script> <script src="../../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b"></script> <footer class="bd-footer"> <div class="bd-footer__inner bd-page-width"> <div class="footer-items__start"> <div class="footer-item"> <p class="copyright"> © Copyright 2007 - 2024, scikit-learn developers (BSD License). <br/> </p> </div> </div> </div> </footer> </body> </html>