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Abstract—Localization, an indispensable component in
robotics and automation, encounters difficulties arising from
appearance variations, resulting in inaccurate data associations.
Semantic-based positioning mitigates these challenges by filtering
out invalid data, such as moving vehicles and worn road mark-
ings. Building on this insight, we introduce a robust semantic
visual localization system, which has been successfully deployed
in real-world settings. The system employs neural networks to
extract road markers and associate data with a semantic map.
To enhance system reliability, we employ several data filters.
These filters remove images that are prone to misrecognition
or poorly processed by neural networks. We propose two
techniques for vehicle state estimation. The first, utilizing the
inverse perspective mapping (IPM) matrix, directly determines
the vehicle’s central pose. The second technique derives the
camera pose using the Perspective-N-Points (PnP) method and
leverages external parameters to infer the vehicle’s central state.
The wheel encoder, with its robust anti-noise capability, offers
odometry in the absence of semantic information, enhancing the
system’s resilience. The crux of our approach lies in distinct
semantic strategies: utilizing lane lines for orientation and road
markers exclusively for translation estimation. We also detail
an automatic construction method for the semantic map, en-
hancing the system’s practicality. Experimental results indicate
that the IPM method outperforms the PnP approach, leading to
notably improved positioning accuracy. Additionally, the error
distribution of the IPM method more closely aligns with a normal
distribution compared to that of the PnP approach.

Index Terms—semantic visual localization, inverse perspective
mapping , Perspective-N-Points, normal distribution.

I. INTRODUCTION
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SHIPPING remains a linchpin of international trade, serv-
ing as the most cost-effective transportation mode [1].

Specifically within port operations, unmanned ground vehicles
(UGVs) stand to substantially enhance efficiency in container
transport [2], with a particular focus on addressing the unique
logistical challenges of these environments. The advent of
COVID-19 has exacerbated existing labor shortages in port op-
erations, with a notable decline in available dockers and truck
drivers [3]. This period has also seen a surge in aggressive
driving behaviors [4], further underscoring the need for the
development and deployment of UGVs specifically designed
for the complex and demanding conditions of ports.

This scenario presents a significant challenge for au-
tonomous driving in large-scale, appearance-changing envi-
ronments [2], wherein determining the precise position and
orientation of the UGV becomes crucial.

In the field of robotics, localization schemes can generally
be divided into two types: map-based localization and non-
map-based localization. The latter is also called simultaneous
localization and mapping (SLAM). In practice, to maintain
the consistency of positioning results, it is often necessary for
non-map localization methods to provide the correct initial
coordinate system.

In extreme scenarios such as sensor failure or localization
failure in industrial applications, multi-sensor fusion based on
the Kalman Filter (KF) can sometimes offer greater robustness
compared to the tight coupling of multiple sensors. Therefore,
it is also crucial that the algorithm can output accurate results
accompanied by a measure of uncertainty. The system also
needs to have a strong self-checking ability to eliminate the
wrong data association, thus increasing the system’s robust-
ness.

The primary sensors for the localization system include
LiDAR, cameras, and GNSS. In scenarios such as traffic
jams, the functionality of LiDAR becomes limited, potentially
leading to system failures. Moreover, the GNSS signal may
require enhancements in certain areas to provide effective
positioning results.

Although cameras may not perform optimally during night-
time, this limitation can be mitigated by ensuring sufficient
lighting. Given that illuminating the surroundings is a feasible
solution in most operational scenarios, a camera-based robust
positioning system can be swiftly deployed for industrial
applications.
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Fig. 1. Below is a block diagram illustrating the complete pipeline of our proposed localization system. The system begins with an initial pose x and
estimates vehicle status using wheel odometry, as explained in Section VIII-F. When image data is available, it undergoes processing through two distinct
networks, enabling estimation of both orientation and position, as detailed in Sections VIII-D.

B. Challenges

Our foremost priority in UGV localization is to achieve
a harmonious balance between precise localization results
and optimal real-time performance. In scenarios where the
localization accuracy falls below the requisite threshold or the
system encounters substantial delays, it fails to furnish reliable
feedback data, which is vital for the UGV’s ensuing planning
and control processes. Based on these two objectives, the main
challenges are as follows.

1) Appearance Changing: Methods utilizing feature points,
as delineated in [5] [6], may encounter performance degra-
dation in dynamic environments. Upon halting, the UGV in-
advertently captures features of moving objects, incorporating
them into camera pose estimation, a factor that can potentially
destabilize the system. As the UGV enters expansive areas
characterized mainly by the ground as a notable feature, GNSS
systems generally operate optimally, barring the presence of
overhead metal obstructions. However, the presence of struc-
tures such as rail cranes along the port’s seaside can introduce
interference with the GNSS signal. LiDAR-based methods [7]
may encounter difficulties due to insufficient constraints in
such environments. Although solutions integrating LiDAR and
GNSS have been proposed as in [8], [9], vehicle congestion
beneath the gantry cranes in port scenarios might lead to
simultaneous failures of both LiDAR and GNSS. In most
scenarios, marker-based methods that employ ground features
remain viable, utilizing cameras to facilitate successful opera-
tion. However, dynamic environments encompass not only the
observed scenes but also potential alterations to the markers
upon which the method relies. Such markers, encompassing
varieties like rhombus or AprilTags, may be compromised due
to staining in industrial settings.

2) Data Association: In map-based localization method-
ologies, a critical step is ensuring precise data association

between sensor data and the map. This task faces significant
challenges in maintaining accurate data associations, given
that any inaccuracies can severely compromise the system,
resulting in incorrect location estimations. Within the context
of SLAM techniques, loop closure functions as a vital mech-
anism to mitigate cumulative errors, necessitating meticulous
data association between sensor inputs and map details. Conse-
quently, it is imperative to develop a sophisticated mechanism
capable of identifying outliers during data association, thereby
enhancing the system’s reliability and precision. Moreover,
minor fluctuations in the camera’s internal parameters and
distortion coefficients can alter the pixel positions of features
within an image, necessitating a system equipped with robust
noise resistance capabilities.

3) Calculate Resource Utilization: The central process-
ing unit (CPU) allocates time slots for the task of visual
localization and processes data from various other sensors.
Additionally, tasks pertaining to planning, control, and other
auxiliary processes consume a significant portion of the CPU’s
processing time. A more efficient method implies reduced
occupation of CPU time slots, thereby facilitating the provision
of more real-time data for subsequent processes reliant on
the outcomes of visual localization. The graphics processing
unit (GPU) can be exclusively allocated to the visual module,
obviating the need to account for potential allocation of
GPU computing resources to other processes. Therefore, our
primary focus is centered on enhancing the computational
efficiency of the CPU.

4) Output Uncertainty: Given that the final result may
be integrated with positioning data from other sensors, it is
essential to provide a reliable or easily adjustable measure of
uncertainty.
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C. Related Work

In the quest for technological advancements in UGV local-
ization, visual localization methods have emerged as a focal
point due to their intuitive perception of the environment.
These methods are commonly distinguished by whether or not
they utilize a pre-existing map.

1) Visual Localization Without a Prior Map: This challenge
is akin to the SLAM problem, as delineated in [10]. A single
camera is incapable of capturing depth information, which
consequently impedes the acquisition of accurate metric scales
necessary for positioning results [11], [12]. Typically, stereo
cameras are utilized to mitigate the metric scale issue, as
illustrated in studies such as [13]–[16]. However, the accuracy
of the stereo system is constrained by the baseline length, the
distance between the two cameras [17]. Moreover, additional
calibration work is required to determine the external parame-
ters between the cameras, which is critical for accurate depth
estimation. This limitation primarily affects the system’s abil-
ity to accurately determine depth information, which is derived
from the disparity between corresponding points in the images
captured by the two cameras. To address the aforementioned
challenges, several studies, such as [18], [19], have proposed
the use of RGB-D cameras for visual localization.

While RGB-D cameras offer an effective solution for visual
localization, they are prone to infrared interference in bright
outdoor environments, leading to inaccuracies in depth infor-
mation. Moreover, the limited range of their depth detection
can affect their performance in expansive or complex terrains.
These challenges have propelled researchers to explore alter-
native technical solutions, particularly methods that combine
different sensors. This strategy of integrating multiple sensors,
commonly referred to as ”sensor fusion”, aims to leverage the
strengths of each sensor to compensate for their individual
limitations.

With an inertial measurement unit (IMU), a monocular
camera can form a basic sensor suite for 6-DOF state es-
timation [5]. Mainstream visual-inertial (VI) sensor fusion
approaches include the Kalman filter [20]–[22] and graph
optimization-based algorithms [5], [23]. Similar to the stereo
approach, the external parameters between the camera and the
IMU require calibration. This process, including the necessary
IMU parameter adjustments, often contributes to increased
system instability. In addition, these methods are unable to
adapt to varying scenes.

Additionally, there exist other multi-sensor fusion frame-
works. For instance, V-LOAM [24] stands as a state-of-
the-art (SOTA) method in the realm of camera and LiDAR
fusion, consistently ranking at the forefront of the KITTI
dataset leaderboard. The approach in [25] introduces an
online photometric calibration module to mitigate photometric
disturbances in real-world applications, thereby enhancing the
overall system’s localization robustness. Distinct from others,
the Lidar-inertial-visual SLAM system [26], [27], notably
R3LIVE [28], serves not only as a LiDAR-inertial-visual state
estimator but also possesses the capability to reconstruct the
radiance map dynamically. GVINS [29] exemplify a tightly
coupled GNSS–visual–inertial system. The framework can

operate effectively in larger scale environments, benefiting
from the assistance of the GNSS system.

These multi-sensor fusion approaches presuppose the re-
liable functioning of all sensors. However, sensor failures
are not uncommon in practical applications. Moreover, these
methods struggle to address scenarios involving moving ob-
jects within the environment.

While traditional approaches have been foundational to
visual localization, the emergence of deep learning has sig-
nificantly transformed the field through the introduction of
novel techniques. A notable representative is iMAP [30],
which is the pioneering work that integrates NeRF [31] as
the map representation within a SLAM framework. iMAP
optimizes the camera pose through back-propagation using the
photometric loss derived from NeRF. However, it employs a
single multi-layer perceptron (MLP), which is not well-suited
for large-scale environments. NICE-SLAM [32] overcomes
this limitation by adopting multiple MLPs in place of a single
one, utilizing a hierarchical scene representation for more
efficient management of expansive environments. Despite this
improvement, the geometric structure representation remains
imperfect. Vox-Fusion mitigates this by storing voxel grids
in an octree and leveraging signed distance fields (SDFs)
for a more accurate geometric fit of the scene. However,
Vox-Fusion [33] compromises its capacity for synthesizing
new viewpoints. A significant limitation of these NeRF-
based techniques is their dependency on depth information,
hindering their direct use with standard monocular cameras.
Orbeez-SLAM [34], which combines the ORB-SLAM2 [14]
framework with instant-ngp [35], operates independently from
depth information and is capable of pre-training-free operation
in novel scenes. However, its memory utilization increases
with map size, and it struggles in environments with dynamic
objects. GO-SLAM [36] incorporates loop closure detection
and global bundle adjustment(BA) in NeRF-based SLAM
to mitigate cumulative errors. However, its substantial GPU
memory requirements (exceeding 16GB) and low operating
frequency (below 10fps) present challenges for industrial de-
ployment.

Apart from SLAM methodologies employing NeRF, a
notable contemporary advancement is DROID-SLAM [37].
Utilizing an advanced dense optical flow estimation architec-
ture and iterative updates through a dense bundle adjustment
(BA) layer, it facilitates robust visual SLAM. This technique
has laid the groundwork for later developments [38] [39].
PVO [39] bolsters resilience in dynamic environments through
the integration of three modules: image panoptic segmenta-
tion, Panoptic-Enhanced VO Module, and VO-Enhanced VPS
Module.

Nevertheless, these learning-based methods exhibit a sig-
nificant limitation: their extensive GPU memory requirements
impede implementation on industrial robotic systems. More-
over, they do not incorporate a framework for quantifying
uncertainty, an essential factor for integrating data with on-
board sensors. The efficacy of these algorithms is also highly
contingent on the accuracy of camera intrinsic calibration, po-
tentially undermining their reliability for enduring operations
across vast settings.
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Our advanced system necessitates a mere 3GB of GPU
memory and exhibits greater tolerance to variations in camera
intrinsic precision, rendering it a superior choice for industrial
deployment.

2) Visual Localization With a Prior Map : A pre-
established map can furnish the localization system with
vital information, significantly enhancing its accuracy and
robustness [40], [41]. Huang et al. [42] introduced GMMLoc,
a cross-modality method capable of tracking a camera within
a pre-established map. Ye et al. [43] presented DSL, a method
that utilizes a 3D surfel-based map to enhance the camera’s
localization accuracy and robustness. However, its reliance
on point cloud maps restricts its applicability in various
scenarios. Huang et al. [44] employed signed distance fields
as the prior map for metric monocular visual localization.
Nevertheless, these three methodologies face challenges in
dynamic environments and necessitate significant memory for
map storage. Compared to our proposed method, these three
approaches necessitate considerable CPU power. To address
the issues of memory consumption and scene variations,
Yu et al. [2] developed a visual localization system suitable
for large-scale, appearance-altering environments. However,
due to its reliance on graph optimization-based methods for
positioning, it demands significant computational resources.
Qin et al. [45] proposed a lightweight semantic map for visual
localization, albeit reliant on a cloud map server and only
partially leveraging the characteristics of various semantics.
The aforementioned systems fail to provide the necessary
descriptions of uncertainty, and lack strategies for evaluating
the accuracy of data correlations. Furthermore, point-matching
based methods for 6-DOF camera pose estimation exist, such
as QPEP [46]. However, these are not comprehensive systems
and they lack mechanisms for managing situations with erro-
neous data correlations.

In this paper, we utilize semantic maps to compare the local-
ization techniques of the inverse perspective mapping (IPM)
matrix method and the Perspective-n-Point (PnP) method,
particularly in scenarios with limited available corner pixels.
Unlike the approach described in [45], our method achieves
map localization without the need for a dedicated server for
map storage. Instead, it utilizes only four corners, resulting in
reduced costs and optimized computational resource utiliza-
tion.

D. Contributions
To address the localization challenges faced by UGVs,

we propose a robust visual-based localization system. While
inspired by our previous work [2] on graph-based optimization
for UGV pose and extrinsics estimation, our current approach
introduces a marker-based correction mechanism. The signif-
icant contributions of this work include:

1) : A proven and robust localization system suitable
for environments with changing appearances. It employs an
inverse perspective mapping (IPM) matrix to directly obtain
the UGV pose. This method offers enhanced computational ef-
ficiency and simplifies the process of introducing a covariance-
based uncertainty system. Once this uncertainty is incorpo-
rated, our visual system can integrate smoothly with other

positioning techniques. Using this uncertainty description, our
visual system seamlessly integrates with other positioning
methods. Besides QPEP, there is a notable absence of open-
source state-of-the-art (SOTA) solutions that provide an un-
certainty description capability.

2) : An innovative method for extracting polygon vertices
is introduced. Specifically, it can efficiently identify diamond-
shaped vertices without requiring extra hyperparameters. This
algorithm offers potential adaptability for extracting vertices
from other convex polygons.

3) : Visual Feature-to-Map Matching Mechanism: We have
implemented an advanced matching strategy between visual
features and maps. The inclusion of a labeled filtering mecha-
nism ensures the robustness of data association. In comparison
with related work, there is a lack of analogous methods
designed to ensure the exclusion of mismatched data.

4) : Our system autonomously generates comprehensive
high-precision maps vital for real-time localization. We’ve
demonstrated its positioning accuracy is comparable to maps
created by obtaining marker coordinates using a total station,
which further minimizes manual mapping efforts.

5) : A novel calibration strategy is introduced, integrating
surveying data for camera-to-vehicle alignment. This strategy
focuses on improving calibration accuracy while reducing
reliance on the precision of camera intrinsics. Moreover, the
calibration results provided by this strategy are durable, elimi-
nating the need for recalibration before each system operation.

6) : Experimental results confirm the superior performance
of the IPM method over the PnP approach, especially with
limited matching points. Further data analysis indicates that
our IPM technique favors a Gaussian distribution for error
profiling, more so than the PnP method. This characteristic
ensures a more accurate data representation for multi-sensor
fusion.

E. Organization

The structure of this paper is delineated as follows. Section
III-A defines the problem and introduces foundational con-
cepts. The overall system is outlined in Section III-B. Section
III-C details the methodology for deriving the IPM matrix
of a camera. Additionally, it describes the pose relationship
between the camera and the vehicle’s center. Image processing
techniques, encompassing road marker corner extraction and
lane line identification, are covered in Section III-D. Sec-
tion III-E introduces filters designed to eliminate erroneously
detected rhombi, thereby enhancing system robustness. Vehi-
cle positioning methodologies are presented in Section III-F,
alongside a map layout strategy utilizing rhombus road mark-
ers and an automated map generation approach. Section III-G
details our automated technique for map construction and the
underlying logic for map deployment. Experimental outcomes
are shared in Section IV. Section V critically evaluates the
strengths and weaknesses of our approach, and Section VI
concludes the paper.
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II. PROBLEM STATEMENT AND SOLUTIONS

A. Problem Statement

The problem of map-based localization is represented
as [10]:

x∗
k = argmax

xk

P (xk|Zk, xk−1,M) (1)

here, xk stands for the vehicle’s state at time k. It comprises
the translation and rotation of the vehicle, denoted as x =
[qw, qx, qy, qz, tx, ty, tz]

⊤. The set Zk = {zk,1, zk,2, ..., zk,n}
aggregates all sensor measurements on the vehicle at time k,
with each i-th sensor measurement represented as zi,k. M
refers to the pre-existing map data.

To reshape the problem using the maximum a posteri-
ori (MAP) estimation, we employ the Bayesian formula:

x∗
k = argmax

xk

P (Zk, xk−1, |xk,M)P (xk,M). (2)

Assuming the independence of observations between adja-
cent time sensors, we can rewrite equation (2) as:

x∗
k = argmax

xk

n∏
i=1

P (zk,i, xk−1, |xk,M)P (xk,M) (3)

To apply the equation (3), we must construct models tailored
for different sensors. Most vehicle planning and control algo-
rithms assume the vehicle operates on a virtually flat plane.
This permits us to simplify x to x = [θ, tx, ty], reducing the
state number and hastening subsequent operations.

B. Overview

Our system is based on the assumption that the terrain is
relatively flat, a characteristic prevalent in indoor environments
and numerous engineered settings, including ports, airports,
and industrial zones. This terrain flatness is similarly observed
on the majority of urban roads, where ground undulations are
typically minimal.

Furthermore, we posit that the system initializes from a
known pose—a standard protocol in automated systems, which
typically commence operations from a predetermined location.
This approach not only streamlines the initiation procedure
but also mitigates the risk of global localization errors, thus
minimizing the likelihood of system failures.

Fig. 1 illustrates the pipeline of our proposed localization
system. Commencing with the initial pose x̂, the system
adeptly estimates the vehicle’s status by harnessing both the
camera and the wheel encoder. In scenarios where valid
image data areunavailable, chiefly as a result of the camera’s
limited sampling rate, wheel odometry presents itself as a
computationally frugal alternative. This mechanism bridges
data voids and perpetually refreshes the vehicle’s latest status,
guaranteeing seamless transitions and persistent accuracy.

At time t, the segmentation network processes the image
to demarcate rhombus and lane lines, depicting them as
vertex points and linear stretches. Subsequently, leveraging
the positioning data furnished by the odometry, the system

facilitates data association between the image and the map,
thereby determining the vehicle’s state at time t.

The selection of rhombus-shaped markers for our system
is driven by two primary considerations. Firstly, simple geo-
metric shapes are favored for their detectability and robustness
within visual localization frameworks. Secondly, rhombus con-
figurations are commonplace for pedestrian crosswalk warning
lines in numerous countries and are widely accessible due
to standardized construction molds. Conversely, triangular
markers are rarer and not standardized in their production,
potentially complicating deployment and diminishing the fea-
sibility of broad implementation. Therefore, rhombus markers
offer a practical and efficient solution for our system’s design
and application needs.

C. Parameter Calibration

For the autonomous system’s planning and control to be
effective, it is crucial to identify the vehicle body’s center,
not just the camera’s pose. Hence, we need to calibrate the
external parameters from the camera to the vehicle body
center. Importantly, this calibration is a one-time procedure;
the results can be recurrently utilized for subsequent vehicle
operations, negating the need for recalibration before each
session.

Although the total station can yield measurements with
remarkable precision—accurate to 0.001m—it is laborious to
measure the vehicle’s center body coordinates directly. To
navigate this, we define the body center as the connecting
line’s midpoint between the four tire centers, as illustrated
in Fig. 2, where the vehicle body center is interpreted as the
intersection of the diagonal lines.

Fig. 2. UGV Outline. Black: vehicle body. Yellow: wheels. Red: cameras.
Green: ground and image markers. Blue: vehicle body center.

1) Get the IPM matrix: Each feature point on the ground
corresponds to a specific point in the camera image. Assuming
a flat ground surface, we leverage the IPM matrix H to define
their relationship as Hpi = pw [47], where pi denotes the
pixel position in the image, and pw represents the coordinate
of the corresponding point on the real-world ground.

Note that we have omitted the transformation involving
homogeneous coordinates; this notation will persist without
further explanation in subsequent sections.

Generally, utilizing more points can enhance the calibration
accuracy. To guarantee accurate data association, we annotate
the image pixels manually. However, excessive data annotation

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3372231

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on March 06,2024 at 12:14:51 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 6

can often lead to errors in the operation. In practice, we employ
nine points for the IPM matrix calibration, as illustrated
in Fig. 2. Since the matrix H possesses an 8-degree of
freedom, a minimum of four pairs of non-collinear points is
required; subsequently, we apply the method described in [2]
to determine H .

It is necessary to describe the uncertainty associated with the
matrix H . We define the projection error as the lower bound
of error. In the calibration process involving n points, each
denoted as pi

k in the image, we determine the error as ek =
Hpi

k−pw
k . Consequently, the covariance of ek is represented

as ni. The term ni describes the uncertainty in projecting a
point from the image to the ground.

After getting the IPM matrix, we can know the pixel
coordinate pi

b in images is

pi
b = H−1pw

b , (4)

where pw
b is the coordinate of the vehicle center we introduced

earlier.
2) Calibrate Camera Extrinsic Parameters: To accurately

establish the camera’s pose in the world, we utilize a
perspective-n-point (PnP) approach that exploits the known
correspondences between world points and their projections
onto image pixels. However, this method’s reliability is com-
promised under conditions where the camera’s intrinsic param-
eters and distortion coefficients are inaccurately determined or
when the PnP solver is provided with a sparse set of points.

To circumvent these challenges, we introduce measurements
from a total station, which supplies a precise estimate of the
camera’s position, denoted by the vector t. This additional
data transforms the problem from a six degrees of freedom (6-
DOF) estimation to a more tractable three degrees of freedom
(3-DOF) problem, focusing solely on the camera’s orientation.

The optimization of the camera’s orientation, represented
by R∗, is formulated as:

R∗ = argmax
R

1

2

n∑
i=1

∥∥∥∥ui −
1

si
K(RPi + t)

∥∥∥∥2
2

, (5)

where R∗ signifies the optimized camera orientation, R is
the 3×3 rotation matrix, t is the 3x1 position vector provided
by the total station, and ui corresponds to the coordinates of
the green points within the red box in Fig. 2. The si denotes
the scale factor for the projection of the ith world point Pi,
computed as K(RPi + t). Here, K represents the camera’s
3 × 3 intrinsic matrix, and n denotes the number of matches
between pixels in the image and points in the physical world.
In this context, the value of n is 9, indicating that there are
nine points in the image that correspond to actual locations on
the ground. The optimization defined by the above equation
can be solvable using any standard optimization tools.

D. Image Processing

The rhombus shape, recognized for its simplicity, serves as
a pavement marking in numerous countries, a testament to its
practicality as a road marker. To facilitate the identification of
such markers in the autonomous system, an incoming image is

concurrently processed through two distinct neural networks.
Initially, the image is channeled to the Mask-RCNN [48] to
segment and isolate the road markers. Simultaneously, the
SCNN network [49] operates to demarcate the lane boundaries
through segmentation. This dual-network processing ensures
a comprehensive analysis of the road terrain, enhancing the
system’s responsiveness and accuracy in detecting vital road
signals.

1) Lane Marker: In this paper, the sole function of lane
lines is to furnish the system with heading angles. It stands
to reason to convert all segmented pixels to 2D points and
then categorize them using the L2 distance clustering algo-
rithm. Following this, we utilize the previously calibrated IPM
matrix, denoted as H , to transfer these points to the world
frame. To further refine this representation, we implement a
RANSAC-based line fitting method to delineate the line in the
world frame. Essentially, we extract a line from the image and
transpose it to a calibration frame utilizing the pre-established
IPM matrix H . This process facilitates the depiction of the
line as two connected points, pwa and pwb , within the calibration
frame.

2) Road Marker: While the Mask-RCNN yields segmen-
tation results, they cannot be utilized directly; our primary
interest lies in identifying the four corners of the segmentation.
The line fitting algorithms presented in [2] require a hyperpa-
rameter d and are incapable of handling incomplete rhombus,
as illustrated in Fig. (3). This issue can result in the failure
to recognize rhombus when the vehicle is moving at high
speeds. The line-fitting algorithm utilizing RANSAC tends to
be computationally intensive, typically operating on the CPU,
necessitating enhancements in the method for recognizing
rhombus corners.

Fig. 3. Up: the real rhombus from image. Left: Original rhombus. Right: the
complete rhombus. Red: rhombus in the raw image. Blue: Lane line in the
raw image. Green: Mask of the Largest rhombus.

Rhombus that appear larger in the image are generally
closer to the camera, offering a reduced margin of error in
measurement due to a smaller real-world distance represented
per pixel. Therefore, we only processing the largest rhombus in
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a b c d

Fig. 4. (a) presents an image obtained through segmentation, with the white
region denoting the segmented rhombus. Following this, we employ a flood-
fill approach on the image in (a) to delineate the rhombus contours, as shown
in (b). Subsequently, the largest rhombus is selected from (b) to produce
image (c). Ultimately, using the method detailed in Fig. 5, the red region in
(d) highlights the four vertices of our target rhombus.

the image to enhance the precision of our localization efforts.
Fig. 4 illustrates the procedure for rhombus selection.

a b c d e f

Fig. 5. For a convex polygon, consider any two adjacent angles. By extending
their corresponding edges to an intersection, a new vertex is formed, replacing
the original two angles with a single angle. This operation reduces the
polygon’s number of angles by one and increases its area. In the provided
figure, the added area is highlighted in blue. Throughout this procedure, we
consistently opt for the method that minimally increases the area until the
polygon becomes a quadrilateral. The steps from a to f in the figure illustrate
this progression.

Drawing inspiration from [50], we find it feasible to ap-
proximate the rhombus, a convex polygon, using a minimum
circumscribed quadrilateral. Corner extraction only needs data
on mask contour. So we use the flood-filling algorithm to
extract the pixels on the outline. The method first obtains the
convex hull of the outline pixels and the convex hull point
set. This step can greatly reduce the number of pixels to be
processed. Deleting an edge in the convex hull and extending
its two adjacent edges of this edge can increase the area of
the convex polygon by Si and reduce the convex polygon by
one corner. Repeatedly delete the corner with the smallest area
until the polygon has only four corners, which are the corner
points we need. The algorithm complexity is O(n log n), and
the n is the number of outline pixels of the mask. Fig. 5
provides an example illustrating this process.

E. Data Matching and Filtering

Unlike lane markings, rhombuses in images appear more
compact and concentrated, while lane markings cover a
broader image area. Fig 6 illustrates a scenario where scene
recognition becomes more complex due to rainfall. As a result,
accurately extracting the details of the rhombus shape becomes
challenging. Moreover, the results of deep learning network
segmentation do not ensure flawless extraction and corner
localization of rhombuses. As a result, it becomes crucial
to employ a series of validation methodologies. Next, this
section introduces procedures for data matching and filtering,
with a primary focus on eliminating low-quality data, ensuring
precise image-to-map associations, and enhancing system ro-
bustness. This specific procedure involves examining rhombus

edge lengths, aligning them with map rhombuses, utilizing
them for localization, and filtering data anomalies resulting
from localization.

Fig. 6. Lane lines are marked in magenta, normal rhombi in red, and rhombi
that are difficult to detect due to their similar color to the surroundings in blue.
False rhombi formed by rainwater are shown in green. Detecting these markers
accurately is challenging due to their appearance variations.

1) Verification of Rhombus Edge Lengths: According to
Section III-D, we denote the last 4 pixels extracted in the
image as p̃i

j , where j denotes the index of the extracted pixel.
For any two pixels in the images, pi

a and pi
b, projected from

the ground, we can calculate the distance dab as follows:

dab = ∥H(p̃i
a − p̃i

b)∥22, (6)

where dab represents the distance between these two ground-
projected pixels.

Precise rhombus identification is essential. Unlike lane
lines, rhombi occupy a smaller portion of the image and
may not always be fully captured. We employ the metric
max abs(dab − d̄) to validate that the distance between ad-
jacent rhombus corners aligns with our expected side length,
represented by d̄. This approach effectively reduces the num-
ber of false positives.

2) Matching Rhombus Data to Map: A map can be con-
structed through various means, including total station surveys,
construction CAD drawings, or the methods introduced in
Section III-F. We project map data onto the image by utilizing
the current vehicle position to identify overlaid map elements.
Clearly, not all elements are represented on the map. Only a
small portion of elements in front of the camera are projected
onto the image. So, it is not necessary to exhaustively enu-
merate all the rhombuses on the map. Only a few rhombuses
closer to the vehicle have the value of being checked, and
ikd-tree [51] can speed up the process. Fig. 7 offers an
intuitive demonstration of acquiring virtual image elements.
With the aid of virtual image elements, data association can
be easily achieved in the image based on the nearest-point
matching principle. Fig. 8 illustrates the process of matching
map elements with image elements.

Given the previously provided context, the ”nearest-point
matching principle” mentioned serves as a foundational
method, enabling the filtration of erroneous rhombus shapes.
Theoretically, the coordinates of map elements projected into
the camera should perfectly align with the image elements.
According to Eq. (5), K(Rp+t) = u should hold true, where
K represents the camera intrinsic parameters, R and t denote
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Fig. 7. The left image depicts the actual view of the vehicle within the port,
while the right image illustrates the vehicle’s position on the map, determined
through localization results. By utilizing the extrinsic parameters linking the
camera, vehicle, and map data, it becomes possible to infer the expected map
elements within the camera’s field of view.

Fig. 8. The upper left image represents the camera’s view, while the upper
right image displays the result after passing through a segmentation neural
network. The lower left image shows the data obtained by projecting the map
from Fig. 7 onto the camera. Lane lines are depicted as straight lines, and
data matching is achieved by having the green lines locate the nearest pink
lines. Rhombuses can be represented by their centers, and data matching is
completed by identifying the red rhombus in the image that is closest to the
center of the blue rhombus.

the extrinsic parameters of the current camera in the world
coordinate system, u signifies the pixels in image elements,
and p corresponds to the elements in the map.

Inevitably, discrepancies exist, making the equation poten-
tially inaccurate. These discrepancies primarily arise from two
sources: errors attributed to camera parameters and localization
errors, with the former generally being negligible due to their
minimal impact and the difficulty in quantification.

Angular and translational errors are represented by △R
and △t, respectively. Ideally, the pixel error, denoted as i,
is defined as ||u−K(△Rp+ t+△t)||22.

Aware of the covariance characterization of the uncertainty
in vehicle pose localization, we can employ three times the
standard deviation in place of △R and △t, deriving an
error measure i, used as a filtering threshold to exclude non-
compliant image data.

In industrial applications, an allowable maximum localiza-
tion error is generally acknowledged, varying with the specific
localization task. The allowable maximum angular error △R
and translational error △t can also be utilized to compute
an error measure i, serving as a filtering threshold. Fig. 9
illustrates the process of utilizing a threshold to filter out
incorrect matches.

In engineering practice, this parameter can be adjusted
flexibly based on different localization tasks, for instance, by
proportionally scaling i. The two strategies presented herein

are frequently employed in our practical work, serving as
robust and valuable references for various localization tasks.

D

d1
d2

d3

d4

Fig. 9. The red rhombus represents the shape projected from a map element
onto the image, while the blue rhombus is obtained using the method described
in Section III-D. The positions of these rhombi in the image are their original
locations. We can calculate the distance D between their center positions. If
this distance D exceeds the threshold i, the match is deemed unsuccessful.
Once a successful match is achieved by aligning the centers of the rhombi,
we can proceed to associate the data of the four corners of the rhombus using
the nearest-point matching principle.

3) Data Filtering via Localization: At any given moment,
our system possesses a localization result characterized by
covariance. The specifics of the localization method will be
discussed in the subsequent Section III-F. This section will
outline how localization is leveraged to filter out irrelevant
data. The position inferred from the wheel encoder is denoted
as t, with a corresponding covariance of Σt. Meanwhile, the
location result derived from rhombus data is represented as
tp. We employ the Mahalanobis Distance [52] to express the
divergence between them, expressed as

DM =

√
(t− tp)⊤Σ−1

t (t− tp). (7)

Based on the Three-Sigma Rule, we select 3 as the threshold
here, given that approximately 99.7% of the data points in a
normal distribution are within three standard deviations from
the mean.

F. Localization

The primary concept of localization is to utilize lane mark-
ings to provide orientation for the vehicle and use rhombus-
shaped data to offer positional constraints. When effective
visual constraints are unavailable, odometry from wheel en-
coders is employed to furnish information on the vehicle’s
pose, as illustrated in Fig. 1. The status of a vehicle at time
k is represented as xk = [txk, tyk, θk]

⊤, where txk, tyk,
and θk denote the coordinates and orientation of the vehicle,
respectively. This section focuses on how different types of
sensor data, specifically from the wheel encoder and camera,
are utilized as input for the localization system. Fig. 10
demonstrates how our localization results switch between
camera data and wheel encoder data.

1) Wheel Encoder: The wheel encoder data is naturally
converted to wheel odometry [53], forming a queue Q = {di},
where each element di = [dxi, dyi, θi]

⊤ represents the dis-
placement between time i and time i+1. This queue is crucial
for tracking the vehicle’s movement over time. If the vehicle’s
pose at time k is known, its pose at the last time can be easily
determined.

Given the known covariance of the vehicle pose at time k
and the covariance of d, the pose covariance after movement
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the localization result is sourced from

the wheel encoder (odometry)

Connecting lines, illustrating the

association between the estimated

trajectory and the ground truth trajectory

Estimated vehicle

localization trajectory

Vehicle's ground

truth trajectory

the localization result is sourced

from the camera

Lane markings

Ground rhombus marker

the vehicle

Fig. 10. Adaptive localization results demonstrating the dynamic sourcing
of vehicle pose data from wheel encoder-derived odometry and camera data
upon rhombus marker detection.

can be deduced through covariance propagation, as described
in [54].

2) Camera: Based on the methods described in Section III-
D, four corners of road markers and lane lines are extracted
from the image data provided by the camera.

• Lane line: When valid lane information is present in the
image, two straight lines in the world frame at time k can
be obtained, which are then converted to a heading angle for
the vehicle as per [2]. The average heading angle θk and its
covariance nl are calculated from the orientations obtained for
every lane.

By linear interpolation from Q, we can get the x =
[x̌k, y̌k, θ̌k]

⊤, and can update the orientation at time k byx̌k

y̌k
θ̂k

 =

1 0 0
0 1 0
0 0 0

x̌k

y̌k
θ̌k

+

 0
0

θk

 . (8)

Then the covariance of the pose vehicle can be updated by
Σ̂l

k = AΣ̌kA
⊤ + B, where A is three by three matrix in

(8), and the B is the covariance matrix converted by nl =
[0, 0, nl]⊤. Assuming we assume that the vehicle is moving
at a constant speed, at time k, by linear interpolation in Q,
we can get the xk, and it’s covariance is Σ̌k. To minimize the
estimated covariance, we merge the results of interpolation
and lane estimation method by the basic Gaussian distribution
fusion [55].

• Rhombus Road Marker:
When the input data comprises the four corners of a

rhombus, employing the PnP algorithm is a rational choice due
to its efficient solution of such geometric problems. However,
this method faces challenges; it requires a higher degree
of camera calibration accuracy and involves significant CPU
computations.

Based on (4), by utilizing the IPM matrix, we can obtain

tj = pdj −RH p̂ij (9)

where tj = [txkj , tykj ]
⊤ is the vehicle position estimated

by jth pixels at time k. And R is the rotation matrix that
represents the current position of the vehicle. Then we can

use t̃k = 1
4

∑4
j=1 p

i
bj

to represent the final estimate by the
marker input.

Similar to the (8), we can getx̂k

ŷk
θ̌k

 =

0 0 0
0 0 0
0 0 1

x̌k

y̌k
θ̌k

+

txkj
tykj
0

 . (10)

Assuming the coordinate covariance of the corner points,
along with covariance propagation and the fusion of Gaussian
distributions, the vehicle’s pose estimation at time k can be
determined.

Note that, when calculating priorities, we consider wheel
odometry, lane data, and rhombus data. If there is no input
data for lanes or rhombi, the corresponding processes can be
omitted.

G. Map Layout and Generation

1) Map Layout: The rhombus, being a simple element for
road markers, is a reasonable choice for localization markers.
Having too many markers can compromise aesthetics and
increase workers’ workload. Multiple markers in a single
image can also complicate data association. To address these
challenges, a thoughtful marker layout is essential.

Fig. 11. Green rhombus represents the rhombus marker. Yellow strip: the
lane line. Blue square: the vehicle. Red triangle: the camera in the front of
the vehicle. On the left, three markers are aligned, while on the right, they
are staggered.

A straightforward approach is to stagger the markers, as
shown in Fig. 11. If markers are aligned, multiple rhombuses
of similar size might appear in the image simultaneously. By
staggering the markers, the rhombus area in the image will dif-
fer significantly from the second-largest rhombus, simplifying
data association

2) Map Generation: In localization tasks, the map encom-
passes the coordinates of the rhombus corners and the linear
equations of each lane line. Most vehicles operate in open-air
environments, making it challenging to use surveying tools for
marking or lane coordinate measurements. Even though we
have CAD drawings of construction drawings, workers cannot
guarantee that they will fully implement them according to the
specifications of the construction drawings. Thus, we aim to
automate map generation.

A robust GNSS signal, when combined with RTK, can
yield stable and accurate localization results. Using a well-
calibrated vehicle, we can automatically generate road marker
coordinates in areas with strong GNSS signals. Based on the
accurate localization result, we can provide a method to auto
generate the coordinate of rhombus corners.
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• Lane line: Lane masks can be extracted using [49].
Notably, most lane detection algorithms are compatible, en-
hancing the algorithm’s flexibility. Each pixel in the mask can
be transformed into the world frame using the IPM matrix:

pwl
jk = RkHpil

jk + tk, (11)

Where Rk and tk represent the orientation and translation of
the vehicle respectively, pjkil denotes the jth lane pixel in
the image, and pwljk is the coordinate of the jth lane pixel
converted to the ground in the world frame. In every symbol, k
indicates the specific time instance. After the vehicle traverses
the entire path, numerous 2D points can be obtained in the
world frame. The L2 distance clustering algorithm can classify
each lane, and subsequently, SVD can be employed to fit the
line, thereby providing orientation for localization.

V VV

V vehicle in the mapVV

1

2

3

1

2

3

Fig. 12. In the left image, lane markings observed from three distinct vehicle
positions are depicted. On the right image’s map, these markings correspond to
positions 1, 2, and 3. Rectangles in the image indicate the vehicle’s positions.
The yellow, red, and green colors represent lane markings from each position.
It’s evident that some lane markings overlap when mapped. These overlaps
create a continuous lane marking, enabling us to use linear fitting for a
complete lane representation. The blue section in the right image depicts
lanes parallel to the primary one.

In rhombus detection, a significant challenge lies in the
fact that false detections can severely degrade the accuracy
of the map. Although 11 allows us to project the rhombus
from the camera onto the map, this may introduce erroneous
projections.

To address this issue, we consider employing the strat-
egy detailed in Section E, ”Verification of Rhombus Edge
Lengths”, to effectively eliminate these false detections. With
an accurate construction map at hand, we can further refine
our detections using ”Matching Rhombus Data to Map” and
”Data Filtering via Localization” methods. However, in the
absence of this map, it is suggested to map the rhombus onto a
provisional map upon its initial detection and then continually
validate using the aforementioned strategies.

Referring to Fig. 8 and Fig. 9, multiple data descriptors
might be acquired for a genuine rhombus. By averaging the
coordinates of the rhombus that have undergone the IPM
transformation and are projected in the world coordinate
system, we can precisely determine its position on the map.
The workflow is illustrated in the accompanying figure.

Fig. 13. A rhombus may be detected multiple times. As shown in the figure,
the repeated detections of the rhombus often result in overlaps on the map. By
clustering the corner coordinates from these detections and calculating their
average, the precise location of the rhombus can be determined.

III. EXPERIMENTS

We first perform the simulated and real-world experiments
for static IPM-based localization and PnP localization. Next,
real-world experiments for our system are performed. Finally,
we compare the computation time for each frame.

A. Experiment Environment and Setup

Our experiments were conducted at a container port, con-
sistent with our previous work [2]. The experimental site is
depicted in Fig. 6. We employed a pinhole camera with a res-
olution of 1280×720. Its intrinsic parameters were calibrated
following the method presented in [56].

The camera extrinsic parameters and IPM matrix are ob-
tained by the methods provided in Section III-C. In order
to make the experiment reflect the real situation, the value
of parameters are also used in the simulation experiment.
The side length of rhombus we used is 1 meter, and we use
0.2 meters as the limit of maximum value of dab in (6).

Unless specified otherwise, all experiments were conducted
using an Intel Core i7-8700K processor with 24GB of RAM
and an NVIDIA RTX 3090 GPU equipped with 24GB of
memory. This setup will henceforth be referred to as the ”x86-
64 platform.”

B. Performance of Static Localization

We keep all the equipment static to get localization accuracy
by different methods. By simulating the UGV’s pose and the
ground marker’s coordinates, we can project the pixels onto
the image. Fig. 2 shows the the markers on the ground and
corresponding pixels in the images. We add noise to the pixels
in the images, then use two methods for positioning.

• PnP-based localization: We use PnP [57] to get the
camera pose and the vehicle’s position. Notice that we
are only interested in the 3-axis pose, so the result will
be projected to a 2D plane to compare with the IPM
localization method.

• IPM localization: Although we use lane information in
our system to get the vehicle orientation, the IPM local-
ization can get the orientation directly. In this experiment,
we simultaneously use IPM to estimate the translation and
orientation.
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Fig. 14. Top six: IPM localization translation errors; bottom six: PnP translation errors. Each figure corresponds to 4-9 pixels in positioning. Green points
show x-y direction errors, magenta illustrates triple covariance ellipse, and red denotes mean error.
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Fig. 15. Orientation errors: IPM method (left) vs. PnP method (right). The
blue X indicates orientation (yaw) error, and the red horizontal line represents
three times the standard variance of yaw error.

1) Estimate Orientation and Translation: We use 1.4 pixels
as the standard noise variance in this experiment. Then, the
translation error result is shown in Fig. 14 and Fig. 15. It
should be noted that the orientation variance is large. When
few matched points are available, we can observe that the IPM
localization method has a stronger anti-noise ability than the
PnP method. In addition, a small increase in the number of
points matches can help only limited help improve accuracy.

Because sin(0.5◦) ≈ 0.01, which means if our vehicle with
a heading error of 0.5 degrees, the vehicle will deviate 0.1
meters as long as go forward 10 meters.

2) Estimate Translation Only: 1.4 pixels as the noise stan-
dard variance and heading angle with 0.1-degree noise will be
fed into the two systems. We use only four matched pixels
to estimate the vehicle position. The result can be shown
in Fig. 16. We can see that by a good orientation provided
to the system, the stability and reliability of the system can
be upgraded. In addition, the PnP method has a smaller
variance in the horizontal direction. However, it costs 5.23ms
per frame, and the IPM method costs 0.01ms for one frame.
The reason is that matrix multiplication is much faster than
matrix factorization. The IPM method requires only matrix
multiplication.

C. Performance of Moving Localization

On an 1800 meters route, we tested the positioning accuracy
of the following methods respectively:

• I1:IPM with orientation provided by lane,
• I2:IPM with orientation provided by ground truth,
• I3:IPM without any orientation provided,
• P1:PnP with orientation provided by lane,
• P2:PnP with orientation provided by ground truth,
• P3:PnP without any orientation provided,
We are interested in positioning when using a marker,

and this positioning accuracy directly determines whether the
whole system can work well. First, we use the ground truth
map, Moreover, the result can be found in Table I. We can see
that the IPM method can get the best performance, even if the
orientation is provided by ground truth(RTK-GNSS). We also
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Fig. 16. Error distribution: IPM method (top) vs. PnP method (bottom). Color
descriptions match Fig. 14.
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Fig. 17. Error distribution: P1 (left) vs. I1 (right).

test our system in generated map, in Taleb II, and we can
see that the IPM method is more robust than the PnP method.
We also plot the error distribution of the P1 and I1; the result
is in Fig. 17. We can find that the P1 distribution does not
look like a normal distribution. Moreover, compared with P1,
I1 is closer to a normal distribution.

D. Bad Calibration for Camera

We exchanged the front and rear cameras’ internal param-
eters and distortion coefficients, and the pixel positions of the
image will be different from that before due to the changed
distortion coefficient.

Therefore, it is necessary to calibrate various components,
e.g., the IPM matrix and the relative pose between the camera
and the vehicle body center.

Subsequently, we replicate the experimental procedures
outlined in Section C. The Table III shows the results, and we
can see that the IPM method is robust for camera parameters.

E. Comparison with Other Algorithms

A critical comparison with prior work, such as that in [2],
is essential to benchmark the performance of our system. We
conducted a comprehensive evaluation against SOTA Visual-
Inertial Odometry (VIO) systems, including VINS-Mono [5]
and ORB-SLAM3 [58]. To improve the accuracy of the two

TABLE I
LOCALIZATION RESULT WITH GROUND TRUTH MAP

Case I1 I2 I3 P1 P2 P3

max T(m) 0.246 0.246 0.520 0.255 0.251 0.399
max R(deg) 0.220 NaN 2.292 0.220 NaN 1.990
mean T(m) 0.116 0.120 0.147 0.125 0.125 0.141

mean R(deg) 0.095 NaN 0.329 0.095 NaN 0.420

TABLE II
LOCALIZATION RESULT WITH GENERATED MAP

Case I1 I2 I3 P1 P2 P3

max T(m) 0.220 0.222 0.339 0.669 0.672 0.712
max R(deg) 0.220 NaN 1.737 0.220 NaN 2.724
mean T(m) 0.099 0.098 0.139 0.424 0.424 0.434

mean R(deg) 0.093 NaN 0.496 0.093 NaN 1.126

TABLE III
LOCALIZATION RESULT WITH SWAPED PARAMETERS IN GT MAP

Case I1 I2 I3 P1 P2 P3

max T(m) 0.249 0.249 0.515 0.280 0.274 0.416
max R(deg) 0.220 NaN 2.275 0.220 NaN 2.089
mean T(m) 0.115 0.120 0.147 0.128 0.127 0.147

mean R(deg) 0.095 NaN 0.326 0.095 NaN 0.473

of VIO system, we integrated an IMU into the vehicle’s setup.
This integration was carefully calibrated with the onboard
camera using the Kalibr toolkit [59]. It is noteworthy that
the Direct Sparse Localization (DSL) technique necessitates
a point cloud map, as detailed in [43]. For this requirement,
we utilized G-LOAM [7] to generate the needed data. Further-
more, comparisons were made with LiDAR-based approaches,
including Fast-LIO2 and NDT-LOAM [60], to demonstrate the
potential for synergy between visual and LiDAR systems.

In addition to traditional methods, and considering the
limitations of depth information in outdoor environments, we
selected the most recent 2023 SOTA learning-based monoc-
ular camera SLAM solutions for our experimentation, which
include GO-SLAM [36], Orbeez-SLAM [34], and Panoptic
Visual Odometry [39]. Ultimately, DROID-SLAM was also
included in the evaluation, as it is commonly used as a baseline
in recent learning-based research. We initialized the SLAM
systems with the ground truth coordinates. And due to the
intrinsic limitations of monocular visual SLAM in providing
essential scale information for accurate localization,we opti-
mized the scale factor to minimize errors, thereby enhancing
system performance [34], [36], [37], [39]. Due to the increase
in memory consumption with distance when running Orbeez-
SLAM, we restricted our comparison to trajectory data during
periods when memory usage was below 16GB.

A detailed comparison is presented in Table IV, where it
can be observed that most systems exhibit underperformance
in expansive environments, primarily due to drift. However,
our algorithm shows a marked improvement in accuracy. Our
algorithm was custom-developed to be highly tailored for
specific scenarios, thus it is expected to yield optimal results.
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TABLE IV
ACCURACY COMPARISON OF DIFFERENT ALGORITHMS(m, deg)

max T max R mean T mean R

I1 0.249 0.220 0.115 0.095
VINS-Mono [5] 1.582 6.491 0.573 1.477
ORB-SLAM3 [58] 0.792 2.782 0.247 0.758
DSL [43] 0.572 0.754 0.247 0.223
Ref. [2] 0.315 0.234 0.139 0.128
FastLIO2 [61] X X X X
NDT-LOAM [60] X X X X
GO-SLAM [36] 2.317 2.301 0.505 0.684
Orbeez-SLAM [34] 2.395 2.955 0.577 0.391
PVO [39] 1.915 0.937 0.589 0.347
DROID-SLAM [37] 3.392 2.411 1.207 0.802

It also indicate that purely monocular systems [34], [36],
[37], [39], in the absence of auxiliary data, tend to incur
substantial localization errors. LiDAR systems, equipped with
precise depth information, inherently have superior positioning
accuracy compared to visual systems. As discussed in [61],
they do not perform well in degraded scenarios. The LiDAR
algorithms were unable to operate stably in the experiments
conducted.

F. Resource Utilization in Algorithms

To comprehensively assess the computational efficiency of
different algorithms, we tabulate the average processing time
per frame for each algorithm when processing a new image.
We particularly contrast the corner extraction time of our
approach with the method presented in [2], it results are
provided in Table V.

TABLE V
CORNER EXTRACTION TIME COMPARISON

Case(ms) I1 Ref. [2]

Cortex-A78AE 5 37
Cortex-R5 8 88

Intel i7 2 19

To assess the efficiency of computational resources, the
performance of the algorithms was compared across three
distinct platforms: NVIDIA Jetson AGX Xavier 4 GB (with an
integrated Cortex-R5 CPU), Jetson Orin NX 8GB (featuring a
Cortex-A78AE CPU), and an Intel Core i7-8700K coupled
with an NVIDIA RTX 3090 GPU. The intensive resource
demands of certain algorithms, as delineated in [34], [36],
[37], [39], particularly regarding GPU memory constraints,
precluded their execution on ARM-based systems. Conse-
quently, their evaluation was confined to computational latency
metrics on the x86-64 architecture. Furthermore, Fast-LIO2
and NDT-LOAM were unable to function in the prescribed
scenario, which, incidentally, corresponds to the degenerate
cases reported in [61]. As a result, these algorithms were
omitted from our testing protocol. Table VI presents a detailed
comparison of the benchmarking results.

We also compared the GPU memory usage of algorithms
that utilize a GPU, as excessive memory requirements can

TABLE VI
PROCESSING TIME PER FRAME FOR ALGORITHMS(ms)

Cortex-A78AE Cortex-R5 Intel i7

I1 6 10 3
P1 12 24 7
P3 16 29 8
VINS-MONO [5] 55 83 32
ORB-SLAM3 [58] 31 42 15
DSL [43] 344 397 174
Ref. [2] 112 188 58
GO-SLAM [36] X X 117
Orbeez-SLAM [34] X X 57
PVO [39] X X 176
DROID-SLAM [37] X X 45

significantly impact the deployment of these algorithms, af-
fecting the cost of industrial implementation. The comparative
results can be found in Table VII. It is important to highlight
that within the open-source Orbeez-SLAM [34] algorithm,
the GPU memory consumption continuously increases as the
vehicle moves.

TABLE VII
GPU MEMORY USAGE FOR DIFFERENT ALGORITHMS

Method GPU Memory Usage

I1 3.2 GB
GO-SLAM [36] 17.9 GB

Orbeez-SLAM [34] 8 GB∗

PVO [39] 11.9 GB
DROID-SLAM [37] 7.7 GB

Drawing from the experiments conducted, it becomes evi-
dent that our system outshines other SOTA localization solu-
tions when tested against data from port environments. Our
system demonstrates superiority not only in terms of accuracy
but also in the efficiency of computational resource utilization.
Our methodology stands out as a viable solution that is ready
for industrial application and deployment.

G. Localization Performance with Varied Marker Geometries

As discussed earlier in Section II-B, a key reason for select-
ing rhombus-shaped markers is their widespread presence in
standard traffic signage, which implies that the corresponding
molds are readily available. This not only facilitates the
production of markers but also enhances compatibility and
recognition efficiency within practical applications of our sys-
tem. However, geometrical shapes such as equilateral triangles,
squares, and regular pentagons are not commonly adopted in
our system’s intended application scenarios, as they are not
prevalent in the existing traffic sign system. Consequently, we
are unable to obtain these shapes’ markers in the real world.

In light of this, we resorted to simulation experiments
to investigate the potential impact of these less common
geometric shapes on system performance. This approach al-
lowed us to precisely compare the effects of different marker
shapes on localization accuracy and computational efficiency
within a controlled environment. The simulation experiments
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were focused on analyzing the influence of various marker
shapes on localization precision and their computational time
requirements under static conditions.

TABLE VIII
COMPARISON OF LOCALIZATION PERFORMANCE FOR DIFFERENT

MARKER GEOMETRIES

Shape runtime(ms) max T(m) mean T(m)

triangles△ 6 0.07 0.01
rhombus 6 0.08 0.01
squares □ 6 0.08 0.02

pentagon 6 0.05 0.01

The data presented in Table VIII summarizes the results
of simulation experiments designed to evaluate the impact
of marker geometry on the localization performance of our
system. From the results, it can be observed that the run-
time for all shapes is consistent at 6 ms, indicating that
the computational efficiency of the system is shape-agnostic
within the tested range. In terms of localization precision, the
maximum and mean translation errors remain relatively low,
with only slight variations among the different shapes. The
rhombus and squares exhibit a marginally higher maximum
translation error at 0.08 compared to the triangles and pen-
tagons, which may be attributed to their specific geometrical
properties. However, these differences are minimal, suggesting
that the choice of marker geometry does not significantly affect
the overall performance of the system.

These findings imply that the system’s robustness to vari-
ations in marker shape is high, and such robustness can be
advantageous in practical scenarios where marker diversity
might be required. This also hints at the possibility of incor-
porating a wider range of geometrical shapes into the system
without compromising localization accuracy or computational
efficiency.

IV. DISCUSSION

The proposed method presents a visual-based localization
system tailored for autonomous driving applications. Our sys-
tem, underscored by its robustness and reliability, has already
seen deployment in commercial settings.

The experimental results indicate that our approach de-
mands minimal precision in camera internal parameters,
thereby substantially reducing camera calibration efforts. No-
tably, our system is computationally efficient, allowing ample
processing time for the CPU. Furthermore, it can be adapted
for various scenarios and is readily modifiable to accommo-
date different geometric road markers, such as other regular
polygons, not just rhombuses.

Moreover, comparative experiments reveal the IPM
method’s superiority over the PnP method in both speed
and precision. IPM is especially proficient in quantifying its
uncertainty via Gaussian distribution, facilitating subsequent
sensor fusion tasks. In situations with sparse matching data,
provisioning ample heading information markedly enhances
the accuracy of the localization results. While a static heading
angle might yield larger residual errors, it invariably results in
more precise positioning.

Limitations: While the system is advanced, there is room
for improvement. Calibration requires specialized surveying
tools, such as a total station. However, testing over two years
has revealed that these parameters remain relatively stable. Al-
though calibration is a one-time necessity per vehicle, it does
curtail the system’s full automation. Each vehicle mandates
GPU utilization for segmentation. Even though NVIDIA’s Orin
offers substantial computational prowess, it comes at a pre-
mium cost. Adverse snowy conditions incapacitate the visual
system, narrowing the algorithm’s geographic applicability.
Lastly, while the system can localize using minimal corner
pixels, it heavily relies on heading data from lane lines. Our
method currently does not accommodate curved lane lines,
making accurate positioning challenging in their absence. This
paper primarily underscores our system’s practical application,
but the underlying mathematical rationale merits further explo-
ration.

V. CONCLUSIONS

In this paper, we presented a reliable and precise local-
ization system leveraging road markers and lanes. Utilizing
the IPM matrix, our method determines the vehicle’s pose
within the global frame. Experimental results highlight its
potential not only in container ports but also in various
autonomous settings. Our solution operates continuously in
real-world ports, achieving positioning accuracies of up to
10cm in most areas, satisfying the precision needs for the
alignment between rail cranes and UGVs. This approach can
be adapted to recognize different road marker shapes. Future
directions encompass online updates of the visual database
and 3D structures for enhanced relocalization capabilities,
especially in dynamic settings. Further plans include detecting
damaged ground markers, integrating data from other sensors,
and providing mathematical explanations for observed exper-
imental behaviors.
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