https://travis-ci.org/scikit-learn-contrib/lightning.svg?branch=master

lightning

lightning is a library for large-scale linear classification, regression and ranking in Python.

Highlights:

Solvers supported:

Example

Example that shows how to learn a multiclass classifier with group lasso penalty on the News20 dataset (c.f., Blondel et al. 2013):

from sklearn.datasets import fetch_20newsgroups_vectorized
from lightning.classification import CDClassifier

# Load News20 dataset from scikit-learn.
bunch = fetch_20newsgroups_vectorized(subset="all")
X = bunch.data
y = bunch.target

# Set classifier options.
clf = CDClassifier(penalty="l1/l2",
                   loss="squared_hinge",
                   multiclass=True,
                   max_iter=20,
                   alpha=1e-4,
                   C=1.0 / X.shape[0],
                   tol=1e-3)

# Train the model.
clf.fit(X, y)

# Accuracy
print(clf.score(X, y))

# Percentage of selected features
print(clf.n_nonzero(percentage=True))

Dependencies

lightning needs Python >= 2.7, setuptools, Numpy >= 1.3, SciPy >= 0.7, scikit-learn >= 0.15 and a working C/C++ compiler.

To run the tests you will also need nose >= 0.10.

Installation

To install lightning from pip, type:

pip install https://github.com/scikit-learn-contrib/lightning/archive/master.zip

To install lightning from source, type:

git clone https://github.com/scikit-learn-contrib/lightning.git
cd lightning
python setup.py build
sudo python setup.py install

Author

Mathieu Blondel, 2012-present