<!DOCTYPE html> <html lang="en" data-content_root="../../" > <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" /> <meta property="og:title" content="OPTICS" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://scikit-learn/stable/modules/generated/sklearn.cluster.OPTICS.html" /> <meta property="og:site_name" content="scikit-learn" /> <meta property="og:description" content="Gallery examples: Comparing different clustering algorithms on toy datasets Demo of OPTICS clustering algorithm" /> <meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_cluster_comparison_thumb.png" /> <meta property="og:image:alt" content="" /> <meta name="description" content="Gallery examples: Comparing different clustering algorithms on toy datasets Demo of OPTICS clustering algorithm" /> <title>OPTICS — scikit-learn 1.6.dev0 documentation</title> <script data-cfasync="false"> document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; document.documentElement.dataset.theme = localStorage.getItem("theme") || ""; </script> <!-- Loaded before other Sphinx assets --> <link href="../../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" /> <link href="../../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" /> <link href="../../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" /> <link href="../../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" /> <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" /> <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" /> <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" /> <link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=a746c00c" /> <link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" /> <link rel="stylesheet" type="text/css" href="../../_static/plot_directive.css" /> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" /> <link rel="stylesheet" type="text/css" href="../../_static/jupyterlite_sphinx.css?v=ca70e7f1" /> <link rel="stylesheet" type="text/css" href="../../_static/sg_gallery.css?v=d2d258e8" /> <link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-binder.css?v=f4aeca0c" /> <link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-dataframe.css?v=2082cf3c" /> <link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-rendered-html.css?v=1277b6f3" /> <link rel="stylesheet" type="text/css" href="../../_static/sphinx-design.min.css?v=95c83b7e" /> <link rel="stylesheet" type="text/css" href="../../_static/styles/api.css?v=b0444f25" /> <link rel="stylesheet" type="text/css" href="../../_static/styles/colors.css?v=cc94ab7d" /> <link rel="stylesheet" type="text/css" href="../../_static/styles/custom.css?v=e340c087" /> <!-- Pre-loaded scripts that we'll load fully later --> <link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" /> <link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" /> <script src="../../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script> <script src="../../_static/documentation_options.js?v=d875d36e"></script> <script src="../../_static/doctools.js?v=9a2dae69"></script> <script src="../../_static/sphinx_highlight.js?v=dc90522c"></script> <script src="../../_static/clipboard.min.js?v=a7894cd8"></script> <script src="../../_static/copybutton.js?v=97f0b27d"></script> <script src="../../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script> <script src="../../_static/design-tabs.js?v=f930bc37"></script> <script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script> <script>DOCUMENTATION_OPTIONS.pagename = 'modules/generated/sklearn.cluster.OPTICS';</script> <script> DOCUMENTATION_OPTIONS.theme_version = '0.15.4'; DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json'; DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.6.dev0'; DOCUMENTATION_OPTIONS.show_version_warning_banner = true; </script> <script src="../../_static/scripts/dropdown.js?v=e2048168"></script> <script src="../../_static/scripts/version-switcher.js?v=a6dd8357"></script> <link rel="icon" href="../../_static/favicon.ico"/> <link rel="author" title="About these documents" href="../../about.html" /> <link rel="search" title="Search" href="../../search.html" /> <link rel="next" title="SpectralBiclustering" href="sklearn.cluster.SpectralBiclustering.html" /> <link rel="prev" title="MiniBatchKMeans" href="sklearn.cluster.MiniBatchKMeans.html" /> <meta name="viewport" content="width=device-width, initial-scale=1"/> <meta name="docsearch:language" content="en"/> </head> <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> <div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div> <div id="pst-scroll-pixel-helper"></div> <button type="button" class="btn rounded-pill" id="pst-back-to-top"> <i class="fa-solid fa-arrow-up"></i>Back to top</button> <input type="checkbox" class="sidebar-toggle" id="pst-primary-sidebar-checkbox"/> <label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label> <input type="checkbox" class="sidebar-toggle" id="pst-secondary-sidebar-checkbox"/> <label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label> <div class="search-button__wrapper"> <div class="search-button__overlay"></div> <div class="search-button__search-container"> <form class="bd-search d-flex align-items-center" action="../../search.html" method="get"> <i class="fa-solid fa-magnifying-glass"></i> <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/> <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> </form></div> </div> <div class="pst-async-banner-revealer d-none"> <aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside> </div> <header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none"> <div class="bd-header__inner bd-page-width"> <button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation"> <span class="fa-solid fa-bars"></span> </button> <div class=" navbar-header-items__start"> <div class="navbar-item"> <a class="navbar-brand logo" href="../../index.html"> <img src="../../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/> <script>document.write(`<img src="../../_static/scikit-learn-logo-small.png" class="logo__image only-dark" alt="scikit-learn homepage"/>`);</script> </a></div> </div> <div class=" navbar-header-items"> <div class="me-auto navbar-header-items__center"> <div class="navbar-item"> <nav> <ul class="bd-navbar-elements navbar-nav"> <li class="nav-item "> <a class="nav-link nav-internal" href="../../install.html"> Install </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../user_guide.html"> User Guide </a> </li> <li class="nav-item current active"> <a class="nav-link nav-internal" href="../../api/index.html"> API </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../auto_examples/index.html"> Examples </a> </li> <li class="nav-item "> <a class="nav-link nav-external" href="https://blog.scikit-learn.org/"> Community </a> </li> <li class="nav-item dropdown"> <button class="btn dropdown-toggle nav-item" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-controls="pst-nav-more-links"> More </button> <ul id="pst-nav-more-links" class="dropdown-menu"> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../getting_started.html"> Getting Started </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../whats_new.html"> Release History </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../glossary.html"> Glossary </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../developers/index.html"> Development </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../faq.html"> FAQ </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../support.html"> Support </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../related_projects.html"> Related Projects </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../roadmap.html"> Roadmap </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../governance.html"> Governance </a> </li> <li class=" "> <a class="nav-link dropdown-item nav-internal" href="../../about.html"> About us </a> </li> </ul> </li> </ul> </nav></div> </div> <div class="navbar-header-items__end"> <div class="navbar-item navbar-persistent--container"> <script> document.write(` <button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> <i class="fa-solid fa-magnifying-glass fa-lg"></i> </button> `); </script> </div> <div class="navbar-item"> <script> document.write(` <button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> <i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i> <i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i> <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i> </button> `); </script></div> <div class="navbar-item"><ul class="navbar-icon-links" aria-label="Icon Links"> <li class="nav-item"> <a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i> <span class="sr-only">GitHub</span></a> </li> </ul></div> <div class="navbar-item"> <script> document.write(` <div class="version-switcher__container dropdown"> <button id="pst-version-switcher-button-2" type="button" class="version-switcher__button btn btn-sm dropdown-toggle" data-bs-toggle="dropdown" aria-haspopup="listbox" aria-controls="pst-version-switcher-list-2" aria-label="Version switcher list" > Choose version <!-- this text may get changed later by javascript --> <span class="caret"></span> </button> <div id="pst-version-switcher-list-2" class="version-switcher__menu dropdown-menu list-group-flush py-0" role="listbox" aria-labelledby="pst-version-switcher-button-2"> <!-- dropdown will be populated by javascript on page load --> </div> </div> `); </script></div> </div> </div> <div class="navbar-persistent--mobile"> <script> document.write(` <button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> <i class="fa-solid fa-magnifying-glass fa-lg"></i> </button> `); </script> </div> <button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page"> <span class="fa-solid fa-outdent"></span> </button> </div> </header> <div class="bd-container"> <div class="bd-container__inner bd-page-width"> <div class="bd-sidebar-primary bd-sidebar"> <div class="sidebar-header-items sidebar-primary__section"> <div class="sidebar-header-items__center"> <div class="navbar-item"> <nav> <ul class="bd-navbar-elements navbar-nav"> <li class="nav-item "> <a class="nav-link nav-internal" href="../../install.html"> Install </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../user_guide.html"> User Guide </a> </li> <li class="nav-item current active"> <a class="nav-link nav-internal" href="../../api/index.html"> API </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../auto_examples/index.html"> Examples </a> </li> <li class="nav-item "> <a class="nav-link nav-external" href="https://blog.scikit-learn.org/"> Community </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../getting_started.html"> Getting Started </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../whats_new.html"> Release History </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../glossary.html"> Glossary </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../developers/index.html"> Development </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../faq.html"> FAQ </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../support.html"> Support </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../related_projects.html"> Related Projects </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../roadmap.html"> Roadmap </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../governance.html"> Governance </a> </li> <li class="nav-item "> <a class="nav-link nav-internal" href="../../about.html"> About us </a> </li> </ul> </nav></div> </div> <div class="sidebar-header-items__end"> <div class="navbar-item"> <script> document.write(` <button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> <i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i> <i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i> <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i> </button> `); </script></div> <div class="navbar-item"><ul class="navbar-icon-links" aria-label="Icon Links"> <li class="nav-item"> <a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i> <span class="sr-only">GitHub</span></a> </li> </ul></div> <div class="navbar-item"> <script> document.write(` <div class="version-switcher__container dropdown"> <button id="pst-version-switcher-button-3" type="button" class="version-switcher__button btn btn-sm dropdown-toggle" data-bs-toggle="dropdown" aria-haspopup="listbox" aria-controls="pst-version-switcher-list-3" aria-label="Version switcher list" > Choose version <!-- this text may get changed later by javascript --> <span class="caret"></span> </button> <div id="pst-version-switcher-list-3" class="version-switcher__menu dropdown-menu list-group-flush py-0" role="listbox" aria-labelledby="pst-version-switcher-button-3"> <!-- dropdown will be populated by javascript on page load --> </div> </div> `); </script></div> </div> </div> <div class="sidebar-primary-items__start sidebar-primary__section"> <div class="sidebar-primary-item"> <nav class="bd-docs-nav bd-links" aria-label="Section Navigation"> <p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p> <div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav"> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.html">sklearn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.config_context.html">config_context</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.get_config.html">get_config</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.set_config.html">set_config</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.show_versions.html">show_versions</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.base.html">sklearn.base</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.BaseEstimator.html">BaseEstimator</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.BiclusterMixin.html">BiclusterMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.ClassNamePrefixFeaturesOutMixin.html">ClassNamePrefixFeaturesOutMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.ClassifierMixin.html">ClassifierMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.ClusterMixin.html">ClusterMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.DensityMixin.html">DensityMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.MetaEstimatorMixin.html">MetaEstimatorMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.OneToOneFeatureMixin.html">OneToOneFeatureMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.OutlierMixin.html">OutlierMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.RegressorMixin.html">RegressorMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.TransformerMixin.html">TransformerMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.clone.html">clone</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.is_classifier.html">is_classifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.is_clusterer.html">is_clusterer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.base.is_regressor.html">is_regressor</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.calibration.html">sklearn.calibration</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.calibration.CalibratedClassifierCV.html">CalibratedClassifierCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.calibration.calibration_curve.html">calibration_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.calibration.CalibrationDisplay.html">CalibrationDisplay</a></li> </ul> </details></li> <li class="toctree-l1 current active has-children"><a class="reference internal" href="../../api/sklearn.cluster.html">sklearn.cluster</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current"> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.AffinityPropagation.html">AffinityPropagation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.AgglomerativeClustering.html">AgglomerativeClustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.Birch.html">Birch</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.BisectingKMeans.html">BisectingKMeans</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.DBSCAN.html">DBSCAN</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.FeatureAgglomeration.html">FeatureAgglomeration</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.HDBSCAN.html">HDBSCAN</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.KMeans.html">KMeans</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.MeanShift.html">MeanShift</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.MiniBatchKMeans.html">MiniBatchKMeans</a></li> <li class="toctree-l2 current active"><a class="current reference internal" href="#">OPTICS</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.SpectralBiclustering.html">SpectralBiclustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.SpectralClustering.html">SpectralClustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.SpectralCoclustering.html">SpectralCoclustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.affinity_propagation.html">affinity_propagation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.cluster_optics_dbscan.html">cluster_optics_dbscan</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.cluster_optics_xi.html">cluster_optics_xi</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.compute_optics_graph.html">compute_optics_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="dbscan-function.html">dbscan</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.estimate_bandwidth.html">estimate_bandwidth</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.k_means.html">k_means</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.kmeans_plusplus.html">kmeans_plusplus</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.mean_shift.html">mean_shift</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.spectral_clustering.html">spectral_clustering</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cluster.ward_tree.html">ward_tree</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.compose.html">sklearn.compose</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.compose.ColumnTransformer.html">ColumnTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.compose.TransformedTargetRegressor.html">TransformedTargetRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.compose.make_column_selector.html">make_column_selector</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.compose.make_column_transformer.html">make_column_transformer</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.covariance.html">sklearn.covariance</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.EllipticEnvelope.html">EllipticEnvelope</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.EmpiricalCovariance.html">EmpiricalCovariance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.GraphicalLasso.html">GraphicalLasso</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.GraphicalLassoCV.html">GraphicalLassoCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.LedoitWolf.html">LedoitWolf</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.MinCovDet.html">MinCovDet</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.OAS.html">OAS</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.ShrunkCovariance.html">ShrunkCovariance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.empirical_covariance.html">empirical_covariance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.graphical_lasso.html">graphical_lasso</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.ledoit_wolf.html">ledoit_wolf</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.ledoit_wolf_shrinkage.html">ledoit_wolf_shrinkage</a></li> <li class="toctree-l2"><a class="reference internal" href="oas-function.html">oas</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.covariance.shrunk_covariance.html">shrunk_covariance</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.cross_decomposition.html">sklearn.cross_decomposition</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.cross_decomposition.CCA.html">CCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cross_decomposition.PLSCanonical.html">PLSCanonical</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cross_decomposition.PLSRegression.html">PLSRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.cross_decomposition.PLSSVD.html">PLSSVD</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.datasets.html">sklearn.datasets</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.clear_data_home.html">clear_data_home</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.dump_svmlight_file.html">dump_svmlight_file</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_20newsgroups.html">fetch_20newsgroups</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_20newsgroups_vectorized.html">fetch_20newsgroups_vectorized</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_california_housing.html">fetch_california_housing</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_covtype.html">fetch_covtype</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_file.html">fetch_file</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_kddcup99.html">fetch_kddcup99</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_lfw_pairs.html">fetch_lfw_pairs</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_lfw_people.html">fetch_lfw_people</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_olivetti_faces.html">fetch_olivetti_faces</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_openml.html">fetch_openml</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_rcv1.html">fetch_rcv1</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.fetch_species_distributions.html">fetch_species_distributions</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.get_data_home.html">get_data_home</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_breast_cancer.html">load_breast_cancer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_diabetes.html">load_diabetes</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_digits.html">load_digits</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_files.html">load_files</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_iris.html">load_iris</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_linnerud.html">load_linnerud</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_sample_image.html">load_sample_image</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_sample_images.html">load_sample_images</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_svmlight_file.html">load_svmlight_file</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_svmlight_files.html">load_svmlight_files</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.load_wine.html">load_wine</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_biclusters.html">make_biclusters</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_blobs.html">make_blobs</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_checkerboard.html">make_checkerboard</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_circles.html">make_circles</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_classification.html">make_classification</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_friedman1.html">make_friedman1</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_friedman2.html">make_friedman2</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_friedman3.html">make_friedman3</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_gaussian_quantiles.html">make_gaussian_quantiles</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_hastie_10_2.html">make_hastie_10_2</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_low_rank_matrix.html">make_low_rank_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_moons.html">make_moons</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_multilabel_classification.html">make_multilabel_classification</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_regression.html">make_regression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_s_curve.html">make_s_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_sparse_coded_signal.html">make_sparse_coded_signal</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_sparse_spd_matrix.html">make_sparse_spd_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_sparse_uncorrelated.html">make_sparse_uncorrelated</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_spd_matrix.html">make_spd_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.datasets.make_swiss_roll.html">make_swiss_roll</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.decomposition.html">sklearn.decomposition</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.DictionaryLearning.html">DictionaryLearning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.FactorAnalysis.html">FactorAnalysis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.FastICA.html">FastICA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.IncrementalPCA.html">IncrementalPCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.KernelPCA.html">KernelPCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.LatentDirichletAllocation.html">LatentDirichletAllocation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.MiniBatchDictionaryLearning.html">MiniBatchDictionaryLearning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.MiniBatchNMF.html">MiniBatchNMF</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.MiniBatchSparsePCA.html">MiniBatchSparsePCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.NMF.html">NMF</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.PCA.html">PCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.SparseCoder.html">SparseCoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.SparsePCA.html">SparsePCA</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.TruncatedSVD.html">TruncatedSVD</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.dict_learning.html">dict_learning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.dict_learning_online.html">dict_learning_online</a></li> <li class="toctree-l2"><a class="reference internal" href="fastica-function.html">fastica</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.non_negative_factorization.html">non_negative_factorization</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.decomposition.sparse_encode.html">sparse_encode</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.discriminant_analysis.html">sklearn.discriminant_analysis</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html">LinearDiscriminantAnalysis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html">QuadraticDiscriminantAnalysis</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.dummy.html">sklearn.dummy</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.dummy.DummyClassifier.html">DummyClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.dummy.DummyRegressor.html">DummyRegressor</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.ensemble.html">sklearn.ensemble</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.AdaBoostClassifier.html">AdaBoostClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.AdaBoostRegressor.html">AdaBoostRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.BaggingClassifier.html">BaggingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.BaggingRegressor.html">BaggingRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.ExtraTreesClassifier.html">ExtraTreesClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.ExtraTreesRegressor.html">ExtraTreesRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.GradientBoostingClassifier.html">GradientBoostingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.GradientBoostingRegressor.html">GradientBoostingRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.HistGradientBoostingClassifier.html">HistGradientBoostingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.HistGradientBoostingRegressor.html">HistGradientBoostingRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.IsolationForest.html">IsolationForest</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.RandomForestClassifier.html">RandomForestClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.RandomForestRegressor.html">RandomForestRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.RandomTreesEmbedding.html">RandomTreesEmbedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.StackingClassifier.html">StackingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.StackingRegressor.html">StackingRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.VotingClassifier.html">VotingClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.ensemble.VotingRegressor.html">VotingRegressor</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.exceptions.html">sklearn.exceptions</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.ConvergenceWarning.html">ConvergenceWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.DataConversionWarning.html">DataConversionWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.DataDimensionalityWarning.html">DataDimensionalityWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.EfficiencyWarning.html">EfficiencyWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.FitFailedWarning.html">FitFailedWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.InconsistentVersionWarning.html">InconsistentVersionWarning</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.NotFittedError.html">NotFittedError</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.exceptions.UndefinedMetricWarning.html">UndefinedMetricWarning</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.experimental.html">sklearn.experimental</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.experimental.enable_halving_search_cv.html">enable_halving_search_cv</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.experimental.enable_iterative_imputer.html">enable_iterative_imputer</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.feature_extraction.html">sklearn.feature_extraction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.DictVectorizer.html">DictVectorizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.FeatureHasher.html">FeatureHasher</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.PatchExtractor.html">PatchExtractor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.extract_patches_2d.html">extract_patches_2d</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.grid_to_graph.html">grid_to_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.img_to_graph.html">img_to_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.image.reconstruct_from_patches_2d.html">reconstruct_from_patches_2d</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.text.CountVectorizer.html">CountVectorizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.text.HashingVectorizer.html">HashingVectorizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.text.TfidfTransformer.html">TfidfTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_extraction.text.TfidfVectorizer.html">TfidfVectorizer</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.feature_selection.html">sklearn.feature_selection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.GenericUnivariateSelect.html">GenericUnivariateSelect</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.RFE.html">RFE</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.RFECV.html">RFECV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectFdr.html">SelectFdr</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectFpr.html">SelectFpr</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectFromModel.html">SelectFromModel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectFwe.html">SelectFwe</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectKBest.html">SelectKBest</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectPercentile.html">SelectPercentile</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SelectorMixin.html">SelectorMixin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.SequentialFeatureSelector.html">SequentialFeatureSelector</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.VarianceThreshold.html">VarianceThreshold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.chi2.html">chi2</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.f_classif.html">f_classif</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.f_regression.html">f_regression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.mutual_info_classif.html">mutual_info_classif</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.mutual_info_regression.html">mutual_info_regression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.feature_selection.r_regression.html">r_regression</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.frozen.html">sklearn.frozen</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.frozen.FrozenEstimator.html">FrozenEstimator</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.gaussian_process.html">sklearn.gaussian_process</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.GaussianProcessClassifier.html">GaussianProcessClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.GaussianProcessRegressor.html">GaussianProcessRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.CompoundKernel.html">CompoundKernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.ConstantKernel.html">ConstantKernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.DotProduct.html">DotProduct</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.ExpSineSquared.html">ExpSineSquared</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Exponentiation.html">Exponentiation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Hyperparameter.html">Hyperparameter</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Kernel.html">Kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Matern.html">Matern</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.PairwiseKernel.html">PairwiseKernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Product.html">Product</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.RBF.html">RBF</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.RationalQuadratic.html">RationalQuadratic</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.Sum.html">Sum</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.gaussian_process.kernels.WhiteKernel.html">WhiteKernel</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.impute.html">sklearn.impute</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.impute.IterativeImputer.html">IterativeImputer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.impute.KNNImputer.html">KNNImputer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.impute.MissingIndicator.html">MissingIndicator</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.impute.SimpleImputer.html">SimpleImputer</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.inspection.html">sklearn.inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.inspection.partial_dependence.html">partial_dependence</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.inspection.permutation_importance.html">permutation_importance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.inspection.DecisionBoundaryDisplay.html">DecisionBoundaryDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.inspection.PartialDependenceDisplay.html">PartialDependenceDisplay</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.isotonic.html">sklearn.isotonic</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.isotonic.IsotonicRegression.html">IsotonicRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.isotonic.check_increasing.html">check_increasing</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.isotonic.isotonic_regression.html">isotonic_regression</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.kernel_approximation.html">sklearn.kernel_approximation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.AdditiveChi2Sampler.html">AdditiveChi2Sampler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.Nystroem.html">Nystroem</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.PolynomialCountSketch.html">PolynomialCountSketch</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.RBFSampler.html">RBFSampler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_approximation.SkewedChi2Sampler.html">SkewedChi2Sampler</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.kernel_ridge.html">sklearn.kernel_ridge</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.kernel_ridge.KernelRidge.html">KernelRidge</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.linear_model.html">sklearn.linear_model</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LogisticRegression.html">LogisticRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LogisticRegressionCV.html">LogisticRegressionCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.PassiveAggressiveClassifier.html">PassiveAggressiveClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.Perceptron.html">Perceptron</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.RidgeClassifier.html">RidgeClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.RidgeClassifierCV.html">RidgeClassifierCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.SGDClassifier.html">SGDClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.SGDOneClassSVM.html">SGDOneClassSVM</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LinearRegression.html">LinearRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.Ridge.html">Ridge</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.RidgeCV.html">RidgeCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.SGDRegressor.html">SGDRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.ElasticNet.html">ElasticNet</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.ElasticNetCV.html">ElasticNetCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.Lars.html">Lars</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LarsCV.html">LarsCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.Lasso.html">Lasso</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LassoCV.html">LassoCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LassoLars.html">LassoLars</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LassoLarsCV.html">LassoLarsCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.LassoLarsIC.html">LassoLarsIC</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.OrthogonalMatchingPursuit.html">OrthogonalMatchingPursuit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.OrthogonalMatchingPursuitCV.html">OrthogonalMatchingPursuitCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.ARDRegression.html">ARDRegression</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.BayesianRidge.html">BayesianRidge</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.MultiTaskElasticNet.html">MultiTaskElasticNet</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.MultiTaskElasticNetCV.html">MultiTaskElasticNetCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.MultiTaskLasso.html">MultiTaskLasso</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.MultiTaskLassoCV.html">MultiTaskLassoCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.HuberRegressor.html">HuberRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.QuantileRegressor.html">QuantileRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.RANSACRegressor.html">RANSACRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.TheilSenRegressor.html">TheilSenRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.GammaRegressor.html">GammaRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.PoissonRegressor.html">PoissonRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.TweedieRegressor.html">TweedieRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.PassiveAggressiveRegressor.html">PassiveAggressiveRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.enet_path.html">enet_path</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.lars_path.html">lars_path</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.lars_path_gram.html">lars_path_gram</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.lasso_path.html">lasso_path</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.orthogonal_mp.html">orthogonal_mp</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.orthogonal_mp_gram.html">orthogonal_mp_gram</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.linear_model.ridge_regression.html">ridge_regression</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.manifold.html">sklearn.manifold</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.Isomap.html">Isomap</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.LocallyLinearEmbedding.html">LocallyLinearEmbedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.MDS.html">MDS</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.SpectralEmbedding.html">SpectralEmbedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.TSNE.html">TSNE</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.locally_linear_embedding.html">locally_linear_embedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.smacof.html">smacof</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.spectral_embedding.html">spectral_embedding</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.manifold.trustworthiness.html">trustworthiness</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.metrics.html">sklearn.metrics</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.check_scoring.html">check_scoring</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.get_scorer.html">get_scorer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.get_scorer_names.html">get_scorer_names</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.make_scorer.html">make_scorer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.accuracy_score.html">accuracy_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.auc.html">auc</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.average_precision_score.html">average_precision_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.balanced_accuracy_score.html">balanced_accuracy_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.brier_score_loss.html">brier_score_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.class_likelihood_ratios.html">class_likelihood_ratios</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.classification_report.html">classification_report</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.cohen_kappa_score.html">cohen_kappa_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.confusion_matrix.html">confusion_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.d2_log_loss_score.html">d2_log_loss_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.dcg_score.html">dcg_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.det_curve.html">det_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.f1_score.html">f1_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.fbeta_score.html">fbeta_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.hamming_loss.html">hamming_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.hinge_loss.html">hinge_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.jaccard_score.html">jaccard_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.log_loss.html">log_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.matthews_corrcoef.html">matthews_corrcoef</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.multilabel_confusion_matrix.html">multilabel_confusion_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.ndcg_score.html">ndcg_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.precision_recall_curve.html">precision_recall_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.precision_recall_fscore_support.html">precision_recall_fscore_support</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.precision_score.html">precision_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.recall_score.html">recall_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.roc_auc_score.html">roc_auc_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.roc_curve.html">roc_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.top_k_accuracy_score.html">top_k_accuracy_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.zero_one_loss.html">zero_one_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.d2_absolute_error_score.html">d2_absolute_error_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.d2_pinball_score.html">d2_pinball_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.d2_tweedie_score.html">d2_tweedie_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.explained_variance_score.html">explained_variance_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.max_error.html">max_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_absolute_error.html">mean_absolute_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_absolute_percentage_error.html">mean_absolute_percentage_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_gamma_deviance.html">mean_gamma_deviance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_pinball_loss.html">mean_pinball_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_poisson_deviance.html">mean_poisson_deviance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_squared_error.html">mean_squared_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_squared_log_error.html">mean_squared_log_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mean_tweedie_deviance.html">mean_tweedie_deviance</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.median_absolute_error.html">median_absolute_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.r2_score.html">r2_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.root_mean_squared_error.html">root_mean_squared_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.root_mean_squared_log_error.html">root_mean_squared_log_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.coverage_error.html">coverage_error</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.label_ranking_average_precision_score.html">label_ranking_average_precision_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.label_ranking_loss.html">label_ranking_loss</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.adjusted_mutual_info_score.html">adjusted_mutual_info_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.adjusted_rand_score.html">adjusted_rand_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.calinski_harabasz_score.html">calinski_harabasz_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.cluster.contingency_matrix.html">contingency_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.cluster.pair_confusion_matrix.html">pair_confusion_matrix</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.completeness_score.html">completeness_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.davies_bouldin_score.html">davies_bouldin_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.fowlkes_mallows_score.html">fowlkes_mallows_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.homogeneity_completeness_v_measure.html">homogeneity_completeness_v_measure</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.homogeneity_score.html">homogeneity_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.mutual_info_score.html">mutual_info_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.normalized_mutual_info_score.html">normalized_mutual_info_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.rand_score.html">rand_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.silhouette_samples.html">silhouette_samples</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.silhouette_score.html">silhouette_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.v_measure_score.html">v_measure_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.consensus_score.html">consensus_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.DistanceMetric.html">DistanceMetric</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.additive_chi2_kernel.html">additive_chi2_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.chi2_kernel.html">chi2_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.cosine_distances.html">cosine_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.cosine_similarity.html">cosine_similarity</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.distance_metrics.html">distance_metrics</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.euclidean_distances.html">euclidean_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.haversine_distances.html">haversine_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.kernel_metrics.html">kernel_metrics</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.laplacian_kernel.html">laplacian_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.linear_kernel.html">linear_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.manhattan_distances.html">manhattan_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.nan_euclidean_distances.html">nan_euclidean_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.paired_cosine_distances.html">paired_cosine_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.paired_distances.html">paired_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.paired_euclidean_distances.html">paired_euclidean_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.paired_manhattan_distances.html">paired_manhattan_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.pairwise_kernels.html">pairwise_kernels</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.polynomial_kernel.html">polynomial_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.rbf_kernel.html">rbf_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise.sigmoid_kernel.html">sigmoid_kernel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise_distances.html">pairwise_distances</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise_distances_argmin.html">pairwise_distances_argmin</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise_distances_argmin_min.html">pairwise_distances_argmin_min</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.pairwise_distances_chunked.html">pairwise_distances_chunked</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.ConfusionMatrixDisplay.html">ConfusionMatrixDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.DetCurveDisplay.html">DetCurveDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.PrecisionRecallDisplay.html">PrecisionRecallDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.PredictionErrorDisplay.html">PredictionErrorDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.metrics.RocCurveDisplay.html">RocCurveDisplay</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.mixture.html">sklearn.mixture</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.mixture.BayesianGaussianMixture.html">BayesianGaussianMixture</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.mixture.GaussianMixture.html">GaussianMixture</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.model_selection.html">sklearn.model_selection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.GroupKFold.html">GroupKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.GroupShuffleSplit.html">GroupShuffleSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.KFold.html">KFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LeaveOneGroupOut.html">LeaveOneGroupOut</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LeaveOneOut.html">LeaveOneOut</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LeavePGroupsOut.html">LeavePGroupsOut</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LeavePOut.html">LeavePOut</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.PredefinedSplit.html">PredefinedSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.RepeatedKFold.html">RepeatedKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.RepeatedStratifiedKFold.html">RepeatedStratifiedKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.ShuffleSplit.html">ShuffleSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.StratifiedGroupKFold.html">StratifiedGroupKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.StratifiedKFold.html">StratifiedKFold</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.StratifiedShuffleSplit.html">StratifiedShuffleSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.TimeSeriesSplit.html">TimeSeriesSplit</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.check_cv.html">check_cv</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.train_test_split.html">train_test_split</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.GridSearchCV.html">GridSearchCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.HalvingGridSearchCV.html">HalvingGridSearchCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.HalvingRandomSearchCV.html">HalvingRandomSearchCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.ParameterGrid.html">ParameterGrid</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.ParameterSampler.html">ParameterSampler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.RandomizedSearchCV.html">RandomizedSearchCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.FixedThresholdClassifier.html">FixedThresholdClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.TunedThresholdClassifierCV.html">TunedThresholdClassifierCV</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.cross_val_predict.html">cross_val_predict</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.cross_val_score.html">cross_val_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.cross_validate.html">cross_validate</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.learning_curve.html">learning_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.permutation_test_score.html">permutation_test_score</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.validation_curve.html">validation_curve</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.LearningCurveDisplay.html">LearningCurveDisplay</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.model_selection.ValidationCurveDisplay.html">ValidationCurveDisplay</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.multiclass.html">sklearn.multiclass</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.multiclass.OneVsOneClassifier.html">OneVsOneClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multiclass.OneVsRestClassifier.html">OneVsRestClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multiclass.OutputCodeClassifier.html">OutputCodeClassifier</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.multioutput.html">sklearn.multioutput</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.multioutput.ClassifierChain.html">ClassifierChain</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multioutput.MultiOutputClassifier.html">MultiOutputClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multioutput.MultiOutputRegressor.html">MultiOutputRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.multioutput.RegressorChain.html">RegressorChain</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.naive_bayes.html">sklearn.naive_bayes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.BernoulliNB.html">BernoulliNB</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.CategoricalNB.html">CategoricalNB</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.ComplementNB.html">ComplementNB</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.GaussianNB.html">GaussianNB</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.naive_bayes.MultinomialNB.html">MultinomialNB</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.neighbors.html">sklearn.neighbors</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.BallTree.html">BallTree</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KDTree.html">KDTree</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KNeighborsClassifier.html">KNeighborsClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KNeighborsRegressor.html">KNeighborsRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KNeighborsTransformer.html">KNeighborsTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.KernelDensity.html">KernelDensity</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.LocalOutlierFactor.html">LocalOutlierFactor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.NearestCentroid.html">NearestCentroid</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.NearestNeighbors.html">NearestNeighbors</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.NeighborhoodComponentsAnalysis.html">NeighborhoodComponentsAnalysis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.RadiusNeighborsClassifier.html">RadiusNeighborsClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.RadiusNeighborsRegressor.html">RadiusNeighborsRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.RadiusNeighborsTransformer.html">RadiusNeighborsTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.kneighbors_graph.html">kneighbors_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.radius_neighbors_graph.html">radius_neighbors_graph</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neighbors.sort_graph_by_row_values.html">sort_graph_by_row_values</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.neural_network.html">sklearn.neural_network</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.neural_network.BernoulliRBM.html">BernoulliRBM</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neural_network.MLPClassifier.html">MLPClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.neural_network.MLPRegressor.html">MLPRegressor</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.pipeline.html">sklearn.pipeline</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.pipeline.FeatureUnion.html">FeatureUnion</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.pipeline.Pipeline.html">Pipeline</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.pipeline.make_pipeline.html">make_pipeline</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.pipeline.make_union.html">make_union</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.preprocessing.html">sklearn.preprocessing</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.Binarizer.html">Binarizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.FunctionTransformer.html">FunctionTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.KBinsDiscretizer.html">KBinsDiscretizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.KernelCenterer.html">KernelCenterer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.LabelBinarizer.html">LabelBinarizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.LabelEncoder.html">LabelEncoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.MaxAbsScaler.html">MaxAbsScaler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.MinMaxScaler.html">MinMaxScaler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.MultiLabelBinarizer.html">MultiLabelBinarizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.Normalizer.html">Normalizer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.OneHotEncoder.html">OneHotEncoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.OrdinalEncoder.html">OrdinalEncoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.PolynomialFeatures.html">PolynomialFeatures</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.PowerTransformer.html">PowerTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.QuantileTransformer.html">QuantileTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.RobustScaler.html">RobustScaler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.SplineTransformer.html">SplineTransformer</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.StandardScaler.html">StandardScaler</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.TargetEncoder.html">TargetEncoder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.add_dummy_feature.html">add_dummy_feature</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.binarize.html">binarize</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.label_binarize.html">label_binarize</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.maxabs_scale.html">maxabs_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.minmax_scale.html">minmax_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.normalize.html">normalize</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.power_transform.html">power_transform</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.quantile_transform.html">quantile_transform</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.robust_scale.html">robust_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.preprocessing.scale.html">scale</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.random_projection.html">sklearn.random_projection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.random_projection.GaussianRandomProjection.html">GaussianRandomProjection</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.random_projection.SparseRandomProjection.html">SparseRandomProjection</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.random_projection.johnson_lindenstrauss_min_dim.html">johnson_lindenstrauss_min_dim</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.semi_supervised.html">sklearn.semi_supervised</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.semi_supervised.LabelPropagation.html">LabelPropagation</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.semi_supervised.LabelSpreading.html">LabelSpreading</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.semi_supervised.SelfTrainingClassifier.html">SelfTrainingClassifier</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.svm.html">sklearn.svm</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.LinearSVC.html">LinearSVC</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.LinearSVR.html">LinearSVR</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.NuSVC.html">NuSVC</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.NuSVR.html">NuSVR</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.OneClassSVM.html">OneClassSVM</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.SVC.html">SVC</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.SVR.html">SVR</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.svm.l1_min_c.html">l1_min_c</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.tree.html">sklearn.tree</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.DecisionTreeClassifier.html">DecisionTreeClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.DecisionTreeRegressor.html">DecisionTreeRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.ExtraTreeClassifier.html">ExtraTreeClassifier</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.ExtraTreeRegressor.html">ExtraTreeRegressor</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.export_graphviz.html">export_graphviz</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.export_text.html">export_text</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.tree.plot_tree.html">plot_tree</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/sklearn.utils.html">sklearn.utils</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.Bunch.html">Bunch</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils._safe_indexing.html">_safe_indexing</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.as_float_array.html">as_float_array</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.assert_all_finite.html">assert_all_finite</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.deprecated.html">deprecated</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.estimator_html_repr.html">estimator_html_repr</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.gen_batches.html">gen_batches</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.gen_even_slices.html">gen_even_slices</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.indexable.html">indexable</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.murmurhash3_32.html">murmurhash3_32</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.resample.html">resample</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.safe_mask.html">safe_mask</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.safe_sqr.html">safe_sqr</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.shuffle.html">shuffle</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.Tags.html">Tags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.InputTags.html">InputTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.TargetTags.html">TargetTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.ClassifierTags.html">ClassifierTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.RegressorTags.html">RegressorTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.TransformerTags.html">TransformerTags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.default_tags.html">default_tags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.get_tags.html">get_tags</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_X_y.html">check_X_y</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_array.html">check_array</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_consistent_length.html">check_consistent_length</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_random_state.html">check_random_state</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.check_scalar.html">check_scalar</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.check_is_fitted.html">check_is_fitted</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.check_memory.html">check_memory</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.check_symmetric.html">check_symmetric</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.column_or_1d.html">column_or_1d</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.has_fit_parameter.html">has_fit_parameter</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.validation.validate_data.html">validate_data</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metaestimators.available_if.html">available_if</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.class_weight.compute_class_weight.html">compute_class_weight</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.class_weight.compute_sample_weight.html">compute_sample_weight</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.multiclass.is_multilabel.html">is_multilabel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.multiclass.type_of_target.html">type_of_target</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.multiclass.unique_labels.html">unique_labels</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.density.html">density</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.fast_logdet.html">fast_logdet</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.randomized_range_finder.html">randomized_range_finder</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.randomized_svd.html">randomized_svd</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.safe_sparse_dot.html">safe_sparse_dot</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.extmath.weighted_mode.html">weighted_mode</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.incr_mean_variance_axis.html">incr_mean_variance_axis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_column_scale.html">inplace_column_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_csr_column_scale.html">inplace_csr_column_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_row_scale.html">inplace_row_scale</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_swap_column.html">inplace_swap_column</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.inplace_swap_row.html">inplace_swap_row</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs.mean_variance_axis.html">mean_variance_axis</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l1.html">inplace_csr_row_normalize_l1</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2.html">inplace_csr_row_normalize_l2</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.graph.single_source_shortest_path_length.html">single_source_shortest_path_length</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.random.sample_without_replacement.html">sample_without_replacement</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.arrayfuncs.min_pos.html">min_pos</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRequest.html">MetadataRequest</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRouter.html">MetadataRouter</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.MethodMapping.html">MethodMapping</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.get_routing_for_object.html">get_routing_for_object</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.metadata_routing.process_routing.html">process_routing</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.discovery.all_displays.html">all_displays</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.discovery.all_estimators.html">all_estimators</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.discovery.all_functions.html">all_functions</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.estimator_checks.check_estimator.html">check_estimator</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.estimator_checks.parametrize_with_checks.html">parametrize_with_checks</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.parallel.Parallel.html">Parallel</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.parallel.delayed.html">delayed</a></li> </ul> </details></li> <li class="toctree-l1 has-children"><a class="reference internal" href="../../api/deprecated.html">Recently Deprecated</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.parallel_backend.html">parallel_backend</a></li> <li class="toctree-l2"><a class="reference internal" href="sklearn.utils.register_parallel_backend.html">register_parallel_backend</a></li> </ul> </details></li> </ul> </div> </nav></div> </div> <div class="sidebar-primary-items__end sidebar-primary__section"> </div> <div id="rtd-footer-container"></div> </div> <main id="main-content" class="bd-main" role="main"> <div class="bd-content"> <div class="bd-article-container"> <div class="bd-header-article d-print-none"> <div class="header-article-items header-article__inner"> <div class="header-article-items__start"> <div class="header-article-item"> <nav aria-label="Breadcrumb" class="d-print-none"> <ul class="bd-breadcrumbs"> <li class="breadcrumb-item breadcrumb-home"> <a href="../../index.html" class="nav-link" aria-label="Home"> <i class="fa-solid fa-home"></i> </a> </li> <li class="breadcrumb-item"><a href="../../api/index.html" class="nav-link">API Reference</a></li> <li class="breadcrumb-item"><a href="../../api/sklearn.cluster.html" class="nav-link">sklearn.cluster</a></li> <li class="breadcrumb-item active" aria-current="page">OPTICS</li> </ul> </nav> </div> </div> </div> </div> <div id="searchbox"></div> <article class="bd-article"> <section id="optics"> <h1>OPTICS<a class="headerlink" href="#optics" title="Link to this heading">#</a></h1> <dl class="py class"> <dt class="sig sig-object py" id="sklearn.cluster.OPTICS"> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sklearn.cluster.</span></span><span class="sig-name descname"><span class="pre">OPTICS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_eps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">inf</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metric</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'minkowski'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metric_params</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cluster_method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'xi'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">xi</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.05</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">predecessor_correction</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_cluster_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">algorithm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'auto'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">leaf_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">30</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">memory</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/4ee3afa55/sklearn/cluster/_optics.py#L39"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.OPTICS" title="Link to this definition">#</a></dt> <dd><p>Estimate clustering structure from vector array.</p> <p>OPTICS (Ordering Points To Identify the Clustering Structure), closely related to DBSCAN, finds core sample of high density and expands clusters from them <a class="reference internal" href="#r2c55e37003fe-1" id="id1">[1]</a>. Unlike DBSCAN, keeps cluster hierarchy for a variable neighborhood radius. Better suited for usage on large datasets than the current sklearn implementation of DBSCAN.</p> <p>Clusters are then extracted using a DBSCAN-like method (cluster_method = ‘dbscan’) or an automatic technique proposed in <a class="reference internal" href="#r2c55e37003fe-1" id="id2">[1]</a> (cluster_method = ‘xi’).</p> <p>This implementation deviates from the original OPTICS by first performing k-nearest-neighborhood searches on all points to identify core sizes, then computing only the distances to unprocessed points when constructing the cluster order. Note that we do not employ a heap to manage the expansion candidates, so the time complexity will be O(n^2).</p> <p>Read more in the <a class="reference internal" href="../clustering.html#optics"><span class="std std-ref">User Guide</span></a>.</p> <dl class="field-list"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl> <dt><strong>min_samples</strong><span class="classifier">int > 1 or float between 0 and 1, default=5</span></dt><dd><p>The number of samples in a neighborhood for a point to be considered as a core point. Also, up and down steep regions can’t have more than <code class="docutils literal notranslate"><span class="pre">min_samples</span></code> consecutive non-steep points. Expressed as an absolute number or a fraction of the number of samples (rounded to be at least 2).</p> </dd> <dt><strong>max_eps</strong><span class="classifier">float, default=np.inf</span></dt><dd><p>The maximum distance between two samples for one to be considered as in the neighborhood of the other. Default value of <code class="docutils literal notranslate"><span class="pre">np.inf</span></code> will identify clusters across all scales; reducing <code class="docutils literal notranslate"><span class="pre">max_eps</span></code> will result in shorter run times.</p> </dd> <dt><strong>metric</strong><span class="classifier">str or callable, default=’minkowski’</span></dt><dd><p>Metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used.</p> <p>If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy’s metrics, but is less efficient than passing the metric name as a string. If metric is “precomputed”, <code class="docutils literal notranslate"><span class="pre">X</span></code> is assumed to be a distance matrix and must be square.</p> <p>Valid values for metric are:</p> <ul class="simple"> <li><p>from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]</p></li> <li><p>from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]</p></li> </ul> <p>Sparse matrices are only supported by scikit-learn metrics. See the documentation for scipy.spatial.distance for details on these metrics.</p> <div class="admonition note"> <p class="admonition-title">Note</p> <p><code class="docutils literal notranslate"><span class="pre">'kulsinski'</span></code> is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.</p> </div> </dd> <dt><strong>p</strong><span class="classifier">float, default=2</span></dt><dd><p>Parameter for the Minkowski metric from <a class="reference internal" href="sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances" title="sklearn.metrics.pairwise_distances"><code class="xref py py-class docutils literal notranslate"><span class="pre">pairwise_distances</span></code></a>. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.</p> </dd> <dt><strong>metric_params</strong><span class="classifier">dict, default=None</span></dt><dd><p>Additional keyword arguments for the metric function.</p> </dd> <dt><strong>cluster_method</strong><span class="classifier">str, default=’xi’</span></dt><dd><p>The extraction method used to extract clusters using the calculated reachability and ordering. Possible values are “xi” and “dbscan”.</p> </dd> <dt><strong>eps</strong><span class="classifier">float, default=None</span></dt><dd><p>The maximum distance between two samples for one to be considered as in the neighborhood of the other. By default it assumes the same value as <code class="docutils literal notranslate"><span class="pre">max_eps</span></code>. Used only when <code class="docutils literal notranslate"><span class="pre">cluster_method='dbscan'</span></code>.</p> </dd> <dt><strong>xi</strong><span class="classifier">float between 0 and 1, default=0.05</span></dt><dd><p>Determines the minimum steepness on the reachability plot that constitutes a cluster boundary. For example, an upwards point in the reachability plot is defined by the ratio from one point to its successor being at most 1-xi. Used only when <code class="docutils literal notranslate"><span class="pre">cluster_method='xi'</span></code>.</p> </dd> <dt><strong>predecessor_correction</strong><span class="classifier">bool, default=True</span></dt><dd><p>Correct clusters according to the predecessors calculated by OPTICS <a class="reference internal" href="#r2c55e37003fe-2" id="id3">[2]</a>. This parameter has minimal effect on most datasets. Used only when <code class="docutils literal notranslate"><span class="pre">cluster_method='xi'</span></code>.</p> </dd> <dt><strong>min_cluster_size</strong><span class="classifier">int > 1 or float between 0 and 1, default=None</span></dt><dd><p>Minimum number of samples in an OPTICS cluster, expressed as an absolute number or a fraction of the number of samples (rounded to be at least 2). If <code class="docutils literal notranslate"><span class="pre">None</span></code>, the value of <code class="docutils literal notranslate"><span class="pre">min_samples</span></code> is used instead. Used only when <code class="docutils literal notranslate"><span class="pre">cluster_method='xi'</span></code>.</p> </dd> <dt><strong>algorithm</strong><span class="classifier">{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’</span></dt><dd><p>Algorithm used to compute the nearest neighbors:</p> <ul class="simple"> <li><p>‘ball_tree’ will use <a class="reference internal" href="sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree" title="sklearn.neighbors.BallTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">BallTree</span></code></a>.</p></li> <li><p>‘kd_tree’ will use <a class="reference internal" href="sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree" title="sklearn.neighbors.KDTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">KDTree</span></code></a>.</p></li> <li><p>‘brute’ will use a brute-force search.</p></li> <li><p>‘auto’ (default) will attempt to decide the most appropriate algorithm based on the values passed to <a class="reference internal" href="#sklearn.cluster.OPTICS.fit" title="sklearn.cluster.OPTICS.fit"><code class="xref py py-meth docutils literal notranslate"><span class="pre">fit</span></code></a> method.</p></li> </ul> <p>Note: fitting on sparse input will override the setting of this parameter, using brute force.</p> </dd> <dt><strong>leaf_size</strong><span class="classifier">int, default=30</span></dt><dd><p>Leaf size passed to <a class="reference internal" href="sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree" title="sklearn.neighbors.BallTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">BallTree</span></code></a> or <a class="reference internal" href="sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree" title="sklearn.neighbors.KDTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">KDTree</span></code></a>. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem.</p> </dd> <dt><strong>memory</strong><span class="classifier">str or object with the joblib.Memory interface, default=None</span></dt><dd><p>Used to cache the output of the computation of the tree. By default, no caching is done. If a string is given, it is the path to the caching directory.</p> </dd> <dt><strong>n_jobs</strong><span class="classifier">int, default=None</span></dt><dd><p>The number of parallel jobs to run for neighbors search. <code class="docutils literal notranslate"><span class="pre">None</span></code> means 1 unless in a <a class="reference external" href="https://joblib.readthedocs.io/en/latest/generated/joblib.parallel_backend.html#joblib.parallel_backend" title="(in joblib v1.5.dev0)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">joblib.parallel_backend</span></code></a> context. <code class="docutils literal notranslate"><span class="pre">-1</span></code> means using all processors. See <a class="reference internal" href="../../glossary.html#term-n_jobs"><span class="xref std std-term">Glossary</span></a> for more details.</p> </dd> </dl> </dd> <dt class="field-even">Attributes<span class="colon">:</span></dt> <dd class="field-even"><dl> <dt><strong>labels_</strong><span class="classifier">ndarray of shape (n_samples,)</span></dt><dd><p>Cluster labels for each point in the dataset given to fit(). Noisy samples and points which are not included in a leaf cluster of <code class="docutils literal notranslate"><span class="pre">cluster_hierarchy_</span></code> are labeled as -1.</p> </dd> <dt><strong>reachability_</strong><span class="classifier">ndarray of shape (n_samples,)</span></dt><dd><p>Reachability distances per sample, indexed by object order. Use <code class="docutils literal notranslate"><span class="pre">clust.reachability_[clust.ordering_]</span></code> to access in cluster order.</p> </dd> <dt><strong>ordering_</strong><span class="classifier">ndarray of shape (n_samples,)</span></dt><dd><p>The cluster ordered list of sample indices.</p> </dd> <dt><strong>core_distances_</strong><span class="classifier">ndarray of shape (n_samples,)</span></dt><dd><p>Distance at which each sample becomes a core point, indexed by object order. Points which will never be core have a distance of inf. Use <code class="docutils literal notranslate"><span class="pre">clust.core_distances_[clust.ordering_]</span></code> to access in cluster order.</p> </dd> <dt><strong>predecessor_</strong><span class="classifier">ndarray of shape (n_samples,)</span></dt><dd><p>Point that a sample was reached from, indexed by object order. Seed points have a predecessor of -1.</p> </dd> <dt><strong>cluster_hierarchy_</strong><span class="classifier">ndarray of shape (n_clusters, 2)</span></dt><dd><p>The list of clusters in the form of <code class="docutils literal notranslate"><span class="pre">[start,</span> <span class="pre">end]</span></code> in each row, with all indices inclusive. The clusters are ordered according to <code class="docutils literal notranslate"><span class="pre">(end,</span> <span class="pre">-start)</span></code> (ascending) so that larger clusters encompassing smaller clusters come after those smaller ones. Since <code class="docutils literal notranslate"><span class="pre">labels_</span></code> does not reflect the hierarchy, usually <code class="docutils literal notranslate"><span class="pre">len(cluster_hierarchy_)</span> <span class="pre">></span> <span class="pre">np.unique(optics.labels_)</span></code>. Please also note that these indices are of the <code class="docutils literal notranslate"><span class="pre">ordering_</span></code>, i.e. <code class="docutils literal notranslate"><span class="pre">X[ordering_][start:end</span> <span class="pre">+</span> <span class="pre">1]</span></code> form a cluster. Only available when <code class="docutils literal notranslate"><span class="pre">cluster_method='xi'</span></code>.</p> </dd> <dt><strong>n_features_in_</strong><span class="classifier">int</span></dt><dd><p>Number of features seen during <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a>.</p> <div class="versionadded"> <p><span class="versionmodified added">Added in version 0.24.</span></p> </div> </dd> <dt><strong>feature_names_in_</strong><span class="classifier">ndarray of shape (<code class="docutils literal notranslate"><span class="pre">n_features_in_</span></code>,)</span></dt><dd><p>Names of features seen during <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a>. Defined only when <code class="docutils literal notranslate"><span class="pre">X</span></code> has feature names that are all strings.</p> <div class="versionadded"> <p><span class="versionmodified added">Added in version 1.0.</span></p> </div> </dd> </dl> </dd> </dl> <div class="admonition seealso"> <p class="admonition-title">See also</p> <dl class="simple"> <dt><a class="reference internal" href="sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN" title="sklearn.cluster.DBSCAN"><code class="xref py py-obj docutils literal notranslate"><span class="pre">DBSCAN</span></code></a></dt><dd><p>A similar clustering for a specified neighborhood radius (eps). Our implementation is optimized for runtime.</p> </dd> </dl> </div> <p class="rubric">References</p> <div role="list" class="citation-list"> <div class="citation" id="r2c55e37003fe-1" role="doc-biblioentry"> <span class="label"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></span> <span class="backrefs">(<a role="doc-backlink" href="#id1">1</a>,<a role="doc-backlink" href="#id2">2</a>)</span> <p>Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. “OPTICS: ordering points to identify the clustering structure.” ACM SIGMOD Record 28, no. 2 (1999): 49-60.</p> </div> <div class="citation" id="r2c55e37003fe-2" role="doc-biblioentry"> <span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">2</a><span class="fn-bracket">]</span></span> <p>Schubert, Erich, Michael Gertz. “Improving the Cluster Structure Extracted from OPTICS Plots.” Proc. of the Conference “Lernen, Wissen, Daten, Analysen” (LWDA) (2018): 318-329.</p> </div> </div> <p class="rubric">Examples</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.cluster</span> <span class="kn">import</span> <span class="n">OPTICS</span> <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">6</span><span class="p">],</span> <span class="gp">... </span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">7</span><span class="p">],</span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">8</span><span class="p">],</span> <span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">3</span><span class="p">]])</span> <span class="gp">>>> </span><span class="n">clustering</span> <span class="o">=</span> <span class="n">OPTICS</span><span class="p">(</span><span class="n">min_samples</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">clustering</span><span class="o">.</span><span class="n">labels_</span> <span class="go">array([0, 0, 0, 1, 1, 1])</span> </pre></div> </div> <p>For a more detailed example see <a class="reference internal" href="../../auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py"><span class="std std-ref">Demo of OPTICS clustering algorithm</span></a>.</p> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.OPTICS.fit"> <span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/4ee3afa55/sklearn/cluster/_optics.py#L302"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.OPTICS.fit" title="Link to this definition">#</a></dt> <dd><p>Perform OPTICS clustering.</p> <p>Extracts an ordered list of points and reachability distances, and performs initial clustering using <code class="docutils literal notranslate"><span class="pre">max_eps</span></code> distance specified at OPTICS object instantiation.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>X</strong><span class="classifier">{ndarray, sparse matrix} of shape (n_samples, n_features), or (n_samples, n_samples) if metric=’precomputed’</span></dt><dd><p>A feature array, or array of distances between samples if metric=’precomputed’. If a sparse matrix is provided, it will be converted into CSR format.</p> </dd> <dt><strong>y</strong><span class="classifier">Ignored</span></dt><dd><p>Not used, present for API consistency by convention.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>Returns a fitted instance of self.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.OPTICS.fit_predict"> <span class="sig-name descname"><span class="pre">fit_predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/4ee3afa55/sklearn/base.py#L597"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.OPTICS.fit_predict" title="Link to this definition">#</a></dt> <dd><p>Perform clustering on <code class="docutils literal notranslate"><span class="pre">X</span></code> and returns cluster labels.</p> <dl class="field-list"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl> <dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>Input data.</p> </dd> <dt><strong>y</strong><span class="classifier">Ignored</span></dt><dd><p>Not used, present for API consistency by convention.</p> </dd> <dt><strong>**kwargs</strong><span class="classifier">dict</span></dt><dd><p>Arguments to be passed to <code class="docutils literal notranslate"><span class="pre">fit</span></code>.</p> <div class="versionadded"> <p><span class="versionmodified added">Added in version 1.4.</span></p> </div> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>labels</strong><span class="classifier">ndarray of shape (n_samples,), dtype=np.int64</span></dt><dd><p>Cluster labels.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.OPTICS.get_metadata_routing"> <span class="sig-name descname"><span class="pre">get_metadata_routing</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/4ee3afa55/sklearn/utils/_metadata_requests.py#L1497"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.OPTICS.get_metadata_routing" title="Link to this definition">#</a></dt> <dd><p>Get metadata routing of this object.</p> <p>Please check <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing mechanism works.</p> <dl class="field-list simple"> <dt class="field-odd">Returns<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>routing</strong><span class="classifier">MetadataRequest</span></dt><dd><p>A <a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest" title="sklearn.utils.metadata_routing.MetadataRequest"><code class="xref py py-class docutils literal notranslate"><span class="pre">MetadataRequest</span></code></a> encapsulating routing information.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.OPTICS.get_params"> <span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/4ee3afa55/sklearn/base.py#L221"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.OPTICS.get_params" title="Link to this definition">#</a></dt> <dd><p>Get parameters for this estimator.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>deep</strong><span class="classifier">bool, default=True</span></dt><dd><p>If True, will return the parameters for this estimator and contained subobjects that are estimators.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>params</strong><span class="classifier">dict</span></dt><dd><p>Parameter names mapped to their values.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.OPTICS.set_params"> <span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/4ee3afa55/sklearn/base.py#L245"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.OPTICS.set_params" title="Link to this definition">#</a></dt> <dd><p>Set the parameters of this estimator.</p> <p>The method works on simple estimators as well as on nested objects (such as <a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>). The latter have parameters of the form <code class="docutils literal notranslate"><span class="pre"><component>__<parameter></span></code> so that it’s possible to update each component of a nested object.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>**params</strong><span class="classifier">dict</span></dt><dd><p>Estimator parameters.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">estimator instance</span></dt><dd><p>Estimator instance.</p> </dd> </dl> </dd> </dl> </dd></dl> </dd></dl> <section id="gallery-examples"> <h2>Gallery examples<a class="headerlink" href="#gallery-examples" title="Link to this heading">#</a></h2> <div class="sphx-glr-thumbnails"><div class="sphx-glr-thumbcontainer" tooltip="This example shows characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. With the exception of the last dataset, the parameters of each of these dataset-algorithm pairs has been tuned to produce good clustering results. Some algorithms are more sensitive to parameter values than others."><img alt="" src="../../_images/sphx_glr_plot_cluster_comparison_thumb.png" /> <p><a class="reference internal" href="../../auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py"><span class="std std-ref">Comparing different clustering algorithms on toy datasets</span></a></p> <div class="sphx-glr-thumbnail-title">Comparing different clustering algorithms on toy datasets</div> </div><div class="sphx-glr-thumbcontainer" tooltip="Finds core samples of high density and expands clusters from them. This example uses data that is generated so that the clusters have different densities."><img alt="" src="../../_images/sphx_glr_plot_optics_thumb.png" /> <p><a class="reference internal" href="../../auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py"><span class="std std-ref">Demo of OPTICS clustering algorithm</span></a></p> <div class="sphx-glr-thumbnail-title">Demo of OPTICS clustering algorithm</div> </div></div></section> </section> </article> <footer class="bd-footer-article"> <div class="footer-article-items footer-article__inner"> <div class="footer-article-item"> <div class="prev-next-area"> <a class="left-prev" href="sklearn.cluster.MiniBatchKMeans.html" title="previous page"> <i class="fa-solid fa-angle-left"></i> <div class="prev-next-info"> <p class="prev-next-subtitle">previous</p> <p class="prev-next-title">MiniBatchKMeans</p> </div> </a> <a class="right-next" href="sklearn.cluster.SpectralBiclustering.html" title="next page"> <div class="prev-next-info"> <p class="prev-next-subtitle">next</p> <p class="prev-next-title">SpectralBiclustering</p> </div> <i class="fa-solid fa-angle-right"></i> </a> </div></div> </div> </footer> </div> <div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner"> <div class="sidebar-secondary-item"> <div id="pst-page-navigation-heading-2" class="page-toc tocsection onthispage"> <i class="fa-solid fa-list"></i> On this page </div> <nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2"> <ul class="visible nav section-nav flex-column"> <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.cluster.OPTICS"><code class="docutils literal notranslate"><span class="pre">OPTICS</span></code></a><ul class="nav section-nav flex-column visible"> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.cluster.OPTICS.fit"><code class="docutils literal notranslate"><span class="pre">fit</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.cluster.OPTICS.fit_predict"><code class="docutils literal notranslate"><span class="pre">fit_predict</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.cluster.OPTICS.get_metadata_routing"><code class="docutils literal notranslate"><span class="pre">get_metadata_routing</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.cluster.OPTICS.get_params"><code class="docutils literal notranslate"><span class="pre">get_params</span></code></a></li> <li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sklearn.cluster.OPTICS.set_params"><code class="docutils literal notranslate"><span class="pre">set_params</span></code></a></li> </ul> </li> <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#gallery-examples">Gallery examples</a></li> </ul> </nav></div> <div class="sidebar-secondary-item"> <div class="tocsection sourcelink"> <a href="../../_sources/modules/generated/sklearn.cluster.OPTICS.rst.txt"> <i class="fa-solid fa-file-lines"></i> Show Source </a> </div> </div> </div></div> </div> <footer class="bd-footer-content"> </footer> </main> </div> </div> <!-- Scripts loaded after <body> so the DOM is not blocked --> <script src="../../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b"></script> <script src="../../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b"></script> <footer class="bd-footer"> <div class="bd-footer__inner bd-page-width"> <div class="footer-items__start"> <div class="footer-item"> <p class="copyright"> © Copyright 2007 - 2024, scikit-learn developers (BSD License). <br/> </p> </div> </div> </div> </footer> </body> </html>